用户名: 密码: 验证码:
聚乳酸/聚乙烯醇静电纺复合纳米纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸是一种环保型新材料,在医药、工业、国防等有着广泛的应用,尤其与静电纺丝技术结合后在生物医学领域应用潜力巨大。但是它的亲水性差,降解速率较慢,这对其应用性能有很大影响。本文用聚乙烯醇对聚乳酸进行改性,用静电纺丝的方法制备了聚乳酸/聚乙烯醇复合纳米纤维,并通过仪器分析了纺丝的效果和纤维的性能。
     本论文中,首先用自组静电纺丝设备采用聚乳酸/聚乙烯醇复合纺丝液制备了复合纳米纤维。通过对视频变焦显微镜和原子力显微镜的分析确定工艺参数为:PLLA/PVA溶液质量分数比为14%/6%,纺丝电压12kV,挤出速度0.5mL/h,收集距离18cm,纺丝效果较好,可以得到形态良好的纤维。红外光谱的分析证明复合纤维中聚乳酸和聚乙烯醇间存在一定的相互作用,但是通过原子力显微镜的轻敲模式和相移模式分析得出纤维还是存在相分离现象。经实验反复研究得出,不同纺丝时间得到的纳米纤维存在很大差异,开始纺丝效果较好,但后来效果变差,珠丝、液滴增加,这可能是由于环境、材料性能等变化造成的。由于聚乳酸/聚乙烯醇复合纺丝液纺丝效果不稳定,纺丝结果重复性较差,不利于进一步分析研究,因此决定采用其他的办法制备PLLA/PVA复合纳米纤维。
     经研究,实验室自组了双喷头静电纺丝设备,采用两组溶液挤出设备和高压电源、一个滚筒作为共同的收集装置,制备出聚乳酸/聚乙烯醇复合纺丝纳米纤维。通过视频变焦显微镜和扫描电镜分析确定聚乳酸溶液的最佳纺丝浓度为30%,滚筒最佳转速为200r/min,因此复合纺丝实验中选用的工艺参数为:聚乳酸溶液浓度30%,纺丝电压15kV,挤出速度1.0、0.8、0.5、0.2mL/h,收集距离15cm,聚乙烯醇溶液浓度10%,纺丝电压18kV,挤出速度0.2mL/h,收集距离15cm,滚筒转速200r/min。同时通过扫描电镜和原子力显微镜分析了纤维的形态结构、直径分布和表面粗糙状况。复合纤维膜力学性能主要通过强力试验和AFM力-距离曲线进行分析,结果认为聚乳酸1.0mL/h时,纤维膜表现出良好的力学性能,聚乳酸0.5mL/h时,纤维膜的力学性能最差,同时聚乙烯醇的粘附性比聚乳酸的要好。通过静态接触角和动态吸水性能分析了聚乳酸/聚乙烯醇复合纳米纤维膜的润湿性,复合膜的润湿性比纯聚乳酸膜有了很大改善,聚乳酸0.2mL/h时润湿性最好。热重分析认为聚乙烯醇在一定程度上改善了聚乳酸的热稳定性,但效果不是很大。
As a new kind of environment-protection materials, poly( L-lactic acid ) (PLLA) has a wide application in medicine, industry, national protection, et al, especiallly when it is combined with the technology of electrospinning. But the poor hydrophilicity, low speed of degradation have a bad effect on its application. In this article, poly(vinly alcohol) (PVA) was used to improve PLLA. PLLA/PVA blended or composite micro/nanofibers were prepared by the means of electrospinning. The spinning effect and fibers’properties were analyzed by apparatuses.
     Firstly, PLLA/PVA composite nanofibers were prepared with the self-assembled electrospinning equipment, in which two kinds of solutions were blended as the spinning solution. The proper technical parameters, which were determined by video zoom microscope and atomic force microscope (AFM), were as follows: 14%/6% of the concentration ratio of PLLA/PVA, 12kV of the spinning voltage, 0.5mL/h of the extruding speed, 18cm of the collecting distance. Well-shaped fibers were obtained with these parameters. Some chemical interaction between PLLA and PVA in the blended fiber had been proved by infrared spectrum (IR) . The incompatibility of PLLA and PVA in the nanofibers was observed using tapping and phase modes of AFM. But there were great differences among nanofibers prepared in different time. More droplets and beads appeared in the latter case. It may be caused by the change of environment and material properties. Because of the unstability of the spinning result, it couldn’t repeated, other preparation method of PLLA/PVA composite nanofibers was taken.
     A twin-spinneret electrospinning equipment, which had two sets of solution-extruding devices and high-voltage power supplies and a roller as the co-collecting device, was set up and the PLLA/PVA composite micro/nanofibers had been prepared with two kinds of solutions spinning separatedly. After analyzing the images of video zoom microscope and scanning electron microscope (SEM), the most suitable technical parameters were listed as follows: PLLA solution, concentration 30%, voltage 15kV, extruding speed 1.0, 0.8, 0.5, 0.2mL/h, collecting distance 15cm; PVA solution, concentration 10%, voltage 18kV, extruding speed 0.2mL/h, collecting distance 15cm; rotating speed of the roller 200r/min. And the structure, diameter distribution and surface roughness of nanofibers were analyzed by SEM and AFM. The mechanical property of composite nanofiber mats was analyzed by tension test and force-distance curves. PLLA 1.0mL/h showed the best mechanical property and PLLA 0.5mL/h was the worst. PLLA got a better adhesive ability than PVA did. Composite nanofiber mats had a great improvement on the wettability comparing with the pure PLLA nanofiber mat, which was proved by the tests of static contact angle and dynamic water adsorption. PLLA 0.2mL/h was the best. Some improvements on the thermal stability of PLLA had been made with PVA added.
引文
1.迟蕾,姚永毅,李瑞霞,等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展, 2004 (5):1-5
    2.曹茂盛.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001. 8-9
    3.吴大诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社, 2003. 9-10
    4.王建坤.新型服用纺织纤维及其产品开发[M].北京:中国纺织出版社, 2006. 5-5
    5.王桦.纳米材料研究与应用[M].电子科技大学出版社, 2004. 72-75
    6. P Gupt, G L Wilkes. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach [J]. Polymer, 2003, 44: 6353-6359
    7. B Ding, E Kimur, T Sato, et al. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning[J]. Polymer, 2004, 45: 1895-1902
    8.董存海.电纺聚乳酸超细纤维及其杂化膜的研究[D]: [硕士学位论文].天津:天津大学, 2005
    9.王海燕,刘新厚,吴大勇.静电纺丝及纳米纤维薄膜[J].物理化学学报, 2007 (Supp.): 67-74
    10. I G Loscertales, A Barrero, I Guerrero, et al. Micro/nano encapsulation via electrified coaxial liquid jets [J].Science, 2002, 295: 1695-1698
    11. K Jun, R Orth, Y Yang, et al. A scanning tip electrospinning source for deposition of oriented nanofibres [J]. Nanotechnology, 2003, 14 (10): 1124-1129
    12. A Theron, E Zussman, A L Yarin. Electrostatic field-assisted alignment of electrospun nanofibres [J]. Nanotechnology, 2001, 12: 384-390
    13. D Li, Y L Wang, Y N Xia. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters, 2003, 3 (8): 1167-1171
    14. J M Deitzel, J Kleinmeyer, J K Hirvonen, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 2001, 42: 8163-8170
    15. Z M Huang, Y Z Zhang, M Kotaki,et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].Composites Science and Technology, 2003, 63: 2223-2253
    16. S R Bhattarai, N Bhattarai, H K Yi, et al. Novel biodegradable electrospun membrane: scaffold for tissue engineering [J]. Biomaterials, 2004, 25:2595-2602
    17. C P Barnes, S A Sell, E D Boland, et al. Nanofiber technology: Designing the next generation of tissue engineering scaffolds[J]. Advanced Drug Delivery Reviews, 2007, 59: 1413-1433
    18. F Yang, R Murugan, S Wang, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering [J]. Biomaterials, 2005, 26: 2603-2610
    19.顾书英,张春艳,任杰.卡莫氟-聚乳酸纳米纤维缓释体系的制备及体外缓释性能[J].中国医院药学杂志, 2007, 27(5): 585-587
    20. R S Barhate, S Ramakrishn. Nanofibrous filtering media: filtration problems and solutions from tiny materials[J]. Journal of Membrane Science, 2007, 296: 1-8
    21. D Aussawasathien, J H Dong, L Dai. Electrospun polymer nanofiber sensors[J]. Synthetic Metals, 2005, 154: 37-40
    22. J S Kim, D H Reneker .Mechanical properties of composites using ultrafine electrospun fibers[J].Polymer Composites, 1999, 20 (1): 124-129
    23.马昀,吴佩云,莫靖昱.聚乳酸纤维的性能与应用前景[J].国外丝绸, 2004 (3): 3-5
    24.任杰,董博.聚乳酸纤维制备的研究进展[J].材料导报, 2006, 20 (2): 82-84
    25. B Gupt, N Revagade, J Hilborn. Poly(lactic acid) fiber: An overview [J]. Progress of Polymer Science, 2007, 32: 455-482
    26.张韵慧,李宁,许建辰,等.聚乙烯醇在中药新剂型中的应用[J].中国中药杂志,2004, 29 (2):101-103
    27.王琛.水溶性纤维及其在纺织行业中的应用[J].江苏纺织, 2000, 9: 14-16
    28.何云,刘斌,梁明江.PVA纤维在造纸业的应用浅析[J].四川纺织科技,2004, 1: 36-39
    29.冉景慧,王习文,胡健,等. PVA水溶性纤维在碱锰电池[J].中国造纸, 2008, 27 (2): 18-20
    30.詹炳根,林兴胜,陈婷.PVA纤维增强高性能水泥基材料的韧性[J].合肥工业大学学报(自然科学版), 2007, 30 (9): 1178-1181
    31.王华林,盛敏刚,翟林峰,等.聚乳酸/聚乙烯醇共混膜的亲水性与降解性能研究[J].生物医学工程学杂志,2008, 25 (1): 139-142
    32. S S Jawalkar, T M Aminabhavi. Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(L-lactide) and poly(vinyl alcohol) blends[J]. Polymer, 2006, 47: 801-8071
    33. A Formhals. Process and apparatus for preparing artificial threads[P]. US patent, 1975504, 1934
    34.周红军,罗颖.原子力显微镜在高分子研究中的应用[J].广东化工, 2007, 34 (165): 83-85
    35. CSPM4000扫描探针显微镜说明书[Z],广州本原纳米仪器有限公司
    36.朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器.2005, 3 (1): 22-262
    37. H Fong, I Chun, D H Reneker. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40: 4585-4592
    38. S H Tan, R Inai, M Kotaki, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process[J]. Polymer, 2005, 46: 6128-6134
    39. D Raghavan, X Gu, T Nguyen, et al. Characterization of chemical heterogeneity in polymer systems using hydrolysis and tapping-mode atomic force microscopy[J]. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 1460-1470
    40.杜珊.原子力显微镜相位象的理论和应用[J].云南师范大学学报, 2005, 25 (4): 47-50
    41.徐滨士.纳米表面工程[M].北京:化学工业出版社.2004. 123-129
    42. S S Madaeni, N Ghaemi.Transformation of a hydrophilic membrane into semi-super-hydrophobic based on self-assembly of stearic acid monolayer over induced nanostructures on the membrane surface[J]. Applied Surface Science, 2007, 254: 627-632
    43. B S Hong, J H Han, S T Kim, et al. Endurable water-repellent glass for automobiles[J].Thin Solid Films, 1999, 351: 274-278
    44.韩贤武,陈小安,杨学恒,等.基于原子力显微镜的纳米级表面粗糙度测量[J].重庆大学学报(自然科学版), 2007, 2 (30): 5-6
    45.戴宏钦,徐明,潘志娟,等.静电纺PVA纳米纤维毡的力学性能[J].纺织学报, 2006, 27 (5): 56-65
    46. A Rohatgi, J P Thomas, J N Baucom, et al. Processing and mechanical performance of liquidcrystalline polymer/nanofiber monofilaments[J]. Script Material, 2008, 58: 25-28
    47.华杰,徐盛明,徐景明,等.原子力显微镜测定力-距离曲线的原理和应用[J].金属矿山, 2003 (1): 25-30
    48. K H Lee, K Y Kim, Y J Ryu, et al. Electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends[J]. Journal of Polymer Science: Part B: Polymer Physics, 2003, 41: 1256-1262
    49.王德国,高芒来,张嗣伟.利用原子力显微镜测量石英岩表面分子沉积膜的粘附力[J].石油大学学报(自然科学版), 1999, 23 (4): 53-55
    50. D Y Kwok1, A W Neumannu. Contact angle measurement and contact angle interpretation[J]. Advances in Colloid and Interface Science, 1999, 81: 167-249
    51.范雪荣.纺织品染整工艺学[M].北京:中国纺织出版社.1999. 28-28
    52. Q F Wei, Q Li, X Q Wang, et al. Dynamic water adsorption behaviour of plasma-treated polypropylene nonwovens[J]. Polymer Testing, 2006, 25: 717-722
    53.姚穆,周锦芳,黄淑珍,等.纺织材料学[M].北京:中国纺织出版社, 1997. 208-208
    54. R N Wenzel. Resistance of Solid Surfaces to Wetting by Water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988-994
    55. T S Meiron, A Marmur, I S Saguy. Contact angle measurement on rough surfaces[J]. Journal of Colloid and Interface Science, 2004, 274: 637-644.
    56.于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社, 2001. 270-272
    57. J Lu, T Wang, L T Drzal. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials[J]. Composites: Part A, 2008, 39 (5): 738-746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700