用户名: 密码: 验证码:
1,3-甘油二酯对2型糖尿病的影响及选择性水解甘油三酯sn-2位酯键酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病(T2DM)是一种世界性的流行性疾病,其患病率日益升高,且日趋年轻化。研究表明,T2DM与膳食脂肪摄入之间存在相关性。1,3-甘油二脂(1,3-DAG)是天然油脂的微量组成成分,以1,3-DAG替换膳食中的甘油三酯(TAG),可以降低T2DM老鼠血清胰岛素和瘦素的浓度,改善T2DM人群的血脂代谢。但1,3-甘油二酯的摄入是否可以改善T2DM患者葡萄糖代谢相关指标,目前尚无大规模人体实验证实。天然油脂中1,3-DAG的含量极低,需通过对现有油脂资源进行改造而制备。目前在市场上销售的富含1,3-DAG的食用油是采用化学法制备而成,不易为消费者所接受,而利用脂肪酶制备1,3-DAG受到越来越多的关注。南极假丝酵母脂肪酶A(CAL-A)具有倾向性水解TAG sn-2位酯键的特性,可以利用其制备1,3-DAG。但该酶在原始菌株中产量极低。本学位论文拟调查1,3-DAG对T2DM的影响,并在外源蛋白表达系统中对编码CAL-A的基因进行表达,利用表达的重组脂肪酶水解TAG而制备1,3-DAG。
     本学位论文主要内容分述如下:
     采用双盲的、平行对照的膳食干预研究,评价1,3-DAG对T2DM的影响。共招募杭州地区127名40~65岁的T2DM受试者,随机分成两组,分别摄入等量DAG(1,3-DAG占64%)或TAG 120天。分别在第0、60和120天测定受试者生理参数并采集血液样品。采用商业化试剂盒对受试者的肝肾功能指标、血脂代谢指标、血糖浓度、血清胰岛素和瘦素浓度进行检测;采用气相色谱法检测受试者血清磷脂脂肪酸组成;胰岛素抵抗指数(HOMA-IR)由以下公式进行计算:HOMA-IR=空腹胰岛素浓度×空腹血糖浓度/22.5。共有112名受试者完成本次实验,其中DAG组60人(36名女性,24名男性,平均年龄54.1±6.7岁),TAG组52人(29名女性,23名男性,平均年龄53.9±6.0岁)。结果发现,DAG组和TAG组受试者的体重均显著下降(p<0.05),但DAG组的下降幅度(1.2 kg)显著大于TAG组的幅度(0.5kg)(p<0.05)。DAG组受试者的腰围和臀围显著下降(p<0.05),TAG组的腰围和臀围未出现显著变化。DAG组受试者的血清葡萄糖浓度由第0天的7.4 mmol/L下降至第120天的7.06mmol/L,而TAG组则由第0天的7.81 mmol/L上升至第120天的7.88 mmol/L,均未达到显著水平。DAG组受试者的血清胰岛素和瘦素浓度均明显下降,但未达到显著水平,而TAG组胰岛素和瘦素浓度均显著升高(p<0.05)。DAG组受试者的胰岛素抵抗指数显著下降(p<0.05),而TAG组的胰岛素抵抗指数明显升高,但未达到显著水平。两组之间肝肾功能相关指标及血清磷脂必需脂肪酸组成无显著差异。
     以南极假丝酵母基因组为模板,对编码CAL-A的基因序列进行扩增,然后与原核表达载体pET-28a连接构建成重组载体,并将其转化入大肠杆菌DH5α中。通过抗生素平板和PCR扩增,筛选和鉴定重组子,并对其进行诱导表达。聚丙烯酰胺凝胶电泳(SDS-PAGE)显示,重组脂肪酶以包涵体的形式存在。采用尿素处理后,未恢复其活性。
     将编码CAL-A的PCR扩增产物与酵母分泌型载体pPIC9K连接构建成重组载体,并将其电转化入毕赤酵母GS115中。通过最小葡萄糖培养基和最小甲醇培养基及PCR扩增,筛选和鉴定重组子。重组酵母经192 h培养后,发酵液上清酶活达到17.4 U/mL。SDS-PAGE显示,重组脂肪酶分子量约为50 kD。粗酶液经中空纤维素膜超滤浓缩和离子柱交换层析后,得到经SDS-PAGE分析表明为单一条带的重组脂肪酶。该酶最适反应温度为75℃;热稳定性高,在70℃及以下温度保持30 min后仍具90%以上的酶活性;最适反应pH值为7.0,在pH 6.0~8.0的范围内具有较好的稳定性;Co~(2+)和EDTA溶液对重组脂肪酶的活性具有促进作用,Hg~(2+)对脂肪酶活性具有抑制作用,Ca~(2+)、Zn~(2+)、Ag~+等离子对脂肪酶的活性无显著影响。
     将三油酸甘油酯与水以3:1(w:w)的比例混合,并加入占三油酸甘油酯重量2%的重组脂肪酶,60℃200 rpm反应35 h后,反应体系中的1,3-DAG含量约为14%。采用短程蒸馏法除去反应体系中的水、甘油、自由脂肪酸和甘油单酯后,最终产物中1,3-DAG的含量可以达到43%。
     本学位论文检验了1,3-DAG对T2DM的影响。与TAG相比,1,3-DAG的摄入可显著降低T2DM患者体重、体重指数、腰围、臀围、胰岛素抵抗、血清胰岛素和瘦素浓度等指标:1,3-DAG可提供与TAG相同的必需脂肪酸,且对患者肝肾功能无毒副作用。将CAL-A基因序列与酵母分泌型载体pPIC9K连接构建重组载体,并将其转化进入组氨酸缺陷型酵母GS115中,成功进行了表达。重组脂肪酶分子量约为50kD;粗酶液经纯化后,得到电泳纯的重组脂肪酶。该重组脂肪酶具有很好的热稳定性,且对金属离子的毒害作用具有一定的抵抗性。利用重组CAL-A倾向性水解TAGsn-2位酰基,成功制备了1,3-DAG,1,3-DAG的含量可达43%。
Type 2 diabetes mellitus (T2DM) is a world prevalent disease with increasing prevalence and trends to be younger. It was reported that T2DM is related with dietary fat intake. 1,3-diacylglycerol (1,3-DAG) is the minor composition of natural oil. Human and animal studies showed that 1,3-DAG could decrease the serum insulin and leptin concentration of T2DM rats and improve the lipid metabolism parameters of the T2DM patients. Whether 1,3-DAG can improve the glucose metabolism parameters of T2DM patients has not been tested in human studies.
     The content of 1,3-DAG is very low in the natural oil. A commercial available edible oil rich in 1,3-DAG was prepared with chemical methods. However, the utilization of chemical reagents is always a concern for consumers Preparation of 1,3-DAG with enzymatic methods attracted the interest of the scientists. Lipase A from Candida antarctica (CAL-A) was reported to be the lipase with the most sn-2 preference and it can be used to prepare 1,3-DAG by hydrolyzing TAG. However, CAL-A is scarcely available in the original strain. In the present study, we attempted to express the gene of CAL-A in expression system of E.coli and Pichia pastoris and prepare 1,3-DAG with the recombinant lipase.
     The main contents of this study including:
     The effect of 1,3-DAG on T2DM was examined in a double-blind controlled parallel study with 127 T2DM patients (aged 40 to 65) recruited in Hangzhou, China. All subjects consumed TAG oil in the washout period (14 days), then were randomly divided into two groups and consumed DAG or TAG oil respectively with similar fatty acid composition (25 g/day) for 120 days. Physiological parameters were measured and blood samples were collected on days 0, 60 and 120. Parameters of liver and kidney functions, lipid metabolism and T2DM were measured by standard methods using commercially available kits. Fatty acids composition of serum phospholipids was measured with gas chromatography. 112 subjects completed the study. Energy and diet intake did not differ significantly between two groups. Body weight decreased significantly in both DAG and TAG group (p<0.05), but the reduction in DAG group (1.2 kg) was significantly greater than that in TAG group (0.5) (p<0.05). Waist and hip circumferences decreased significantly in DAG group (p<0.05) but not in TAG group. The insulin resistance (HOMA-IR) was significantly reduced from baseline in the DAG oil group (p<0.05). However, in the TAG group, the HOMA-IR increased obviously although not significantly. Serum insulin and leptin concentrations were both increased significantly in the TAG oil group (p<0.05). But in the DAG group, their concentrations were reduced obviously although not significantly. Compared with TAG, DAG oil consumption had no significant effect on the parameters of liver and kidney functions and essential fatty acids composition in serum phospholipids.
     The CAL-A gene was cloned and ligated with pET-28a to construct recombinant plasmid, which was then transformed into E.coli DH5α.Recombinant E.coli was obtained by LB plate with ampecillin and confirmed by PCR. The expression product was analyzed by SDS-PAGE. Results indicated that CAL-A gene was functionally expressed but the recombinant CAL-A existed in form of inclusion body. After treated with urea, the activity of recombinant CAL-A was not recovered.
     The CAL-A gene was then cloned into the yeast integrative plasmid pPIC9K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strain was obtained by minimal dextrose and minimal methanol plates and confirmed by PCR. The expression product of CAL-A gene was analyzed by SDS-PAGE. Results indicated that CAL-A gene was functionally expressed in Pichia pastoris and the recombinant lipase had a molecular mass of 50 kD. After 192 h fermentation, the lipase activity of the supernant reached 17.4 U/mL.
     Crude enzyme was purified with hollow fiber membrane and ion exchange chromatography and its properties were studied. The lipase showed maximum activity at 75℃and pH 7.0. Lipase was relatively stable under 70℃and at pH range 6.0-8.0. Co~(2+) and EDTA solution promoted the activity of CAL-A, Hg~(2+) decreased the activity of lipase, Ca~(2+)、Zn~(2+)、Ag~+ etc had no significant effect on the recombinant CAL-A.
     Hydrolysis reaction was carried out in closed test tubes containing triolein and water (3:1 w:w), CAL-A (2% of triolein) was then added. After incubated at 60℃for 35 h, the product rate of 1,3-DAG reached 13%. After purified with short path distillation, the ultimate yield of 1,3-DAG could reach 43 %.
     In conclusions, The effect of 1,3-DAG on T2DM was examined. Compared with TAG, 1,3-DAG consumption improved biomarkers and anthropometric parameters of T2DM patients and no adverse reactions were observed. 1,3-DAG oil has an equivalent bioavailability as TAG in relation to providing essential fatty acids. The CAL-A gene was cloned into yeast integrative plasmid pPIC9K and expressed in P. pastoris GS115 successfully. Electrophoretic pure recombinant CAL-A was obtained after purification with hollow fiber membrane and ion exchange chromatography. This recombinant lipase was very thermostable and had great resistibility to the inhibition of metal ions. The CAL-A was then used to prepare 1,3-DAG successfully.
引文
1.Hauner H.Preventing type 2 diabetes--a missed opportunity.Dtsch Med Wochenschr.2008,133:877
    2.Misra R,Lager J.Predictors of quality of life among adults with type 2 diabetes mellitus.J Diabetes Complications.2008,22:217-223
    3.付萍,满青青,张坚,王春荣,李艳萍,许洁,翟凤英,马冠生,向红丁,杨晓光.中国5-17岁儿童青少年糖尿病流行情况分析.卫生研究.2007,36:722-724
    4.付萍,满青青,张坚,王春荣,杨晓光.中国60岁及以上人群空腹血糖分布及糖尿病流行特征.卫生研究.2007,36:542-544
    5.杨泽.中国中老年人糖尿病和糖耐量异常的流行病学研究.中华流行病学杂志.2003,24:410-412
    6.张坚,王春荣,付萍,李艳平,李卫东,向红丁,杨晓光.2002年中国城市居民糖尿病流行状况分析.中华预防医学杂志.2007,41:4-7
    7.樊勇,谢自敬,阿地力,木合塔尔,胡尔西达,张明琛,张玲.62例新疆维吾尔族2型糖尿病家系的遗传异质性分析.中国糖尿病杂志.2007,15:719-721
    8.Harvald B,Hauge M.Selection in diabetes in modern society.Acta Medica Scandinavica.1963,173:459-465
    9.Newman B,Selby JV,King MC,Slemenda C,Fabsitz R,Friedman GD.Concordance for type 2(non-insulin-dependent) diabetes mellitus in male twins.Diabetologia.1987,30:763-768
    10.骆天红.2型糖尿病分子遗传学研究的现今认识.诊断学:理论与实践.2007,6:101-107
    11.Zimmet P,Alberti KG,Shaw J.Global and societal implications of the diabetes epidemic.Nature.2001,414:782-787
    12.Callahan ST,Mansfield MJ.Type 2 diabetes mellitus in adolescents.Curr Opin Pediatr.2000,12:310-315
    13.Hellenius ML,Rauramaa R.The metabolic syndrome threatens public health.Increased physical activity the best cure.Lakartidningen.2007,104:3857-3861
    14.McCulloch P,Lee S,Higgins R,McCall K,Schade DS.Effect of smoking on hemoglobin A lc and body mass index in patients with type 2 diabetes mellitus.J lnvestig Med.2002,50:284-287
    15.Wannamethee SG,Shaper AG,Perry IJ,Alberti KG.Alcohol consumption and the incidence of type Ⅱ diabetes.J Epidemiol Community Health.2002,56:542-548
    16.Gangwisch JE,Heymsfield SB,Boden-Albala B,Buijs RM,Kreier F,Picketing TG,Rundle AG,Zammit GK,Malaspina D.Sleep duration as a risk factor for diabetes incidence in a large U.S,sample.Sleep.2007,30:1667-1673
    17.Astrup A,Finer N.Redefining type 2 diabetes:'diabesity' or 'obesity dependent diabetes mellitus'? Obes Rev.2000,1:57-59
    18.徐守伟,刘冰冰,范刚.对糖尿病诊断标准的几点建议.山东医药.2007,47:62-62
    19.Chico M,Levine SN,Lewis DF.Normoglycemic diabetic ketoacidosis in Pregnancy.J Perinatol.2008,28:310-312
    20.李晖.胰岛素泵治疗糖尿病酮症酸中毒的护理.中华临床防治医学杂志.2007,2:77-78
    21.许福云.非酮症高渗性糖尿病昏迷急救与护理.中华临床医学杂志.2005,6:99-100
    22.Gallart L,Bermejo S,Silva-Costa-Gomes T,Puig MM.Propofol infusion and lactic acidosis.Anesthesiology.2008,108:331;author reply 331-332
    23.肖新华.糖尿病乳酸性酸中毒.内科急危重症杂志.2005,11:151-153
    24.Giunti S,Barit D,Cooper ME.Mechanisms of diabetic nephropathy:role of hypertension.Hypertension.2006,48:519-526
    25.Khan KA,Govindarajan G,Whaley-Connell A,Sowers JR.Diabetic hypertension.Heart Fail Clin.2006,2:25-36
    26.许艳芬.2型糖尿病合并高血压与心血管事件相关性研究.中国现代临床医学.2007,6:28-31
    27.尹鲁骅,王伯松,吴云,李金龙.高血压病和糖尿病与冠状动脉病变关系的研究.泰山医学院学报.2007,28:38-40
    28.Choy CK,Rodgers JE,Nappi JM,Haines ST.Type 2 diabetes mellitus and heart failure.Pharmacotherapy.2008,28:170-192
    29.Kamalesh M.Heart failure in diabetes and related conditions.J Card Fail.2007,13:861-873
    30.Chase PH,Trachtman B,Zarowitz H.Hypoglycemic cardiac arrhythmia in early diabetes mellitus.N Y State J Med.1962,62:3647-3652
    31.Singh MM,Singh R,Lahiri VL,Elhence BR,Goyal SP,Singh SR Antiautonomic nerve antibodies in autonomic neuropathy of diabetes mellitus.J Assoc Physicians India.1988,36:197-200
    32.McCormack R Cardiac arrest complicating diabetes.Lancet.1977,2:87-88
    33.黎晓新.糖尿病眼病的防治要重视综合治疗.眼科.2005,14:214-217
    34.Rencova E.Diabetic ophthalmopathy.Vnitr Lek.2007,53:495-497
    35.李海英.糖尿病肾病的临床特点与治疗.西藏医药杂志.2007,28:26-27
    36.肖正华,周倩,陈定宇,黄春苓,梁伟,周峥,叶林,秦庆新.不同肾脏功能状态对糖尿病足部溃疡疗效及预后的影响.中国危重病急救医学.2005,17:667-669
    37.Blumenfeld I,Campos CA.Diabetic arthropathy;neurogenic arthropathy in diabetes.Prensa Med Argent.1951,38:2722-2728
    38.Chehade JM,Mooradian AD.A rational approach to drug therapy of type 2 diabetes mellitus.Drugs.2000,60:95-113
    39.Kaneko T.Drug therapy of diabetes mellitus.Nippon Naika Gakkai Zasshi.1993,82:406-409
    40.Bonora E.Relationship between regional fat distribution and insulin resistance.Int J Obes Relat Metab Disord.2000,24 Suppl 2:S32-35
    41.Lindstrom J,Louheranta A,Mannelin M,Rastas M,Salminen V,Eriksson J,Uusitupa M,Tuomilehto J.The Finnish Diabetes Prevention Study(DPS):Lifestyle intervention and 3-year results on diet and physical activity.Diabetes Care.2003,26:3230-3236
    42.Manco M,Calvani M,Mingrone G.Effects of dietary fatty acids on insulin sensitivity and secretion.Diabetes Obes Metab.2004,6:402-413
    43.Azevedo-Martins AK,Monteiro AP,Lima CL,Lenzen S,Curi R.Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells.Toxicol In Vitro.2006,20:1106-1113
    44.Zhang Y,Xiao M,Niu G,Tan H.Mechanisms of oleic acid deterioration in insulin secretion:role in the pathogenesis of type 2 diabetes,Life Sci.2005,77:2071-2081
    45.Wang L,Shao J,Muhlenkamp P,Liu S,Klepcyk P,Ren J,Friedman JE.Increased insulin receptor substrate-1 and enhanced skeletal muscle insulin sensitivity in mice lacking CCAAT/enhancer-binding protein beta. J Biol Chem. 2000, 275: 14173-14181
    
    46. Choi CS, Fillmore JJ, Kim JK, Liu ZX, Kim S, Collier EF, Kulkarni A, Distefano A,Hwang YJ, Kahn M, Chen Y, Yu C, Moore IK, Reznick RM, Higashimori T, Shulman GI. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest. 2007, 117:1995-2003
    
    47. Lau DC, Dhillon B, Yan H. Adipokines: Molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol. 2005, 288: 2031-2034
    
    48. Franckhauser S, Mu S, Elias I. Adipose overexpression of phosphoenolpyruvale carboxykinase leads to high susceptibility todiet-induced insulin resistance and obesity.Diabetes. 2006, 55: 273-280
    
    49. van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care. 2002,25: 417-424
    
    50. Salmeron J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr. 2001, 73:1019-1026
    
    51. Parker DR, Weiss ST, Troisi R, Cassano PA, Vokonas PS, Landsberg L. Relationship of dietary saturated fatty acids and body habitus to serum insulin concentrations: the Normative Aging Study. Am J Clin Nutr. 1993, 58: 129-136
    
    52. Vessby B, Unsitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, Nalsen C,Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E,Gustafsson IB, Storlien LH. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study.Diabetologia. 2001,44: 312-319
    
    53. Thanopoulou AC, Karamanos BG, Angelico FV, Assaad-Khalil SH, Barbato AF, Del Ben MP, Djordjevic PB, Dimitrijevic-Sreckovic VS, Gallotti CA, Katsilambros NL, Migdalis IN, Mrabet MM, Petkova MK, Roussi DP, Tenconi MT. Dietary fat intake as risk factor for the development of diabetes: multinational, multicenter study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care. 2003, 26: 302-307
    
    54. Perez-Jimenez F, Lopez-Miranda J, Pinillos MD, Gomez P, Paz-Rojas E, Montilla P, Marin C, Velasco MJ, Bianco-Molina A, Jimenez Pereperez JA, Ordovas JM. A Mediterranean and a high-carbohydrate diet improve glucose metabolism in healthy young persons. Diabetologia. 2001, 44: 2038-2043
    
    55. Meyer KA, Kushi LK, Jacobs DR. Dietary fat intake and incidence of type 2 diabetes in older Iowa women. Diabetes Care. 2001,24: 1528-1535
    
    56. Parillo M, Riccardi G. Diet composition and the risk of type 2 diabetes: epidemiological and clinical evidence. Br J Nutr. 2004, 92: 7-19
    
    57. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet,lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001, 345:790-797
    
    58. Julius U. Fat modification in the diabetes diet. Exp Clin Endocrinol Diabetes. 2003, 111:60-65
    
    59. Storlien LH, Kriketos AD, Calvert GD, Baur LA, Jenkins AB. Fatty acids, triglycerides and syndromes of insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 1997, 57:379-385
    
    60. Marshall JA, Bessesen DH. Dietary fat and the development of type 2 diabetes. Diabetes Care. 2002, 25: 620-622
    
    61. D'Alanzo RP, Kozerek WJ, Wade RL. Glyceride composition of processed fats and oils as determined by glass capillary gas chromatography. J Am Oil Chem Soc. 1982, 49:292-295
    
    62. Watanabe T, Sugiura M, Sato M, Yamada N, Nakanishi K. Diacylglycerol production in a packed bed bioreactor. Process Biochem. 2005, 40: 637-643
    
    63. Li D, Xu T, Takase H, Tokimitsu I, Zhang P, Wang Q, Yu X, Zhang A. Diacylglycerol-induced improvement of whole-body insulin sensitivity in type 2 diabetes mellitus: a long-term randomized, double-blind controlled study. Clin Nutr.2008,27:203-211
    
    64. Hara K, Onizawa K, Honda H, Otsuji K, Ide T, Murata M. Dietary diacylglycerol-dependent reduction in serum triacylglycerol concentration in rats. Ann Nutr Metab. 1993,37: 185-191
    
    65. Kondo H, Hase T, Murase T, Tokimitsu 1. Digestion and assimilation features of dietary DAG in the rat small intestine. Lipids. 2003, 38: 25-30
    
    66. Murata M, Hara K, Ide T. Alteration by diacylglycerols of the transport and fatty acid composition of lymph chylomicrons in rats. Biosci Biotechnol Bioche. 1994, 58:1416-1419
    
    67. Tada N, Watanabe H, Matsuo N, Tokimitsu I, Okazaki M. Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin Chim Acta. 2001,311: 109-117
    
    68. Taguchi H, Watanabe H, Onizawa K, Nagao T, Gotoh N, Yasukawa T, Tsushima R,Shimasaki H, Itakura H. Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J Am Coll Nutr. 2000, 19: 789-796
    
    69. Yamamoto K, Takeshita M, Tokimitsu I, Watanabe H, Mizuno T, Asakawa H, Tokunaga K, Tatsumi T, Okazaki M, Yagi N. Diacylglycerol oil ingestion in type 2 diabetic patients with hypertriglyceridemia. Nutrition. 2006, 22: 23-29
    
    70. Yanagisawa Y, Kawabata T, Tanaka O, Kawakami M, Hasegawa K, Kagawa Y.Improvement in blood lipid levels by dietary sn-1,3-diacylglycerol in young women with variants of lipid transporters 54T-FABP2 and -493g-MTP. Biochem Biophys Res Commun. 2003, 302: 743-750
    
    71. Shi H, Cave B, Inouye K, Bjorbaek C, Flier JS. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance.Diabetes. 2006, 55: 699-707
    
    72. Meng X, Zou D, Shi Z, Duan Z, Mao Z. Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids. 2004,39: 37-41
    
    73. Maki KC, Davidson MH, Tsushima R, Matsuo N, Tokimitsu I, Umporowicz DM,Dicklin MR, Foster GS, Ingram KA, Anderson BD, Frost SD, Bell M. Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am J Clin Nutr. 2002,76: 1230-1236
    
    74. Nagao T, Watanabe H, Goto N, Onizawa K, Taguchi H, Matsuo N, Yasukawa T, Tsushima R, Shimasaki H, Itakura H. Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a double-blind controlled trial. J Nutr.2000,130:792-797
    
    75. Murase T, Mizuno T, Omachi T, Onizawa K, Komine Y, Kondo H, Hase T, Tokimitsu I.Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice. J Lipid Res. 2001, 42: 372-378
    
    76. Love-Osborne K, Butler N, Gao D, Zeitler P. Elevated fasting triglycerides predict impaired glucose tolerance in adolescents at risk for type 2 diabetes. Pediatr Diabetes.2006,7:205-210
    
    77. Murata M, Ide T, Hara K. Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat. Br J Nutr. 1997, 77: 107-121
    
    78. Kamphuis MM, Mela DJ, Westerterp-Plantenga MS. Diacylglycerols affect substrate oxidation and appetite in humans. Am J Clin Nutr. 2003, 77: 1133-1139
    
    79. Watanabe H, Onizawa K, Taguchi H. Nutritional characterization of diacylglycerol in rats. J Jpn Oil Chem Soc. 1997,46: 8
    
    80. Murase T, Aoki M, Wakisaka T, Hase T, Tokimitsu I. Anti-obesity effect of dietary diacylglycerol in C57BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. J Lipid Res. 2002, 43: 1312-1319
    
    81. Ai M, Tanaka A, Shoji K, Ogita K, Hase T, Tokimitsu I, Shimokado K. Suppressive effects of diacylglycerol oil on postprandial hyperlipidemia in insulin resistance and glucose intolerance. Atherosclerosis. 2006:
    
    82. Taguchi H, Nagao T, Watanabe H, Onizawa K, Matsuo N, Tokimitsu I, Itakura H.Energy value and digestibility of dietary oil containing mainly 1,3-diacylglycerol are similar to those of triacylglycerol. Lipids. 2001, 36: 379-382
    
    83. Tada N. Physiological actions of diacylglycerol outcome. Curr Opin Clin Nutr Metab Care. 2004, 7: 145-149
    
    84. Yang LY, Kuksis A. Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols. J Lipid Res. 1991, 32: 1173-1186
    
    85. Guo Z SY. Solvent-free enzymatic synthesis of 1,3-diconjugated linoleoyl glycerol optimized by response surface methodology. Biotechonol prog. 2004, 20: 4
    
    86. Sun SD, Shan L, Liu YF, Jin QZ, Zhang LX, Wang XG. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology. J Agric Food Chem. 2008, 56: 442-447
    
    87. Watanabe H, Shimizu M, Sugiura M, Saito M, Kohori J, Yamada N, Nakanishi K.Optimization of reaction conditions for the production of DAG using immobilized 1,3-regiospecific lipase lipozyme RM IM. J Am Oil Chem Soc. 2003, 80: 8
    
    88. Guo Z SY. Solvent-free production of 1,3-diacylglcyerol of CLA: strategy consideration and protocol design. Food Chem. 2007, 100: 9
    
    89. Rosu R, Yasi M, Iwasaki. Enzymatic synthesis of symmetrical 1,3-diacylglcyerols by direct esterification of glycerol in solvent-free system. J Am Oil Chem Soc. 1999, 76: 5
    
    90. Liao HF, Tsai WC, Chang SW, Shieh CJ. Application of solvent engineering to optimize lipase-catalyzed 1,3-diglyacylcerols by mixture response surface methodology.Biotechnol Lett. 2003, 25: 1857-1861
    
    91. Blasi F, Cossignani L, Simonetti MS, Damiani P. Biocatalysed synthesis of sn-1,3-diacylglycerol oil from extra virgin olive oil. Enzym Microbial Technol. 2007, 41:727-732
    
    92. Cheong LZ, Tan CP, Long K, Yusoff SA, Arifin N, Lo SK, Lai OM. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. Food chem. 2007, 105: 1614-1622
    
    93. Hatziantoniou S, Demetzos C. Qualitative and quantitative one-step analysis of lipids and encapsulated bioactive molecules in liposome preparations by HPTLC/FID (IATROSCAN). J Liposome Res. 2006, 16: 321-330
    
    94. Patkar SA, Bjorkling F, Zundel M. Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. In J Chem. 1993, 32B: 5
    
    95. Anderson EM. One biocatalyst—many applications: The use of Candida antarctica.Biocatal Biotransform. 1998, 16: 24
    
    96. Anderson EM, Larsson KM, Kirk O. One biocatalyst many applications: the use of Candida antarctica lipase B-lipase in organic synthesis. Biocatal Biotransform. 1998, 16:181-204
    97. Blank K, Morfill J, Gumpp H, Gaub HE. Functional expression of Candida antarctica lipase B in Eschericha coli. J Biotechnol. 2006, 125: 474-483
    
    98. Graber M, Irague R, Rosenfeld E, Lamare S, Franson L, Hult K. Solvent as a competitive inhibitor for Candida antarctica lipase B. Biochim Biophys Acta. 2007,1774: 1052-1057
    
    99. Patkar S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O. Effect of mutations in Candida antarctica B lipase. Chem Phys Lipids. 1998, 93: 95-101
    
    100. Trodler P, Nieveler J, Rusnak M, Schmid RD, Pleiss J. Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. J Chromatogr A. 2008,1179: 161-167
    
    101. Kirk O, Christensen MW. Lipases from Candida antarctica: Unique biocatalysts from a unique origin. Org Proc Res Dev. 2002, 6: 446-451
    
    102. Zamost BL, Nielsen HK, Starnes RL. Thermostable. enzymes for industrial applications.J Ind Microbiol. 1991,8:71-82
    
    103. Rogalska E, Cudrey C, Ferrato F, Verger R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality. 1993, 5: 24-30
    
    104. Pleiss J, Scheib H, Schmid RD. The His gap motif in microbial lipases: a determinant of stereoselectivity toward triacylglycerols and analogs. Biochimie. 2000, 82: .1043-1052
    
    105. Muralidhar RV, Chirumamilla RR, Marchant R. Understanding lipase stereoselectivity. World J Microbiol Biotechnol. 2002, 18: 81-97
    
    106. Bray GA, Popkin BM. Dietary fat intake does affect obesity! Am J Clin Nutr. 1998, 68:1157-1173
    
    107. Donnelly R, Wang B, Qu X. Type 2 diabetes in China: partnerships in education and research to evaluate new antidiabetic treatments. Br J Clin Pharmacol. 2006, 61:702-705
    
    108. 安富琴.糖尿病并发症的预防及护理.中华现代护理学杂志. 2007,4:1774-1774
    
    109. Vilbergsson S, Sigurdsson G, Sigvaldason H, Sigfusson N. Coronary heart disease mortality amongst non-insulin-dependent diabetic subjects in Iceland: the independent effect of diabetes. The Reykjavik Study 17-year follow up. J Intern Med. 1998, 244:309-316
    110. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998, 339: 229-234
    
    111. Saito S, Tomonobu K, Hase T, Tokimitsu 1. Effects of diacylglycerol on postprandial energy expenditure and respiratory quotient in healthy subjects. Nutrition. 2006, 22:30-35
    
    112. Takase H. Metabolism of diacylglycerol in humans. Asia Pac J Clin Nutr. 2007, 16 Suppl 1:398-403
    
    113. Yamamoto K, Asakawa H, Tokunaga K, Watanabe H, Matsuo N, Tokimitsu I, Yagi N.Long-term ingestion of dietary diacylglycerol lowers serum triacylglycerol in type II diabetic patients with hypertriglyceridemia. J Nutr. 2001, 131: 3204-3207
    
    114. Tada N, Shoji K, Takeshita M, Watanabe H, Yoshida H, Hase T, Matsuo N, Tokimitsu I.Effects of diacylglycerol ingestion on postprandial hyperlipidemia in diabetes. Clin Chim Acta. 2005, 353: 87-94
    
    115. Dobson AJ. Calculating sample size. Trans Menzies Foundation. 1984, 7: 75-79
    
    116. Matthews DR, Hosker JR, Rudenski AS, Naylor BA, Treacher DF, Turner RC.Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985, 28: 412-419
    
    117. Shantha NC. Thin-layer chromatography-flame ionization detection latroscan system. J Chromatogr. 1992, 624: 21-35
    
    118. Striby L, Lafont R, Goutx M. Improvement in the latroscan thin-layer chromatographic-flame ionisation detection analysis of marine lipids. Separation and quantitation of monoacylglycerols and diacylglycerols in standards and natural samples.J Chromatogr A. 1999, 849: 371-380
    
    119. Li D, Sinclair A, Wilson A, Nakkote S, Kelly F, Abedin L, Mann N, Turner A. Effect of dietary alpha-linolenic acid on thrombotic risk factors in vegetarian men. Am J Clin Nutr.1999,69:872-882
    
    120. Zhang Z, Xie J, Zhang F, Linhardt RJ. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal Biochem. 2007, 371: 118-120
    
    121. Fieuws S, Verbeke G, Molenberghs G. Random-effects models for multivariate repeated measures. Stat Methods Med Res. 2007, 16: 387-397
    
    122. Sullivan LM. Repeated measures. Circulation. 2008, 117: 1238-1243
    
    123. Mann N, Pirotta Y, O'Connell S, Li D, Kelly F, Sinclair A. Fatty acid composition of habitual omnivore and vegetarian diets. Lipids. 2006, 41: 637-646
    
    124. Leenen R, van der Kooy K, Deurenberg P, Seidell JG, Weststrate JA, Schouten FJ,Hautvast JG. Visceral fat accumulation in obese subjects: relation to energy expenditure and response to weight loss. Am J Physiol. 1992,263: E913-919
    
    125. Chiba Y, Saitoh S, Takagi S, Ohnishi H, Katoh N, Ohata J, Nakagawa M, Shimamoto K.Relationship between visceral fat and cardiovascular disease risk factors: the Tanno and Sobetsu study. Hypertens Res. 2007, 30: 229-236
    
    126. Matsuzawa Y, Nakamura T, Shimomura I, Kotani K. Visceral fat accumulation and cardiovascular disease. Obes Res. 1995, 3 Suppl 5: 645S-647S
    
    127. Sasaki J, Kumagae G, Sata T, Ikeda M, Tsutsumi S, Arakawa K. Seasonal variation of serum high density lipoprotein cholesterol levels in men. Atherosclerosis. 1983, 48:167-172
    
    128. Yamamoto K, Tomonobu K, Asakawa H, Tokunaga K, Hase T, Tokimitsu I, Yagi N. Diet therapy with diacylglycerol oil delays the progression of renal failure in type 2 diabetic patients with nephropathy. Diabetes Care. 2006,29: 417-419
    
    129. Takase H, Shoji K, Hase T, Tokimitsu I. Effect of diacylglycerol on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance. Atherosclerosis.2005, 180: 197-204
    
    130. Teramoto T, Watanabe H, Ito K, Omata Y, Furukawa T, Shimoda K, Hoshino M, Nagao T, Naito S. Significant effects of diacylglycerol on body fat and lipid metabolism in patients on hemodialysis. Clin Nutr. 2004, 23: 1122-1126
    
    131. Letellier G, Desjarlais F. Study of seasonal variations for eighteen biochemical parameters over a four-year period. Clin Biochem. 1982, 15: 206-211
    
    132. Mao X, Liu W, Fu S, Li R, Liang G. Fusion expression and identification of angiostatin and endostatin in E. coli BL21(DE3). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006,23: 1086-1091
    
    133. Jiang J, Duan S, Zhang H. Cloning and expression of caiDE genes in E. coli BL21(DE3). Wei Sheng Wu Xue Bao.2000,40:586-590
    134.Zilberstein G,Korol L,Righetti PG,Bukshpan S.SDS-PAGE focusing:preparative aspects.Anal Chem.2007,79:8624-8630
    135.Tomky-Cassiday L.Focusing on improved SDS-PAGE separations.Anal Chem.2007,79:797
    136.Brockman HL.Triglyceride lipase from porcine pancreas.Methods Enzymol.1981,71Pt C:619-627
    137.Li L,Kim YS,Hwang DS,Seo JH,Jung HJ,Du J,Cha HJ.High and compact formation of baculoviral polyhedrin-induced inclusion body by co-expression of baculoviral FP25in Escherichia coli.Biotechnol Bioeng.2007,96:1183-1190
    138.Dominguez de Maria P,Carboni-Oerlemans C,Tuin B,Bargeman G,Meer A,Gemert R.Biotechnological applications of Candida antarctica lipase A:State-of-the-art.J Mol Catal B:Enzym.2005,37:36-46
    139.韩振林,朱传合,赵明明,赵玉金,路福平,戚薇,杜连祥.铜绿假单胞菌脂肪酶基因在枯草芽孢杆菌中的克隆与表达.食品与发酵工业.2006,32:11-14
    140.凌华.油菜GDSL脂肪酶基因BnLIP1的克隆及其原核表达.中国农学通报.2007,23:102-106
    141.张金伟,曾润颖.南极深海沉积物宏基因组dna中低温脂肪酶基因的克隆、表达及性质分析.中国生物学文摘.2007,21:10-10
    142.李琦,王雅琴,谭天伟,邱俊康.卡门柏青霉-Pg3脂肪酶基因的克隆、表达及活性分析.北京化工大学学报:自然科学版.2006,33:12-15
    143.牛卫宁.少根根霉脂肪酶基因的表达及定向进化研究.In,生物化工.北京:北京化工大学;2006:58-59
    144.舒正玉,杨江科,徐莉,闰云君.黑曲霉脂肪酶:基因克隆、表达及体外复性.微生物学通报.2007,34:443-446
    145.李琦,王雅琴,谭天伟,王子镐.mdlA基因在毕赤酵母中的高效表达及表达产物性质研究.微生物学通报.2006,33:18-23
    146.舒正玉,杨江科,徐莉,闫云君.黑曲霉脂肪酶基因的克隆及其在毕赤酵母中的表达.武汉大学学报:理学版.2007,53:204-208
    147.唐升斌,矫庆华,谢达平.酸性植酸酶phyB在毕赤酵母GS115中的表达.湖南农业 大学学报:自然科学版.2006,32:602-606
    148.Goochee CF,Gramer M J,Andersen DC,Bahr JB,Rasmussen JR.The oligosaccharides of glycoproteins:bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties.Biotechnology(N Y).1991,9:1347-1355
    149.Ogino H,Katou Y,Akagi R,Mimitsuka T,Hiroshima S,Gemba Y,Doukyu N,Yasuda M,Ishimi K,Ishikawa H.Cloning and expression of gene,and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03.Extremophiles.2007,11:809-817
    150.Yu M,Lange S,Richter S,Tan T,Schmid RD.High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization.Protein Expr Purif.2007,53:255-263
    151.Dalal S,Singh PK,Raghava S,Rawat S,Gupta MN.Purification and properties of the alkaline lipase from Burkholderia cepacia ATCC 25609.Biotechnol Appl Biochem.2007:
    152.Kanwar SS,Kaushal RK,Sultana H,Chimni SS.Purification of a moderate thermotolerant Bacillus coagulans BTS1 lipase and its properties in a hydro-gel system.Acta Microbiol Immunol Hung.2006,53:77-87
    153.Fernandez-Lorente G,Ortiz C,Segura RL,Fernandez-Lafuente R,Guisan JM,Palomo JM.Purification of different lipases from Aspergillus niger by using a highly selective adsorption on hydrophobic supports.Biotechnol Bioeng.2005,92:7773-779
    154.Chen GH,Yin L J,Chiang IH,Jiang ST.Expression and purification of goat lactoferrin from Pichia pastoris expression system.J Food Sci.2007,72:M67-71
    155.Hasan F,Shah AA,Hameed A.Purification and characterization of a mesophilic lipase from Bacillus subtilis FH5 stable at high temperature and pH.Acta Biol Hung.2007,58:115-132
    156.李铎,闫馨.用棒状薄层分析仪分析肉制品中的脂类成分.中国食品学报.2006,6:109-112
    157.莫炜,张艳玲,王龙生,杨新英,宋后燕.重组双功能水蛭素的发酵、纯化和鉴定.生物工程学报.2004,20:126-129
    158.Noel M,Combes D.Effects of temperature and pressure on Rhizomucor miehei lipase stability. J Biotechnol. 2003,102: 23-32
    
    159. Gerber B, Siegmund E, Dummler W, Gerber S. The pH dependence of lipase and trypsin activity. Dtsch Z Verdau Stoffwechselkr. 1988, 48: 190-193
    
    160. Bengtsson G, Olivecrona T. On the pH dependency of lipoprotein lipase activity.Biochim Biophys Acta. 1982,712: 196-199
    
    161. Dharmsthiti S, Pratuangdejkul J, Theeragool GT, Luchai S. Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J Gen Appl Microbiol. 1998, 44:139-145
    
    162. Davranov KD, Alimdzhanova MI, Bezborodov AM. Lipase activity of Oospora lactis protoplasts. Mikrobiologiia. 1980, 49: 421 -426

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700