用户名: 密码: 验证码:
嗜热菌HB27的蛋白酪氨酸磷酸酶的折叠研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从嗜热菌T. thermophilus HB27中克隆了一个新的PTPase基因,并在大肠杆菌中成功地表达了可溶的、具有生物学活性的PTPase;建立了简单可行的纯化流程,获得了这个热稳定的蛋白,并对其生物化学性质和去折叠过程进行了详细的研究。具体实验内容及结论如下:
     1.利用生物信息学方法,预测PTPase的等电点为5.88,分子量为22.26kDa,其氨基酸出现频率与Swiss-Prot蛋白质序列数据库中的结果存在一定差异,其中极性氨基酸占了55.8%;预测其疏水性最大值为2.433,最小值为-2.222,其中2-18,82-90和140-145位的氨基酸具有一定的疏水性;氨基酸序列同源性分析发现PTPase与来源于T. thermophilus HB8的Tt1001氨基酸序列100%相似,与大鼠PTPase (AAB23588)的氨基酸序列则只有30.5%的相似性;二级结构预测PTPase存在三种二级结构:α螺旋、β折叠和无规卷曲。进化树分析表明该蛋白在进化过程中分支为两类:微生物PTPase与动植物PTPase.
     2.以pNPP为底物,研究了不同的pH、温度和离子对PTPase活性的影响,结果显示其最适pH范围为3.6-4.0,最适温度为75℃。30℃和75℃时kcat/Km的值分别为1.77*104M-1·s-1和6.68*105M-1·s-1。Mn2+、Mg2+、Ca2+、Ba2+和Ni2+对PTPase的活性都有激活作用,其激活能力依次下降;而Zn2+,Cu2+,Cl-和SO42-则表现出抑制效应。结果表明PTPase也许在帮助T. thermophilus HB27适应极端温度和特定的生存环境方面在体内发挥着重要的生理作用。
     3.脲、盐酸胍和SDS诱导PTPase失活都是可逆的单相反应过程,抑制效应与浓度和时间相关,其IC50值分别为2.65 M、0.24 M和11.27μM;它们均为混合型抑制,在二次作图中前两者表现为直线,而后者为抛物线型。光谱学结果表明脲诱导了PTPase协同性的两态去折叠转变,而低浓度的盐酸胍诱导并稳定了蛋白去折叠中间态;低浓度的SDS诱导了其三级结构的变化和α-螺旋结构的增加,高浓度的SDS稳定了PTPase的二级结构。
     4.Cu2+和Zn2+均显著地抑制了PTPase的活性,这种抑制与离子浓度和作用时间相关,其IC50值分别为15μM和8.34 mM;动力学研究表明它们均为混合型可逆抑制,失活过程是单相反应过程。光谱学结果表明它们诱导了PTPase的三级结构发生了变化,但并不影响其二级结构。EDTA无法使Cu2+失活的PTPase恢复活性,但添加DTT则能使其活性恢复到其天然态时的40%,推测PTPase活性位点的Cys残基很可能被Cu2+氧化,从而导致其活性丧失和三级结构发生变化。
     综上,本研究为理解这一新的热稳定性PTPase的耐热机制、折叠机理、结构和功能,并为构建高效耐热的工程菌及其工业化应用提供了一些有用的信息,同时,对以PTPase为药物作用靶标研发其抑制剂类药物,以期治疗与PTPase相关的人类疾病也有一定的参考意义。
In this research, we have cloned the full-length sequence encoding PTPase gene from the genomic DNA of T. thermophilus HB27 and expressed the active and soluble recombinant PTPase successfully in E. coli. After a simple purification procedure, we obtained this thermostable enzyme, and then characterized its biochemical and unfolding properties in detail in the following study. Our findings are stated below:
     1. With the aids of bioinformatics, the pI and molecular weight were estimated to be 5.88 and 22.26 kDa, respectively. There were some differences in amino acid frequences between PTPase of T. thermophilus HB27 and Swiss-Port protein sequence database. The content of polar amino acids was 55.8%. The maximum and minimum of hydrophobicity were 2.433 and-2.222, respectively. The amino acid sequences at the positions of 2~18,82-90 and 140-145 were hydrophobic. The sequence alignment indicated that there was 100% similarity in amino acid sequences between PTPase of T. thermophilus HB27 and Tt1001 of T. thermophilus HB8, but had only 30.5% similarity with PTPase (AAB23588) of rats liver. Three types of secondary structuresα-helix,β-sheet and random coil) existed in PTPase according to the secondary structure prediction. Phylogenetic tree analysis showed that PTPase were evolved into two types of branches in the process of evolution:microbial PTPase and PTPase of plants and animals.
     2. The effects of pH, temperature and ions on the activity of PTPase were studied when using pNPP as the substrate. The results showed a optimum pH range of 3.6~4.0 and optimum temperature of 75℃. k_(cat)/K_m were 1.77*10~4 M~(-1) and 6.68*10~5 M~(-1)·s~(-1)at 30℃and 75℃, respectively. Its activity could be activated by Mn~(2+), followed by the order of Mg~(2+), Ca~(2+), Ba~(2+)and Ni~(2+), but inhibited by Zn~(2+), Cu~(2+), Cl" and SO_4~(2-). These results suggested that PTPase might play important physiological roles in vivo to adapt T. thermophilus HB27 to the extreme temperatures and specific nutritional conditions.
     3. The activity and conformational changes of PTPase were investigated in the presence of urea, GdnHCl and SDS. The results showed the activity of PTPase was inactivated by these denaturants in a concentration and time-dependent manner. The IC_(50) value were 2.65 M,0.24 M and 11.27μM, respectively. Inactivation kinetics revealed that all of them were reversible mixed-type inhibition and the inactivation was mono-phase process. Urea and GdnHCl denaturation were showed to be a line in the secondary plot, while SDS was a parabola. Spectral analysis indicated that the unfolding of PTPase induced by urea was a two-state transition whereas in the case of GdnHCl, intermediate was induced and stabilized at lower concentrations. At lower concentration, SDS induced the changes of the tertiary structures and the increase of a-helix structures of PTPase. The high content of secondary structure was stabilized by higher concentration SDS.
     4. The activity of PTPase was significantly inhibited by Cu~(2+)and Zn~(2+)in a concentration-and time-dependent manner. TheiC_(50) value were 15μM and 8.34 mM, respectively. Sequential kinetic studies suggested that both of them induced a reversible mixed-type inhibition and the inactivation was a mono-phase process. The spectral studies showed that both of them induced the tertiary conformational changes of PTPase, but did not change its secondary structures. The PTPase inactivated by Cu~(2+)could not be reactivated by EDTA, but reactivated up to 40%of native activity with DTT treatment. Probably, the cysteine residues located around the active sites of PTPase were oxidized by Cu~(2+), which further resulted in the inactivation and the tertiary conformational changes of PTPase.
     In conclusion, this study is useful to understand its heat-resistant mechanism, folding mechanism, structure and function of this new thermostable PTPase, as well as the construct of high efficient and heat-tolerant engineering strains and their possible applications in industry. In addition, it is meaningful to develop the drugs with PTPase as the targets in order to treat human diseases with relation to PTPase with the inhibitors of PTPase.
引文
1. Ahmad A., Akhtar M. S. and Bhakuni V., Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme, Biochemistry, 2001,40(7): 1945-1955.
    
    2. Ahmad S., Banville D., Zhao Z., Fischer E. H. and Shen S. H., A widely expressed human protein-tyrosine phosphatase containing src homology 2 domains, Proc. Natl. Acad. Sci. U.S.A., 1993, 90(6): 2197-2201.
    
    3. Ahn J. H., Cho S. Y., Ha J. D., Chu S. Y., Jung S. H., Jung Y. S., Baek J. Y, Choi I. K., Shin E. Y, Kang S. K., Kim S. S., Cheon H. G, Yang S. D. and Choi J. K., Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents, Bioorg Med Chem Lett, 2002, 12(15): 1941-1946.
    
    4. Alex L. A. and Simon M. I., Protein histidine kinases and signal transduction in prokaryotes and eukaryotes, Trends Genet., 1994, 10(4): 133-138.
    
    5. Allen M. J., Jemmerson R. and Nall B. T., Rapid refolding of native epitopes on the surface of cytochrome c, Biochemistry, 1994,33(13): 3967-3973.
    
    6. Andersen H. S., Olsen O. H., Iversen L. F., Sorensen A. L., Mortensen S. B., Christensen M. S., Branner S., Hansen T. K., Lau J. F., Jeppesen L., Moran E. J., Su J., Bakir F., Judge L., Shahbaz M., Collins T., Vo T., Newman M. J., Ripka W. C. and Moller N. P., Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B, J Med Chem, 2002,45(20): 4443-4459.
    
    7. Anfinsen C. B., Principles that govern the folding of protein chains, Science, 1973, 181(96): 223-230.
    
    8. Anfinsen C. B. and Haber E., Studies on the reduction and re-formation of protein disulfide bonds, J Biol Chem, 1961,236: 1361-1363.
    
    9. Anson M. L., Fast-and slow-refolding forms of unfolded ribonuclease A differ in tyrosine fluorescence,Adv. Protein Chem. , 1945,2: 361-384.
    
    10. Anson M. L. and Mirsky A. E., The refolding of denatured rabbit muscle creatine kinase: search for intermediates in the refolding process and effect of modification at the reactive thiol group on refolding,J. Gen. Physiol, 1925( 9): 169-179.
    
    11. Anson M. L. and Mirsky A. E., Swine Pepsinogen Folding Intermediates are Highly Structured, Motile Molecules, J. Phys. Chem. , 1939, 35: 185-199.
    
    12. Aoki N., Regulation and functional relevance of milk fat globules and their components in the mammary gland, Biosci Biotechnol Biochem, 2006, 70(9): 2019-2027.
    
    13. Baum J., Dobson C. M., Evans P. A. and Hanley C, Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin, Biochemistry, 1989,28(1): 7-13.
    
    14. Becaria A., Bondy S. C. and Campbell A., Aluminum and copper interact in the promotion of oxidative but not inflammatory events: implications for Alzheimer's disease, J Alzheimers Dis, 2003, 5(1): 31-38.
    
    15. Bernabeu R., Yang T., Xie Y, Mehta B., Ma S. Y. and Longo F. M., Downregulation of the LAR protein tyrosine phosphatase receptor is associated with increased dentate gyrus neurogenesis and an increased number of granule cell layer neurons, Mol Cell Neurosci, 2006, 31(4): 723-738.
    
    16. Bhatnagar S. and Natchu U. C., Zinc in child health and disease, Indian J Pediatr, 2004, 71(11): 991-995.
    
    17. Bhuyan A. K., Protein stabilization by urea and guanidine hydrochloride, Biochemistry, 2002, 41(45): 13386-13394.
    
    18. Bialy L. and Waldmann H., Inhibitors of protein tyrosine phosphatases: next-generation drugs?, Angew Chem Int Ed Engl, 2005,44(25): 3814-3839.
    
    19. Boczko E. M. and Brooks C. L., 3rd, First-principles calculation of the folding free energy of a three-helix bundle protein, Science, 1995, 269(5222): 393-396.
    
    20. Bonincontro A., Cinelli S., Onori G. and Stravato A., Dielectric behavior of lysozyme and ferricytochrome-c in water/ethylene-glycol solutions, Biophys J, 2004, 86(2): 1118-1123.
    
    21. Brand L. and Gohlke J. R., Fluorescence probes for structure, Annu Rev Biochem, 1972, 41: 843-868.
    
    22. Bray D., Protein molecules as computational elements in living cells, Nature, 1995, 376(6538): 307-312.
    
    23. Brems D. N., Brown P. L. and Becker G. W., Equilibrium denaturation of human growth hormone and its cysteine-modified forms, J. Biol Chem., 1990, 265(10): 5504-5511.
    
    24. Brockwell D. J., Smith D. A. and Radford S. E., Protein folding mechanisms: new methods and emerging ideas, Curr Opin Struct Biol, 2000, 10(1): 16-25.
    
    25. Burke T. R., Jr. and Zhang Z. Y., Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery, Biopolymers, 1998,47(3): 225-241.
    
    26. Caetano W., Gelamo E. L., Tabak M. and Itri R., Chlorpromazine and sodium dodecyl sulfate mixed micelles investigated by small angle X-ray scattering, J Colloid Interface Sci, 2002, 248(1): 149-157.
    
    27. Carrell R. W. and Lomas D. A., Conformational disease, Lancet, 1997, 350(9071): 134-138.
    
    28. Caselli A., Chiarugi P., Camici G., Manao G. and Ramponi G, In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide, FEBS Lett, 1995, 374(2): 249-252.
    
    29. Chang L. S., Wen E. Y., Hung J. J. and Chang C. C., Energy transfer from tryptophan residues of proteins to 8-anilinonaphthalene-1-sulfonate, J Protein Chem, 1994, 13(7): 635-640.
    
    30. Cheetham J. C, Raleigh D. P., Griest R. E., Redfield C., Dobson C. M. and Rees A. R., Antigen mobility in the combining site of an anti-peptide antibody, Proc Natl Acad Sci U S A, 1991, 88(18): 7968-7972.
    
    31. Chen L., Wu L., Otaka A., Smyth M. S., Roller P. P., Burke T. R., Jr., den Hertog J. and Zhang Z. Y, Why is phosphonodifluoromethyl phenylalanine a more potent inhibitory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases?, Biochem Biophys Res Commun, 1995, 216(3): 976-984.
    
    32. Chen L. Y, Tian M., Du J. S. and Ju M., The changes of circular dichroism and fluorescence spectra, and the comparison with inactivation rates of angiotensin converting enzyme in guanidine solutions, Biochim Biophys Acta, 1990, 1039(1): 61-66.
    
    33. Chernoff J. and Li H. C., A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase, Arch. Biochem. Biophys., 1985, 240(1): 135-145.
    
    34. Cho H., Ramer S. E., Itoh M., Kitas E., Bannwarth W., Burn P., Saito H. and Walsh C. T., Catalytic domains of the LAR and CD45 protein tyrosine phosphatases from Escherichia coli expression systems: purification and characterization for specificity and mechanism, Biochemistry, 1992,31(1): 133-138.
    
    35. Cho H. J., Ramer S. E., Itoh M., Winkler D. G., Kitas E., Bannwarth W., Burn P., Saito H. and Walsh C. T., Purification and characterization of a soluble catalytic fragment of the human transmembrane leukocyte antigen related (LAR) protein tyrosine phosphatase from an Escherichia coli expression system, Biochemistry-us., 1991, 30(25): 6210-6216.
    
    36. Chu Y., Lee E. Y. and Schlender K. K., Activation of protein phosphatase 1. Formation of a metaUoenzyme, Journal Of Biological Chemistry, 1996,271(5): 2574-2577.
    
    37. Cohen P., The structure and regulation of protein phosphatases, Annu Rev Biochem, 1989, 58: 453-508.
    
    38. Cohen P. T., Collins J. F., Coulson A. F., Berndt N. and da Cruz e Silva O. B., Segments of bacteriophage lambda (orf 221) and phi 80 are homologous to genes coding for mammalian protein phosphatases, Gene, 1988, 69(1): 131-134.
    
    39. Couthon F., Clottes E., Ebel C. and Vial C., Reversible dissociation and unfolding of dimeric creatine kinase isoenzyme MM in guanidine hydrochloride and urea, Eur J Biochem, 1995, 234(1): 160-170.
    
    40. Cozzone A. J., ATP-dependent protein kinases in bacteria, J Cell Biochem, 1993, 51(1): 7-13.
    
    41. D'Auria S., Carginale V., Scudiero R., Crescenzi O., Di Maro D., Temussi P. A., Parisi E. and Capasso C, Structural characterization and thermal stability of Notothenia coriiceps metallothionein, Biochem. J., 2001, 354(Pt 2): 291-299.
    
    42. Das A. K., Helps N. R., Cohen P. T. and Barford D., Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution, Embo J, 1996,15(24): 6798-6809.
    
    43. David L N. and Michael M C., Lehninger Principles of Biochemistry, Publisher: W. H. Freeman; Fourth Edition edition, 2004.
    
    44. Del Vecchio P., Graziano G., Granata V., Farias T., Barone G, Mandrich L., Rossi M. and Manco G, Denaturant-induced unfolding of the acetyl-esterase from Escherichia coli, Biochemistry, 2004,43(46): 14637-14643.
    
    45. den Hertog J., Protein-tyrosine phosphatases in development, Mech Dev, 1999, 85(1-2): 3-14.
    
    46. den Hertog J., Ostman A. and Bohmer F. D., Protein tyrosine phosphatases: regulatory mechanisms, Febs J, 2008, 275(5): 831-847.
    
    47. Denu J. M. and Dixon J. E., Protein tyrosine phosphatases: mechanisms of catalysis and regulation, Curr Opin Chem Biol, 1998,2(5): 633-641.
    
    48. Denu J. M. and Tanner K. G., Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation, Biochemistry, 1998, 37(16): 5633-5642.
    
    49. Denu J. M., Zhou G., Wu L., Zhao R., Yuvaniyama J., Saper M. A. and Dixon J. E., The purification and characterization of a human dual-specific protein tyrosine phosphatase, J. Biol. Chem., 1995,270(8): 3796-3803.
    
    50. Deshpande R. A., Khan M. I. and Shankar V., Equilibrium unfolding of RNase Rs from Rhizopus stolonifer: pH dependence of chemical and thermal denaturation, Biochim Biophys Acta,2003, 1648(1-2): 184-194.
    
    51. Dijkstra D. S., Broos J., Lolkema J. S., Enequist H., Minke W. and Robillard G T, A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system, Biochemistry, 1996, 35(21): 6628-6634.
    
    52. Dill K. A. and Shortle D., Denatured states of proteins, Annu Rev Biochem, 1991, 60: 795-825.
    
    53. Dobson C. M., Protein folding and its links with human disease, Biochem Soc Symp, 2001a(68): 1-26.
    
    54. Dobson C. M., The structural basis of protein folding and its links with human disease, Philos Trans R Soc Lond B Biol Sci, 2001b, 356(1406): 133-145.
    
    55. Dobson C. M. and Karplus M., The fundamentals of protein folding: bringing together theory and experiment, Curr Opin Struct Biol, 1999, 9(1): 92-101.
    
    56. Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V.,Venyaminov S. and Ptitsyn O. B., Alpha-Lactalbumin: compact state with fluctuating tertiary structure?, FEBS Lett, 1981, 136(2): 311-315.
    
    57. Dolgikh D. A., Abaturov L. V., Bolotina I. A., Brazhnikov E. V., Bychkova V. E., Gilmanshin R. I., Lebedev Yu O., Semisotnov G. V., Tiktopulo E. I., Ptitsyn O. B. and et al., Compact state of a protein molecule with pronounced small-scale mobility: bovine alpha-lactalbumin, Eur Biophys J,1985,13(2): 109-121.
    
    58. Ds Silva F. J. J. R. and Wiliams R. J. P., The biological chemistry of elements., Oxford: Clarendon Press., 1994: 388-399.
    
    59. Dufresne C, Roy P., Wang Z., Asante-Appiah E., Cromlish W., Boie Y., Forghani F., Desmarais S., Wang Q., Skorey K., Waddleton D., Ramachandran C, Kennedy B. P., Xu L., Gordon R., Chan C. C. and Leblanc Y., The development of potent non-peptidic PTP-1B inhibitors, Bioorg Med Chem Lett, 2004, 14(4): 1039-1042.
    
    60. Dunphy W. G. and Kumagai A., The cdc25 protein contains an intrinsic phosphatase activity, Cell, 1991,67(1): 189-196.
    
    61. Easty D., Gallagher W. and Bennett D. C., Protein tyrosine phosphatases, new targets for cancer therapy, Curr Cancer Drug Targets, 2006, 6(6): 519-532.
    
    62. Englander S. W. and Mayne L., Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR, Annu Rev Biophys Biomol Struct, 1992,21: 243-265.
    
    63. Epstein C. J. and Anfinsen C. B., The Use of Gel Filtration in the Isolation and Purification of Beef Insulin, Biochemistry, 1963, 2: 461-464.
    
    64. Eswaran J., Debreczeni J. E., Longman E., Barr A. J. and Knapp S., The crystal structure of human receptor protein tyrosine phosphatase kappa phosphatase domain 1, Protein Sci, 2006, 15(6): 1500-1505.
    
    65. Eyring H., Refolding proteins by gel filtration chromatography, Chem Rev, 1935, 17: 65-78.
    
    66. Fernley H. N., Mammlian alkaline phosphatase, 1971, 4: 417-444.
    
    67. Ferreon A. C. and Bolen D. W., Thermodynamics of denaturant-induced unfolding of a protein that exhibits variable two-state denaturation, Biochemistry, 2004, 43(42): 13357-13369.
    
    68. Fersht A. R., Matouschek A. and Serrano L., The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding, J Mol Biol, 1992, 224(3): 771-782.
    
    69. Fink A. L., Compact intermediate states in protein folding, Annu Rev Biophys Biomol Struct, 1995,24:495-522.
    
    70. Finkelstein A. V. and Ptitsyn O. B., Why do globular proteins fit the limited set of folding patterns?, Prog Biophys Mol Biol, 1987,50(3): 171-190.
    
    71. Flynn G. C., Pohl J., Flocco M. T. and Rothman J. E., Peptide-binding specificity of the molecular chaperone BiP, Nature, 1991, 353(6346): 726-730.
    
    72. Frederickson C. J., Koh J. Y. and Bush A. I., The neurobiology of zinc in health and disease, Nat Rev Neurosci, 2005,6(6): 449-462.
    
    73. Fry D. C., Kuby S. A. and Mildvan A. S., NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme, Biochemistry, 1985, 24(17): 4680-4694.
    
    74. Fucinos P., Abadin C. M., Sanroman A., Longo M. A., Pastrana L. and Rua M. L., Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation, J Biotechnol, 2005, 117(3): 233-241.
    
    75. Gabbita S. P., Robinson K. A., Stewart C. A., Floyd R. A. and Hensley K., Redox regulatory mechanisms of cellular signal transduction, Arch Biochem Biophys, 2000, 376(1): 1-13.
    
    76. Gebbink M. F., Verheijen M. H., Zondag G. C., van Etten I. and Moolenaar W. H., Purification and characterization of the cytoplasmic domain of human receptor-like protein tyrosine phosphatase RPTP mu, Biochemistry, 1993, 32(49): 13516-13522.
    
    77. Gelamo E. L. and Tabak M., Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants, Spectrochim Acta A Mol Biomol Spectrosc, 2000, 56A(11): 2255-2271.
    
    78. George R. J. and Parker C. W., Preliminary characterization of phosphotyrosine phosphatase activities in human peripheral blood lymphocytes: identification of CD45 as a phosphotyrosine phosphatase, J Cell Biochem, 1990,42(2): 71-81.
    
    79. Gething M. J. and Sambrook J., Protein folding in the cell, Nature, 1992,355(6355): 33-45.
    
    80. Girish T. S. and Gopal B., The crystal structure of the catalytic domain of the chick retinal neurite inhibitor-receptor protein tyrosine phosphatase CRYP-2/cPTPRO, Proteins-structure Function and Genetics, 2007, 68(4): 1011-1015.
    
    81. Goldberg E. M., Lester D. S., Borchardt D. B. and Zidovetzki R. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers. 1995,69:965-973.
    
    82. Goldstein B. J., Zhang W. R., Hashimoto N. and Kahn C. R., Approaches to the molecular cloning of protein-tyrosine phosphatases in insulin-sensitive tissues, Mol Cell Biochem, 1992, 109(2): 107-113.
    
    83. Goto Y. and Fink A. L., Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt, Biochemistry, 1989,28(3): 945-952.
    
    84. Greene R. F., Jr. and Pace C. N., Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin, J. Biol. Chem., 1974, 249(17): 5388-5393.
    
    85. Guex N. and Peitsch M. C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, 1997, 18(15): 2714-2723.
    
    86. Gustafson C. L., Stauffacher C. V., Hallenga K. and Van Etten R. L., Solution structure of the low-molecular-weight protein tyrosine phosphatase from Tritrichomonas foetus reveals a flexible phosphate binding loop, Protein Science, 2005, 14(10): 2515-2525.
    
    87. Haas E., McWherter C. A. and Scheraga H. A., Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer: distribution of interresidue distances in the native, denatured, and reduced-denatured states, Biopolymers, 1988, 27(1): 1-21.
    
    88. Haase-Pettingell C. A. and King J., Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation, J Biol Chem, 1988, 263(10): 4977-4983.
    
    89. Halleen J. M., Raisanen S., Salo J. J., Reddy S. V., Roodman G. D., Hentunen T. A., Lehenkari P. P., Kaija H., Vihko P. and Vaananen H. K., Intracellular fragmentation of bone resorption products by reactive oxygen species generated by osteoclastic tartrate-resistant acid phosphatase, J Biol Chem, 1999, 274(33): 22907-22910.
    
    90. Harding M. M., Williams D. H. and Woolfson D. N., Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin, Biochemistry, 1991, 30(12): 3120-3128.
    
    91. Hartl F. U., Molecular chaperones in cellular protein folding, Nature, 1996, 381(6583): 571-579.
    
    92. Hayman A. R., Bune A. J., Bradley J. R., Rashbass J. and Cox T. M., Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues, J Histochem Cytochem, 2000, 48(2): 219-228.
    
    93. He H.-W., Zhang J., Zhou H.-M. and Yan Y.-B. Conformational Change in the C-Terminal Domain Is Responsible for the Initiation of Creatine Kinase Thermal Aggregation. 2005a, 89: 2650-2658.
    
    94. He H. W., Zhang J., Zhou H. M. and Yan Y. B., Conformational change in the C-terminal domain is responsible for the initiation of creatine kinase thermal aggregation, Biophys J, 2005b, 89(4): 2650-2658.
    
    95. Heinrich T., Schroder W., Erdmann V. A. and Hartmann R. K., Identification of the gene encoding transcription factor NusG of Thermus thermophilus, J Bacteriol, 1992, 174(23):7859-7863.
    
    96. Hendriks W. J. and Stoker A. W., Protein tyrosine phosphatases: sequences and beyond, Febs J, 2008, 275(5): 815.
    
    97. Hendriks W. J., Elson A., Harroch S. and Stoker A. W., Protein tyrosine phosphatases: functional inferences from mouse models and human diseases, Febs J, 2008, 275(5): 816-830.
    
    98. Henne A., Bruggemann H., Raasch C, Wiezer A., Hartsch T., Liesegang H., Johann A., Lienard T., Gohl O., Martinez-Arias R., Jacobi C, Starkuviene V., Schlenczeck S., Dencker S., Huber R., Klenk H. P., Kramer W., Merkl R., Gottschalk G. and Fritz H. J., The genome sequence of the extreme thermophile Thermus thermophilus, Nat Biotechnol, 2004, 22(5): 547-553.
    
    99. Hirano T., Murakami M., Fukada T., Nishida K., Yamasaki S. and Suzuki T., Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule, Adv Immunol, 2008, 97: 149-176.
    
    100. Hollecker M. and Creighton T. E., Effect on protein stability of reversing the charge on amino groups, Biochim Biophys Acta, 1982, 701(3): 395-404.
    
    101. Hughson F. M. and Baldwin R. L., Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates, Biochemistry, 1989, 28(10): 4415-4422.
    
    102. Hughson F. M., Barrick D. and Baldwin R. L., Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis, Biochemistry, 1991, 30(17): 4113-4118.
    103. Hunter T., Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling, Cell, 1995, 80(2): 225-236.
    
    104. Hunter T., Signaling-2000 and beyond, Cell, 2000,100(1): 113-127.
    
    105. Inouye K., Tanaka H. and Oneda H., States of tryptophyl residues and stability of recombinant human matrix metalloproteinase 7 (matrilysin) as examined by fluorescence, J Biochem, 2000, 128(3): 363-369.
    
    106. Inui T., Ohkubo T., Emi M., Irikura D., Hayaishi O. and Urade Y., Characterization of the unfolding process of lipocalin-type prostaglandin D synthase, J. Biol. Chem., 2003, 278(5): 2845-2852.
    
    107. Ishikawa K., Kimura S., Kanaya S., Morikawa K. and Nakamura H., Structural study of mutants of Escherichia coli ribonuclease HI with enhanced thermostability, Protein Eng, 1993, 6(1): 85-91.
    
    108. Jaenicke R., Protein folding: local structures, domains, subunits, and assemblies, Biochemistry, 1991,30(13): 3147-3161.
    
    109. Jaenicke R., Folding and association versus misfolding and aggregation of proteins, Philos Trans R Soc Lond B Biol Sci, 1995, 348(1323): 97-105.
    
    110. Jeng M. F. and Englander S. W., Stable submolecular folding units in a non-compact form of cytochrome c, J Mol Biol, 1991,221(3): 1045-1061.
    
    111. Jia Z., Barford D., Flint A. J. and Tonks N. K., Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B, Science., 1995, 268(5218): 1754-1758.
    
    112. Joshi P. A., Stewart J. M. and Graham E. T., Localizarion of β-glycerophosphatase activity in cotton fiber during differentiation, Protoplasma, 1985, 125: 75-85.
    
    113. Kato R., Hasegawa K., Hidaka Y., Kuramitsu S. and Hoshino T., Characterization of a thermostable DNA photolyase from an extremely thermophilic bacterium, Thermus thermophilus HB27, J Bacteriol, 1997, 179(20): 6499-6503.
    
    114. Kauzmann W., Some factors in the interpretation of protein denaturation, Adv Protein Chem, 1959,14:1-63.
    
    115. Kennelly P. J. and Potts M., Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation, J Bacteriol, 1996, 178(16): 4759-4764.
    
    116. Kepes A. and Beguin S., Peptide chain initiation and growth in the induced synthesis of beta-galactosidase, Biochim Biophys Acta, 1966, 123(3): 546-560.
    
    117. Kim J. H., Cho H., Ryu S. E. and Choi M. U., Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion, Arch Biochem Biophys, 2000, 382(1): 72-80.
    
    118. Kim K. S. and Woodward C, Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor, Biochemistry, 1993, 32(37): 9609-9613.
    
    119. Kimura E., Dimetallic hydrolases and their models, Curr Opin Chem Biol, 2000, 4(2): 207-213.
    
    120. King L., The refolding of denatured rabbit muscle pyruvate kinase, Chem Eng News, 1989, 67: 32-54.
    
    121. Kirkham D. L., Pacey L. K., Axford M. M., Siu R., Rotin D. and Doering L. C, Neural stem cells from protein tyrosine phosphatase sigma knockout mice generate an altered neuronal phenotype in culture, BMC Neurosci, 2006, 7: 50.
    122. Knebel A., Rahmsdorf H. J., Ullrich A. and Herrlich P., Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents, Embo J, 1996, 15(19): 5314-5325.
    
    123. Korichneva I., Zinc dynamics in the myocardial redox signaling network, Antioxid Redox Signal, 2006, 8(9-10): 1707-1721.
    
    124. Kuby S. A., A study of enzymes: enzyme catalysis, kinetics, and substrate binding, CRC Press Inc., Boca Raton, 1991, 1:20-37.
    
    125. Kucharzewski M., Braziewicz J., Majewska U. and Gozdz S., Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases, Biol Trace Elem Res, 2003, 93(1-3): 9-18.
    
    126. Kumar S., Tamura K. and Nei M., MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment, Brief Bioinform, 2004, 5(2): 150-163.
    
    127. Kuwajima K., The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure, Proteins, 1989, 6(2): 87-103.
    
    128. Lakowicz J. R., Principles of Fluorescence Spectroscopy, 2006.
    
    129. Lakowicz J. R., Maliwal B. P., Cherek H. and Baiter A., Rotational freedom of tryptophan residues in proteins and peptides, Biochemistry-us., 1983, 22(8): 1741-1752.
    
    130. Larsen S. D., Stevens F. C., Lindberg T. J., Bodnar P. M., O'Sullivan T. J., Schostarez H. J., Palazuk B. J. and Bleasdale J. E., Modification of the N-terminus of peptidomimetic protein tyrosine phosphatase 1B (PTP1B) inhibitors: identification of analogues with cellular activity, Bioorg Med Chem Lett, 2003, 13(5): 971-975.
    
    131. Lau K. H., Farley J. R. and Baylink D. J., Phosphotyrosyl protein phosphatases, Biochem. J., 1989a, 257(1): 23-36.
    
    132. Lau K. H., Farley J. R. and Baylink D. J., Phosphotyrosyl protein phosphatases, Biochemical Journal, 1989b, 257(1): 23-36.
    
    133. Lawson J. E., Niu X. D., Browning K. S., Trong H. L., Yan J. and Reed L. J., Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity with protein phosphatase 2C, Biochemistry, 1993,32(35): 8987-8993.
    
    134. Lazo J. S., Nemoto K., Pestell K. E., Cooley K., Southwick E. C., Mitchell D. A., Furey W., Gussio R., Zaharevitz D. W., Joo B. and Wipf P., Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors, Mol Pharmacol, 2002, 61(4): 720-728.
    
    135. Li L. and Dixon J. E., Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases, Semin Immunol, 2000, 12(1): 75-84.
    
    136. Li S., Wang L. T. and Zhou H. M., SDS-induced conformational changes and inactivation of the bacterial chaperonin GroEL, J Protein Chem, 1999, 18(6): 653-657.
    
    137. Li Z., Wang Z., Peng G., Yin Y., Zhao H., Cao Y. and Xia Y., Purification and characterization of a novel thermostable extracellular protein tyrosine phosphatase from Metarhizium anisopliae strain CQMa102, Biosci Biotechnol Biochem, 2006, 70(8): 1961-1968.
    
    138. Liang F., Huang Z., Lee S. Y., Liang J., Ivanov M. I., Alonso A., Bliska J. B., Lawrence D. S., Mustelin T. and Zhang Z. Y., Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague, J Biol Chem, 2003, 278(43): 41734-41741.
    
    139. Liljebris C., Martinsson J., Tedenborg L., Williams M., Barker E., Duffy J. E., Nygren A. and James S., Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B), Bioorg Med Chem, 2002, 10(10): 3197-3212.
    
    140. Lind S. E., McDonagh J. R. and Smith C. J., Oxidative inactivation of plasmin and other serine proteases by copper and ascorbate, Blood, 1993, 82(5): 1522-1531.
    
    141. Linderstrom-lang K., In Symposium on protein structure, ed. Neuberger, A. (Methuen, London), 1958.
    
    142. Lineweaver H., The determination of enzyme dissociation constants, J. Am. Chen. Soc, 1934, 56: 658-666.
    
    143. Liu W. and Guo R., Interaction between morin and sodium dodecyl sulfate (SDS) micelles, J Agric Food Chem, 2005, 53(8): 2890-2896.
    
    144. Lohse D. L., Denu J. M. and Dixon J. E., Insights derived from the structures of the Ser/Thr phosphatases calcineurin and protein phosphatase 1, Structure, 1995, 3(10): 987-990.
    
    145. Lu W., Li S., Li G. F., Gong Y. D., Zhao N. M., Zhang R. X. and Zhou H. M., Inactivation and dissociation of rice ribulose-l,5-bisphosphate carboxylase/oxygenase during denaturation by sodium dodecyl sulfate, Biochemistry (Mosc), 2002, 67(8): 940-944.
    
    146. Lumry R. and Eyring H., Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. kinetic role of the intrachain disulfide bond, J. Phys. Chem., 1954, 58: 110-120.
    
    147. Lundahl P., Greijer E., Cardell S., Mascher E. and Andersson L., Improved preparation of the integral membrane proteins of human red cells, with special reference to the glucose transporter, Biochim Biophys Acta, 1986, 855(3): 345-356.
    
    148. Ma Y. Z. and Tsou C. L., Comparison of the activity and conformation changes of lactate dehydrogenase H4 during denaturation by guanidinium chloride, Biochem J, 1991, 277 ( Pt 1): 207-211.
    
    149. Madden J. A., Bird M. I., Man Y., Raven T. and Myles D. D., Two nonradioactive assays for phosphotyrosine phosphatases with activity toward the insulin receptor, Anal. Biochem., 1991, 199(2): 210-215.
    
    150. Madhurantakam C., Rajakumara E., Mazumdar P. A., Saha B., Mitra D., Wiker H. G., Sankaranarayanan R. and Das A. K., Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution, J. Bacteriol, 2005, 187(6): 2175-2181.
    
    151. Maehama T., Taylor G. S. and Dixon J. E., PTEN and myotubularin: novel phosphoinositide phosphatases, Annu Rev Biochem, 2001, 70: 247-279.
    
    152. Mammi S. and Peggion E., Conformational studies of human [15-2-aminohexanoic acid]little gastrin in sodium dodecyl sulfate micelles by 1H NMR, Biochemistry-us., 1990, 29(22): 5265-5269.
    
    153. Mann N. H., Protein phosphorylation in cyanobacteria, Microbiology+. 1994, 140 ( Pt 12): 3207-3215.
    
    154. Maret W. and Krezel A., Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease, Mol Med, 2007, 13(7-8): 371-375.
    
    155. Mathews C. K. and Van Hold K. E., Biochemistry, Redwood City CA, Benjiamin/Cummings Martin, 1991.
    
    156. Matozo H. C, Santos M. A., de Oliveira Neto M., Bleicher L., Lima L. M., Iuliano R., Fusco A. and Polikarpov I., Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase eta catalytic domain, Biophysical Journal, 2007, 92(12): 4424-4432.
    
    157. Mattice W. L., Riser J. M. and Clark D. S., Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate, Biochemistry-us., 1976, 15(19): 4264-4272.
    
    158. May P. M. and Williams D. R., Role of low molecular weight coppercomplexes in the control of rheumatoid arthritis., In: Sigel H, editor. Metal ions in biological systems, 1981, 12: 283-317.
    
    159. Mayr L. M. and Schmid F. X., Stabilization of a protein by guanidinium chloride, Biochemistry, 1993, 32(31): 7994-7998.
    
    160. McClure W. O. and Edelman G. M., Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe, Biochemistry, 1966,5(6): 1908-1919.
    
    161. Miesel R. and Zuber M., Copper-dependent antioxidase defenses in inflammatory and autoimmune rheumatic diseases, Inflammation, 1993, 17(3): 283-294.
    
    162. Mitchinson C. and Pain R. H., Effects of sulphate and urea on the stability and reversible unfolding of beta-lactamase from Staphylococcus aureus. Implications for the folding pathway of beta-lactamase, J Mol Biol, 1985, 184(2): 331-342.
    
    163. Mitchinson C. and Baldwin R. L., The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability, Proteins, 1986, 1(1): 23-33.
    
    164. Miyazaki K., A hyperthermophilic laccase from Thermus thermophilus HB27, Extremophiles, 2005, 9(6): 415-425.
    
    165. Moglich A., Krieger F. and Kiefhaber T., Molecular basis for the effect of urea and guanidinium chloride on the dynamics of unfolded polypeptide chains, J Mol Biol, 2005, 345(1): 153-162.
    
    166. Mok Y. K., Kay C. M., Kay L. E. and Forman-Kay J., NOE data demonstrating a compact unfolded state for an SH3 domain under non-denaturing conditions, J Mol Biol, 1999, 289(3): 619-638.
    
    167. Monteiro H. P. and Stern A., Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways, Free Radic Biol Med, 1996, 21(3): 323-333.
    
    168. Mustelin T., Protein tyrosine phosphatases in human disease, Adv Exp Med Biol, 2006, 584: 53-72.
    
    169. Neel B. G. and Tonks N. K., Protein tyrosine phosphatases in signal transduction, Curr Opin Cell Biol, 1997, 9(2): 193-204.
    
    170. Nieder A., Freedman D. J. and Miller E. K., Representation of the quantity of visual items in the primate prefrontal cortex, Science, 2002, 297(5587): 1708-1711.
    
    171. Niefind K., Muller J., Riebel B., Hummel W. and Schomburg D., The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency, J Mol Biol, 2003, 327(2): 317-328.
    
    172. Nilsson B. and Anderson S. Proper and Improper Folding of Proteins in the Cellular Environment. 1991, 45: 607-635.
    
    173. O'Brien E. P., Dima R. I., Brooks B. and Thirumalai D., Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism, J Am Chem Soc, 2007, 129(23): 7346-7353.
    
    174. Oas T. G. and Kim P. S., A peptide model of a protein folding intermediate, Nature, 1988, 336(6194): 42-48.
    
    175. Oshima T., [Comparative studies on biochemical properties of an extreme thermophile, Thermus thermophilus HB 8 (author's transl)], Seikagaku, 1974, 46(10): 887-907.
    
    176. Osterhout J. J., Jr. and Nall B. T., Slow refolding kinetics in yeast iso-2 cytochrome c, Biochemistry, 1985,24(27): 7999-8005.
    
    177. Ostman A., Hellberg C. and Bohmer F. D., Protein-tyrosine phosphatases and cancer, Nat Rev Cancer, 2006, 6(4): 307-320.
    
    178. Oteiza P. I. and Mackenzie G. G., Zinc, oxidant-triggered cell signaling, and human health, Mol Aspects Med, 2005, 26(4-5): 245-255.
    
    179. Otteken A., Earl P. L. and Moss B. Folding, assembly, and intracellular trafficking of the human immunodeficiency virus type 1 envelope glycoprotein analyzed with monoclonal antibodies recognizing maturational intermediates. 1996, 70: 3407-3415.
    
    180. Pace C. N., The stability of globular proteins, CRC Crit Rev Biochem, 1975, 3(1): 1-43.
    
    181. Pace C. N., Determination and analysis of urea and guanidine hydrochloride denaturation curves, Methods Enzymol, 1986,131: 266-280.
    
    182. Pallen C. J., Lai D. S., Chia H. P., Boulet I. and Tong P. H., Purification and characterization of a higher-molecular-mass form of protein phosphotyrosine phosphatase (PTP 1B) from placental membranes, Biochem. J., 1991,276 (Pt 2): 315-323.
    
    183. Park K. H., Park Y. D., Lee J. R., Hahn H. S., Lee S. J., Bae C. D., Yang J. M., Kim D. E. and Hahn M. J., Inhibition kinetics of mushroom tyrosinase by copper-chelating ammonium tetrathiomolybdate, Biochim Biophys Acta, 2005,1726(1): 115-120.
    
    184. Park Y. D., Jung J. Y, Kim D. W., Kim W. S., Hahn M. J. and Yang J. M., Kinetic inactivation study of mushroom tyrosinase: intermediate detection by denaturants, J Protein Chem, 2003, 22(5): 463-471.
    
    185. Parsell D. A. and Sauer R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. 1989,264: 7590-7595.
    
    186. Pauling L. and Corey R. B., The pleated sheet, a new layer configuration of polypeptide chains, Proc Natl Acad Sci U S A, 1951, 37(5): 251-256.
    
    187. Pei D., Neel B. G and Walsh C. T, Overexpression, purification, and characterization of SHPTP1, a Src homology 2-containing protein-tyrosine-phosphatase, Proc. Natl. Acad. Sci. U.S.A.,1993, 90(3): 1092-1096.
    
    188. Peitsch M. C, Protein modeling by E-mail, Bio/Technology, 1995(13): 658-660.
    
    189. Peng Z. Y. and Kim P. S., A protein dissection study of a molten globule, Biochemistry, 1994, 33(8): 2136-2141.
    
    190. Persson C, Sjoblom T., Groen A., Kappert K., Engstrom U., Hellman U., Heldin C. H., den Hertog J. and Ostman A., Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases, Proc Natl Acad Sci U S A, 2004, 101(7): 1886-1891.
    
    191. Pertinhez T. A., Bouchard M., Smith R. A., Dobson C. M. and Smith L. J., Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS, Febs. Lett., 2002, 529(2-3): 193-197.
    
    192. Perutz M. F., New x-ray evidence on the configuration of polypeptide chains, Nature, 1951, 167(4261): 1053-1054.
    
    193. Peters T, Jr. and Davidson L. K. The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. 1982, 257: 8847-8853.
    
    194. Pfleiderer G, Baier M., Mondorf A. W., Stefanescu T., Scherberich J. E. and Muller H., Change in alkaline phosphatase isoenzyme pattern in urine as possible marker for renal disease, Kidney M, 1980, 17(2): 242-249.
    
    195. Ponnuswamy P. K., Hydrophobic characteristics of folded proteins, Prog Biophys Mol Biol, 1993, 59(1): 57-103.
    
    196. Pot D. A., Woodford T. A., Remboutsika E., Haun R. S. and Dixon J. E., Cloning, bacterial expression, purification, and characterization of the cytoplasmic domain of rat LAR, a receptor-like protein tyrosine phosphatase, J. Biol. Chem., 1991,266(29): 19688-19696.
    
    197. Privalov P. L., Stability of proteins: small globular proteins, Adv Protein Chem, 1979, 33: 167-241.
    
    198. Privalov P. L., In Protein Folding, (ed.Creighton,T E),Freeman W H.New York,, 1992: 243-300.
    
    199. Privalov P. L. and Khechinashvili N. N., A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study, J Mol Biol, 1974, 86(3): 665-684.
    
    200. Prouty W. F., Karnovsky M. J. and Goldberg A. L., Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs, J Biol Chem, 1975,250(3): 1112-1122.
    
    201. Prusiner S. B., Prion diseases and the BSE crisis, Science, 1997, 278(5336): 245-251.
    
    202. Ptitsyn O. B., Molten globule and protein folding, Adv Protein Chem, 1995a, 47: 83-229.
    
    203. Ptitsyn O. B., Structures of folding intermediates, Curr Opin Struct Biol, 1995b, 5(1): 74-78.
    
    204. Puius Y. A., Zhao Y., Sullivan M, Lawrence D. S., Almo S. C. and Zhang Z. Y., Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design, Proc Natl Acad Sci U S A, 1997, 94(25): 13420-13425.
    
    205. Quinn T. P., Tweedy N. B., Williams R. W., Richardson J. S. and Richardson D. C., Betadoublet: de novo design, synthesis, and characterization of a beta-sandwich protein, Proc Natl Acad Sci U S A, 1994, 91(19): 8747-8751.
    
    206. RSisanen S. R., Alatalo S. L., Ylipahkala H., Halleen J. M., Cassady A. I., Hume D. A. and Vaananen H. K., Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing, Biochem Biophys Res Commun, 2005, 331(1): 120-6(1): 120-126.
    
    207. Radford S. E., Protein folding: progress made and promises ahead, Trends Biochem Sci, 2000, 25(12): 611-618.
    
    208. Radford S. E. and Dobson C. M., From computer simulations to human disease: emerging themes in protein folding, Cell, 1999, 97(3): 291-298.
    
    209. Ramachandran C, Aebersold R., Tonks N. K. and Pot D. A., Sequential dephosphorylation of a multiply phosphorylated insulin receptor peptide by protein tyrosine phosphatases, Biochemistry-us., 1992, 31(17): 4232-4238.
    
    210. Rambaldi A., Terao M., Bettoni S., Tini M. L., Bassan R., Barbui T. and Garattini E., Expression of leukocyte alkaline phosphatase gene in normal and leukemic cells: regulation of the transcript by granulocyte colony-stimulating factor, Blood, 1990, 76(12): 2565-2571.
    
    211. Rao N. M. and Nagaraj R., Anomalous stimulation of Escherichia coli alkaline phosphatase activity in guanidinium chloride. Modulation of the rate-limiting step and negative cooperativity, J Biol Chem, 1991,266(8): 5018-5024.
    
    212. Raschke T. M. and Marqusee S., Hydrogen exchange studies of protein structure, Curr Opin Biotechnol, 1998, 9(1): 80-86.
    
    213. Rashid F., Sharma S. and Bano B., Comparison of guanidine hydrochloride (GdnHCl) and urea denaturation on inactivation and unfolding of human placental cystatin (HPC), Protein J, 2005,24(5): 283-292.
    
    214. Redfield C, Smith R. A. and Dobson C. M., Structural characterization of a highly-ordered 'molten globule' at low pH, Nat Struct Biol, 1994,1(1): 23-29.
    
    215. Reynolds J. A. and Tanford C, The gross conformation of protein-sodium dodecyl sulfate complexes, J. Biol. Chem., 1970,245(19): 5161-5165.
    
    216. Richards F. M, The interpretation of protein structures: total volume, group volume distributions and packing density, J Mol Biol, 1974, 82(1): 1-14.
    
    217. Rico M., Santoro J., Bermejo F. J., Herranz J., Nieto J. L., Gallego E. and Jimenez M. A., Thermodynamic parameters for the helix-coil thermal transition of ribonuclease-S-peptide and derivatives from 1H-NMR data, Biopolymers, 1986,25(6): 1031-1053.
    
    218. Roder H. and Elove G A., Influence of glutathione on the reactivation of enzymes containing cysteine or cystine, In: Pain R H, eds. Mechanism of Protein Folding. New York: IRL Press, 1994: 26-54.
    
    219. Roder H., Elove G. A. and Englander S. W., Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR, Nature, 1988, 335(6192): 700-704.
    
    220. Rothman J. E., Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells, Cell, 1989, 59(4): 591-601.
    
    221. Ruddon R. W. and Bedows E., Assisted protein folding, J Biol Chem, 1997, 272(6): 3125-3128.
    
    222. Rumbley J., Hoang L., Mayne L, and Englander S. W., An amino acid code for protein folding, Proc Natl Acad Sci U S A, 2001, 98(1): 105-112.
    
    223. Saier M. H., Jr., Introduction: protein phosphorylation and signal transduction in bacteria, J Cell Biochem, 1993,51(1): 1-6.
    
    224. Sako F., Taniguchi N. and Makita A., Phosphotyrosine phosphatase activity in human placenta, Jpn J Exp Med, 1985, 55(1): 21-27.
    
    225. Salmeen A., Andersen J. N., Myers M. P., Tonks N. K. and Barford D., Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B, Mol Cell, 2000, 6(6): 1401-1412.
    
    226. Schindler T., Herrler M., Marahiel M. A. and Schmid F. X., Extremely rapid protein folding in the absence of intermediates, Nat Struct Biol, 1995,2(8): 663-673.
    
    227. Schwede T., Kopp J., Guex N. and Peitsch M. C, SWISS-MODEL: An automated protein homology-modeling server, Nucleic Acids Res, 2003, 31(13): 3381-3385.
    
    228. Segel D. J., Bachmann A., Hofrichter J., Hodgson K. O., Doniach S. and Kiefhaber T., Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering, J Mol Biol, 1999,288(3): 489-499.
    
    229. Semisotnov G V, Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas A. F. and Gilmanshin R. I., Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe, Biopolymers, 1991,31(1): 119-128.
    230. Shi Y., Luo W., Tian W. X., Zhang T. and Zhou H. M., Inactivation and conformational changes of fatty acid synthase from chicken liver during unfolding by sodium dodecyl sulfate, Int J Biochem Cell Biol, 1998,30(12): 1319-1330.
    
    231. Shoemaker K. R., Kim P. S., York E. J., Stewart J. M. and Baldwin R. L., Tests of the helix dipole model for stabilization of alpha-helices, Nature, 1987, 326(6113): 563-567.
    
    232. Shortle D. and Ackerman M. S., Persistence of native-like topology in a denatured protein in 8 M urea, Science, 2001, 293(5529): 487-489.
    
    233. Shortle D. R., Structural analysis of non-native states of proteins by NMR methods, Curr Opin Struct Biol, 1996, 6(1): 24-30.
    
    234. Shultz G. E. and Schirmer R. H., In Principle of Protein Structure, New York, Springer-Verlag, 1979: 166-205.
    
    235. Silva J. L., Foguel D. and Royer C. A., Pressure provides new insights into protein folding, dynamics and structure, Trends Biochem Sci, 2001, 26(10): 612-618.
    
    236. Simoncic P. D., McGlade C. J. and Tremblay M. L., PTP1B and TC-PTP: novel roles in immune-cell signaling, Can J Physiol Pharmacol, 2006, 84(7): 667-675.
    
    237. Skorey K. I., Kennedy B. P., Friesen R. W. and Ramachandran C, Development of a robust scintillation proximity assay for protein tyrosine phosphatase 1B using the catalytically inactive (C215S) mutant, Anal Biochem, 2001, 291(2): 269-278.
    
    238. Smith J. S. and Scholtz J. M., Guanidine hydrochloride unfolding of peptide helices: separation of denaturant and salt effects, Biochemistry, 1996, 35(22): 7292-7297.
    
    239. Sohn J., Kiburz B., Li Z., Deng L., Safi A., Pirrung M. C. and Rudolph J., Inhibition of Cdc25 phosphatases by indolyldihydroxyquinones, J Med Chem, 2003, 46(13): 2580-2588.
    
    240. Stock J. B., Surette M. G., McCleary W. R. and Stock A. M., Signal transduction in bacterial chemotaxis, Journal Of Biological Chemistry, 1992,267(28): 19753-19756.
    
    241. Stoker A. W., Protein tyrosine phosphatases and signalling, J Endocrinol, 2005, 185(1): 19-33.
    
    242. Suzuki T., Inoue N., Higashi T., Mizobuchi R., Sugimura N., Yokouchi K. and Furukohri T., Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNA-derived amino acid sequences, Comp Biochem Physiol B Biochem Mol Biol, 2000, 127(4): 505-512.
    
    243. Suzuki Y. J., Forman H. J. and Sevanian A., Oxidants as stimulators of signal transduction, Free Radic Biol Med, 1997, 22(1-2): 269-285.
    
    244. Swarup G, Cohen S. and Garbers D. L., Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases, J Biol Chem, 1981, 256(15): 8197-8201.
    
    245. Szczepankiewicz B. G., Liu G., Hajduk P. J., Abad-Zapatero C, Pei Z., Xin Z., Lubben T. H., Trevillyan J. M., Stashko M. A., Ballaron S. J., Liang H., Huang F., Hutchins C. W., Fesik S. W. and Jirousek M. R., Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy, J Am Chem Soc, 2003, 125(14): 4087-4096.
    
    246. Tabata K., Kosuge T., Nakahara T. and Hoshino T., Physical map of the extremely thermophilic bacterium Thermus thermophilus HB27 chromosome, Febs. Lett., 1993, 331(1-2): 81-85.
    
    247. Tabernero L., Aricescu A. R., Jones E. Y. and Szedlacsek S. E., Protein tyrosine phosphatases: structure-function relationships, Febs J, 2008,275(5): 867-882.
    
    248. Takagi T., Moore C. R., Diehn F. and Buratowski S., An RNA 5'-triphosphatase related to the protein tyrosine phosphatases, Cell, 1997,89(6): 867-873.
    
    249. Tal T. L., Graves L. M., Silbajoris R., Bromberg P. A., Wu W. and Samet J. M., Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+, Toxicol Appl Pharmacol, 2006,214(1): 16-23.
    
    250. Tanaka T., Kuroda Y., Kimura H., Kidokoro S. and Nakamura H., Cooperative deformation of a de novo designed protein, Protein Eng, 1994,7(8): 969-976.
    
    251. Tanford C, Protein denaturation, Adv Protein Chem, 1968, 23: 121-282.
    
    252. Taylor J. P., Hardy J. and Fischbeck K. H., Toxic proteins in neurodegenerative disease, Science, 2002,296(5575): 1991-1995.
    
    253. Thatcher D. R. and Hitchcock A., Structural intermediates in folding in yeast iso-2 cytochrome c, In: Pain R H, eds. Mechanisms of Protein Folding. New York: IRL Press, 1994: 229-261.
    
    254. Thayer M. M., Haltiwanger R. C, Allured V. S., Gill S. C. and Gill S. J., Peptide-urea interactions as observed in diketopiperazine-urea cocrystal, Biophys Chem, 1993, 46(2): 165-169.
    
    255. Tolkatchev D., Shaykhutdinov R., Xu P., Plamondon J., Watson D. C, Young N. M. and Ni F., Three-dimensional structure and ligand interactions of the low molecular weight protein tyrosine phosphatase from Campylobacter jejuni, Protein Science, 2006, 15(10): 2381-2394.
    
    256. Tonks N. K., PTP1B: from the sidelines to the front lines!, FEBS Lett, 2003, 546(1): 140-148.
    
    257. Tonks N. K., Redox redux: revisiting PTPs and the control of cell signaling, Cell, 2005, 121(5): 667-670.
    
    258. Tonks N. K., Protein tyrosine phosphatases: from genes, to function, to disease, Nat Rev Mol Cell Biol, 2006, 7(11): 833-846.
    
    259. Tonks N. K. and Charbonneau H., Protein tyrosine dephosphorylation and signal transduction, Trends In Biochemical Sciences, 1989, 14(12): 497-500.
    
    260. Tonks N. K. and Neel B. G., From form to function: signaling by protein tyrosine phosphatases, Cell, 1996, 87(3): 365-368.
    
    261. Tonks N. K., Diltz C. D. and Fischer E. H., Purification of the major protein-tyrosine-phosphatases of human placenta, J Biol Chem, 1988,263(14): 6722-6730.
    
    262. Tonks N. K., Flint A. J., Gebbink M. F., Sun H. and Yang Q., Signal transduction and protein tyrosine dephosphorylation, Adv Second Messenger Phosphoprotein Res, 1993, 28: 203-210.
    
    263. Toyama T., Kubuki Y., Suzuki M. and Tsubouchi H., [Copper deficiency anemia and neutropenia secondary to total gastrectomy], Rinsho Ketsueki, 2000,41(5): 441-443.
    
    264. Tsou C. L., Kinetics of substrate reaction during irreversible modification of enzyme activity, Adv Enzymol Relat Areas Mol Biol, 1988, 61:381 -436.
    
    265. Tsou C. L., Conformational flexibility of enzyme active sites, Science, 1993, 262(5132): 380-381.
    
    266. Tudor R., Zalewski P. D. and Ratnaike R. N., Zinc in health and chronic disease, J Nutr Health Aging, 2005, 9(1): 45-51.
    
    267. Turro N. J., Lei X. G, Ananthapadmanabhan K. P. and Aronson M., Spectroscopic Probe Analysis of Protein-Surfactant Interactions: The BSA/SDS System, Langmuir, 1995, 11: 2525-2533.
    
    268. Ueda K., Usui T, Nakayama H., Ueki M., Takio K., Ubukata M. and Osada H., 4-isoavenaciolide covalently binds and inhibits VHR, a dual-specificity phosphatase, FEBS Lett, 2002, 525(1-3): 48-52.
    
    269. Uversky V. N., Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule, Biochemistry, 1993, 32(48): 13288-13298.
    
    270. van Montfort R. L., Congreve M., Tisi D., Carr R. and Jhoti H., Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B, Nature, 2003,423(6941): 773-777.
    
    271. Vassilenko K. S. and Uversky V. N., Native-like secondary structure of molten globules, Biochim Biophys Acta, 2002, 1594(1): 168-177.
    
    272. Vazquez-Perez A. R. and Fernandez-Velasco D. A., Pressure and denaturants in the unfolding of triosephosphate isomerase: the monomeric intermediates of the enzymes from Saccharomyces cerevisiae and Entamoeba histolytica, Biochemistry, 2007,46(29): 8624-8633.
    
    273. Verner K. and Schatz G., Import of an incompletely folded precursor protein into isolated mitochondria requires an energized inner membrane, but no added ATP, EMBO J, 1987, 6(8): 2449-2456.
    
    274. Vieille C. and Zeikus G. J., Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability, Microbiol Mol Biol Rev, 2001, 65(1): 1-43.
    
    275. Vieille C, Burdette D. S. and Zeikus J. G, Thermozymes, Biotechnol Annu Rev, 1996, 2: 1-83.
    
    276. Vincent J. B., Crowder M. W. and Averill B. A., Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions, Trends Biochem Sci, 1992, 17(3): 105-110.
    
    277. Wachnik A., [The physiological role of copper and its nutritive value. I. Distribution of copper in the body], Rocz Panstw Zakl Hig, 1987a, 38(4-5): 363-367.
    
    278. Wachnik A., [The physiological role of copper and its importance in nutrition. II. Participation of copper in the synthesis of enzymes and factors regulating the status of copper supply in the body], Rocz Panstw Zakl Hig, 1987b, 38(6): 491-497.
    
    279. Wang C. C. and Tsou C. L., Interaction and reconstitution of carboxyl-terminal-shortened B chains with the intact A chain of insulin, Biochemistry, 1986, 25(18): 5336-5340.
    
    280. Wang G. F., Cao Z. F., Zhou H. M. and Zhao Y. F., Comparison of inactivation and unfolding of methanol dehydrogenase during denaturation in guanidine hydrochloride and urea, Int J Biochem Cell Biol, 2000, 32(8): 873-878.
    
    281. Wang H. R., Zhang T. and Zhou H. M., Comparison of inactivation and conformational changes of aminoacylase during guanidinium chloride denaturation, Biochim Biophys Acta, 1995a, 1248(2): 97-106.
    
    282. Wang W. Q., Sun J. P. and Zhang Z. Y., An overview of the protein tyrosine phosphatase superfamily, Curr Top Med Chem, 2003, 3(7): 739-748.
    
    283. Wang Z. F., Huang M. Q., Zou X. M. and Zhou H. M., Unfolding, conformational change of active sites and inactivation of creatine kinase in SDS solutions, Biochim Biophys Acta, 1995b, 1251(2): 109-114.
    
    284. Watkins E. L., Stillo J. V. and Wuthier R. E., Subcellular fractionation of epiphyseal cartilage: isolation of matrix vesicles and profiles of enzymes, phospholipids, calcium and phosphate, Biochim Biophys Acta, 1980, 631(2): 289-304.
    
    285. Wiliams R. J. P. and Ds Silva F. J. J. R., New trends in bio-inorganic chemistry, New York: Academic Press., 1978: 1-10.
    286. Wilkins M. R., Lindskog I., Gasteiger E., Bairoch A., Sanchez J. C, Hochstrasser D. F. and Appel R. D., Detailed peptide characterization using PEPTIDEMASS-a World-Wide-Web-accessible tool, Electrophoresis, 1997,18(3-4): 403-408.
    
    287. Wong K. P. and Tanford C., Denaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions, J. Biol. Chem., 1973,248(24): 8518-8523.
    
    288. Wong Y. W. and Low M. G., Phospholipase resistance of the glycosyl-phosphatidylinositol membrane anchor on human alkaline phosphatase, Clin Chem, 1992, 38(12): 2517-2525.
    
    289. Wu C. W., Kao H. L., Li A. F., Chi C. W. and Lin W. C., Protein tyrosine-phosphatase expression profiling in gastric cancer tissues, Cancer Lett, 2006, 242(1): 95-103.
    
    290. Xie J. and Seto C. T., A two stage click-based library of protein tyrosine phosphatase inhibitors, Bioorg Med Chem, 2007, 15(1): 458-473.
    
    291. Xie J., Comeau A. B. and Seto C. T., Squaric acids: a new motif for designing inhibitors of protein tyrosine phosphatases, Org Lett, 2004, 6(1): 83-86.
    
    292. Xu H., Xia B. and Jin C., Solution structure of a low-molecular-weight protein tyrosine phosphatase from Bacillus subtilis, Journal Of Bacteriology, 2006, 188(4): 1509-1517.
    
    293. Yamaguchi M. and Fukagawa M., Role of zinc in regulation of protein tyrosine phosphatase activity in osteoblastic MC3T3-E1 cells: zinc modulation of insulin-like growth factor-I's effect, Calcif Tissue Int, 2005, 76(1): 32-38.
    
    294. Yang J., Liang X., Niu T., Meng W., Zhao Z. and Zhou G. W., Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1, Journal Of Biological Chemistry, 1998, 273(43): 28199-28207.
    
    295. Yao M. and Bolen D. W., How valid are denaturant-induced unfolding free energy measurements? Level of conformance to common assumptions over an extended range of ribonuclease A stability, Biochemistry, 1995, 34(11): 3771-3781.
    
    296. Yon J. M., Protein folding: a perspective for biology, medicine and biotechnology, Braz J Med Biol Res, 2001, 34(4): 419-435.
    
    297. Young L., Jernigan R. L. and Covell D. G., A role for surface hydrophobicity in protein-protein recognition, Protein Sci, 1994, 3(5): 717-729.
    
    298. Zaidi M., Shankar V. S., Towhidul Alam A. S., Moonga B. S., Pazianas M. and Huang C. L., Evidence that a ryanodine receptor triggers signal transduction in the osteoclast, Biochem Biophys Res Commun, 1992, 188(3): 1332-1336.
    
    299. Zhang C. C., Bacterial signalling involving eukaryotic-type protein kinases, Mol. Microbiol., 1996,20(1):9-15.
    
    300. Zhang Z. Y., Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development, Annu Rev Pharmacol Toxicol, 2002,42: 209-234.
    
    301. Zhang Z. Y., Chemical and mechanistic approaches to the study of protein tyrosine phosphatases, Acc Chem Res, 2003, 36(6): 385-392.
    
    302. Zhang Z. Y. and Van Etten R. L., Purification and characterization of a low-molecular-weight acid phosphatase--a phosphotyrosyl-protein phosphatase from bovine heart, Arch. Biochem. Biophys., 1990, 282(1): 39-49.
    
    303. Zhang Z. Y and VanEtten R. L., Pre-steady-state and steady-state kinetic analysis of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart, J Biol Chem, 1991, 266(3): 1516-1525.
    304. Zhang Z. Y., Maclean D., Thieme-Sefler A. M., Roeske R. W. and Dixon J. E., A continuous spectrophotometric and fluorimetric assay for protein tyrosine phosphatase using phosphotyrosine-containing peptides, Anal. Biochem., 1993a, 211(1): 7-15.
    
    305. Zhang Z. Y., Thieme-Sefler A. M., Maclean D., McNamara D. J., Dobrusin E. M., Sawyer T. K. and Dixon J. E., Substrate specificity of the protein tyrosine phosphatases, Proc Natl Acad Sci U S A, 1993b, 90(10): 4446-4450.
    
    306. Zhang Z. Y, Clemens J. C, Schubert H. L., Stuckey J. A., Fischer M. W., Hume D. M., Saper M. A. and Dixon J. E., Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase, J. Biol. Chem., 1992, 267(33): 23759-23766.
    
    307. Zhao Z., Bouchard P., Diltz C. D., Shen S. H. and Fischer E. H., Purification and characterization of a protein tyrosine phosphatase containing SH2 domains, J. Biol. Chem., 1993, 268(4): 2816-2820.
    
    308. Zhou J., Ding M., Zhao Z. and Reeders S. T., Complete primary structure of the sixth chain of human basement membrane collagen, alpha 6(IV). Isolation of the cDNAs for alpha 6(IV) and comparison with five other type IV collagen chains, J Biol Chem, 1994, 269(18): 13193-13199.
    
    309. Zhu Z. and Thiele D. J., Toxic metal-responsive gene transcription in stress-inducible cellular responses., In: Feige U, Morimoto RRI, Yahara I, folia B, Birkhauser G, editors. Base/Switzerland: Verlag, , 1986: 307-320.
    
    310. Zierer R. and Choli D., The primary structure of DNA binding protein II from the extreme thermophilic bacterium Thermus thermophilus, FEBS Lett, 1990, 273(1-2): 59-62.
    
    311. Zwanzig R., Szabo A. and Bagchi B., Levinthal's paradox, Proc Natl Acad Sci U S A, 1992, 89(1): 20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700