用户名: 密码: 验证码:
有机分子诱导的水镁石转晶纯化及机理探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是镁资源大国,储量居世界第一位,其中水镁石探明储量已超过2000万吨。目前我国水镁石的开发利用还处于原矿的出口及烟气脱硫等低附加值产品的初级阶段。纳米氢氧化镁由于其特有的光学性质、电磁性质、化学催化性等优异特性,引起人们的高度关注。从提高水镁石矿综合利用率的角度出发,本课题组开发出有机分子诱导水镁石转晶制备氢氧化镁纳米晶的新技术。在对甲苯磺酸和氨基酸这两类有机物的诱导作用下,水镁石颗粒越过固→固尺寸效应的阈值一步转变为纳米氢氧化镁。与传统方法相比,此过程无需酸解液、沉淀剂,无副产物。本论文选择有机酸及有机胺两类有机分子作诱导剂,探索水镁石转晶的规律及机理,为其它难溶矿物的诱导转晶提供研究思路及途径。本文主要研究内容和结果如下:
     (1)水镁石的有机酸类诱导转晶及规律探索。通过选择不同结构的有机酸进行水热反应,并对产物进行SEM、TEM、XRD、FT-IR、TG/TGA等表征。研究结果表明,带苯环的有机酸能够实现水镁石的诱导转晶,而稠环酸及链状酸未能实现转晶;有机分子并未进入最终的产品。对水镁石转晶的规律进行研究发现,随着有机酸的酸度增大,其转晶作用增强;控制适宜的反应温度及有机物添加量有利于得到良好的转晶产品。
     (2)水镁石的有机胺类诱导转晶及规律研究。通过选择不同结构的有机胺类进行转晶反应,并对产物进行SEM、TEM、XRD、FT-IR、TG/TGA等表征。研究发现具有相邻氮配位点的有机胺类其转晶效果最佳;有机胺并未进入最终产品。调节适宜的反应温度及有机胺添加量有利于达到良好的转晶效果。
     (3)诱导转晶机理研究。通过跟踪转晶反应中间过程并结合反应规律,针对这两类有机分子提出了不同的转晶机理。酸类诱导转晶得以实现的关键在于有机酸根能够插入水镁石层间与OH-进行离子交换,因此要求有机酸具有较强的酸度并满足一定的结构要求。该过程是可逆的,转晶后的母液可以回收利用。胺类诱导转晶是基于有机胺中N与Mg2+的配位作用,因此有机胺的诱导转晶效果取决于分子结构。
     (4)纳米氢氧化镁杂质分析。通过ICP对转晶后所得纳米氢氧化镁进行分析,发现产品纯度有一定提高。其中采用有机酸诱导法铁杂质含量降低了91%,有机胺诱导法铁杂质含量降低了76%,其可能原因是有机酸的离子交换作用相对于有机胺的配位作用具有较强的选择性。
The magnesium resource is quite abundant in China. Brucite is a kind of mineral with the highest content of magnesium, and the reserve has been proved more than20million. However, the application of brucite is in the initial stage of development in our country. It is mainly used for export and low-value-added productions such as flue gas desulfurization. Thus, it is of great significance to research how to employ it to produce and process high-value-added and high-tech functional materials. Nano-structured magnesium hydroxide is a sort of fine and high-functional inorganic material. Great importance has been attached to it owing to its excellent characteristics such as optical properties, electromagnetic properties. From the point of comprehensive utilization, our group has developed a new technology to synthesize magnesium hydroxide nano-crystals, based on trans-crystallization of brucite directed by organic molecules. Superior to the traditional methods, our approach uses no acid or precipitant and no by-product resulting.
     p-toluenesulfonic acid and amino acid were applied as directing agents in our preliminary work. Direct transformation from irregular brucite to uniform magnesium hydroxide nanoplates was achieved in one step. On the basis, this paper selected organic acid and amine as directing agents. Research on the rule of brucite trans-crystallization was done in the aim of clarifying the control mechanism of organic molecules over brucite. The main contents and results are as follows:
     (1) Trans-crystallization of brucite with the aid of organic acid. Organic acids with different structures were employed in the hydrothermal process for the sake of exploring the discipline. It is found that the acid with phenyl could direct the transformation, while acid with naphthalene and chain organic acid have no effect. The solid product was analyzed by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TG/TGA). It is revealed that organic acid does not enter the final product. The law of transformation was investigated with the aid of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is demonstrated that trans-crystallization results are enhanced with the increase of acidity of organic acid.
     (2) Trans-crystallization of brucite in the presence of organic amine. Various kinds of amine with different structures were employed as directing agents with the aim of rule research. XRD, SEM, TEM, TG/TGA, FT-IR were used to analyze the product. As is indicated, amine with adjacent nitrogen displays best trans-crystallization effect. And organic amine did not combine into the final product through the above characterization. Control over reaction temperature and additive amount of organic amine are conductive to the realization of trans-crystallization.
     (3) Mechanism research. For organic acid, the key point lies on insertion of organic acid into brucite, and ion exchange process between organic acid and OH". Thus, those acids with stronger acidity present high transformation efficiency. The process is reversible, and mother liquor can be reused to trans-crystallization. For organic amine, the reason is attributed to the coordination between organic amine and Mg2+. As a result, amine with chelating binding sides presents higher transformation efficiency for a flexible chelating ligand generating.
     (4) Purity test of magnesium hydroxide nanoplates. Fe content of samples were analyzed by inductively coupled plasma emission spectral (ICP). It is revealed that purity is improved after the transformation process. For product induced by organic acid. Fe reduce91%. For organic amine, Fe reduce76%. The possible cause may be owing to the higher selectivity for ion exchange than coordination.
引文
[1]王箴.化工辞典[D].北京:化学工业出版社,1992:124.
    [2]郑水林.非金属矿加工与利用[D].北京:化学工业出社,2003,26:253-256.
    [3]WILSON I. Brucite bonanza [J]. Industrial Minerals,2007,481:74-79.
    [4]SPRY P G, CODY R D, CODY A M. Observations on brucite formation and the role of brucite in Iowa highway concrete deterioration. Environment& Engineering Geoscience [J].2002,8(2):137-145.
    [5]DRISCOLL M O. Magnesia minors:brucite, huntite and hydromagne-site [J]. Industrial Minerals,2005,453:41-47.
    [6]ANON. Far East brucite [J]. Industrial Minerals,2005,459:54-56.
    [7]LEE S J, LEE S H, SHIN H J, et al. Effect of Mg-sulfate and Mg-hydroxide on growth of Chinese cabbage [J]. Korean Journal of Soil Science and Fertilizer, 2003,36(4):218-224.
    [8]LI S. Method for manufacturing brucite granular fertilizer:CN,1785914[P]. 2006-06-14.
    [9]URABE S. Fertilizer granular containing brucite and oyster shells:JP,200180984[P]. 2001-03-27.
    [10]URABES. Fertilizer containing oyster shells:JP,2002,47087[P].2002-02-12.
    [11]LI S. Method for manufacturing light burned magnesia granular fertilizer:CN, 1785915 [P].2006-06-14.
    [12]URABE S. Magnesium hydroxide-containing fertilizer and its manufacture:JP, 195597[P].2008-08-28.
    [13]GUTIERREZ N D. Manufacture of a fertilizer composition based on brucite, from dolomite, periclase, carnallite or magnesite [J].Chem. Abstr. 2007,147(14):300376.
    [14]SHAND M A. Acid mine drainage in the chemistry and technology of magnesia [M]. USA:Wiley,2006:172-173.
    [15]HIGGUNS, MATTHEW J M, DEAYNE R, et al. Controlling hydrogen sulfide in waste water using base addition, Proc-WEFTEC97, Water Environ Fed Arrnu Conf Expo, 70th,1997,2:557-594.
    [16]BELEVTSEV A N, BAIKOBA S A, ZHAVORONKOVE V I, et al. Effectiveness of akvamag ground brucite in water treatment processes [J]. Metallurgist,2007,51(56):259-297.
    [17]WU W X, SHAO L, CHEN J F, et al. Investigation on mechanisms of Cu2immobilization by brucite [J]. Fresenius Environmental Bulletin,2007,16(1):29-33.
    [18]THENAYO, KABDASLI I, TASLI R. Pretreatment of complexed metal Waste waters, Water Science and Technology,1993,29(9):13-15.
    [19]BERMAN Y, TANKLEVSKY A, OREN Y., et al. Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams PartII, Chem. Eng Sci, 2000,55(5):1023-1028.
    [20]赵宜江,秘鸣,张艳等.氢氧化镁吸附陶瓷膜微滤对印染废水脱色的研究[J],膜科学与技术,2000,20(1):41-45.
    [21]NAKAMURA, TAKESHI, FUJII, et al. Removal of phosphorus from waste water, JP08290171 A2,1996,11:5.
    [22]YIN L, HE K, DONG Y M, et al. Application of semi-calcined brucite as catalyst for ozonation degradation of organic pollutants in wastewater:CN,101157494[P]. 2008-04-09.
    [23]DONG Y M, HE K, YIN L, et al. Catalytic degradation of nitrobenzene and aniline in presence of ozone by magnesia from natural mineral [J]. Catalysis Letters, 2007,119(3-4):222-227.
    [24]DONG Y M, HE K, ZHAO B, et al. Catalytic ozonation of azodye active brilliant red X-3B in water with natural mineral brucite [J]. Catalysis Communication, 2007,8(11):1599-1603.
    [25]MATSUI S. Magnesium oxide-based fluorine adsorbent for removal of fluorine from wastewater and production method of same:JP,2005342578[P].2005-12-15.
    [26]SHAND M A. Carbon dioxide sequestration using brucite in the chemistry and technology of magnesia [M]. USA:John Wiley&Sons,2006:197-198.
    [27]LEE J K, KIM D W, LEE S, et al. Pretreatment method of brucite for CO2 mineral carbonation by removal of adsorbed water, hydroxyl group and volatile materials: KR,673533[P].2007-01-24.
    [28]MAROTO-VALER M M, FAUTH D J, KUCHTA M E, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration [J]. Fuel Processing Technology,2005,86(14-15):1627-1645.
    [29]SHAND M A. Nuclear waste disposal in the chemistry and technology of magnesia [M]. USA:John Wiley& Sons,2006:196.
    [30]XIONG Y L. The dynamic properties of brucite determined by solubility studies and their significance to nuclear waste isolation [J]. Aquatic Geochemistry, 2008,14(3):223-238.
    [31]XIONG Y L, Loed A S. Experimental investigations of the reaction path in the MgO-CO:-H2O system in solutions with various ionic strengths and their applications to nuclear waste isolation[J]. Applied Geo Chemistry,2008,23(6):1643-1659
    [32]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [33]HENRIST C, MATHIEU J P, VOGELS C. Morphological study of rnagnesium hydroxide nanopartieles precipitated in dilute aqueous solution [J]. Journal of Crystal Growth,2003,249:321-330.
    [34]郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,2001,30(4):25-17.
    [35]ROTHON R N, HOMSBY P R. Flame retardant effects of magnesium hydroxide [J]. Polymer Degradation and Stability,1996,54:383-385.
    [36]QIULZ, XIERC, DING P. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA [J]. Composites Strueture,2003,62:391-395.
    [37]赵乐.液相沉淀法制备高纯纳米氧化镁的研究[D].郑州大学,2009.
    [38]仲维卓,华素坤.晶体生长形态学[M].北京:科技出版社,1999.
    [39]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [40]GORSKI D. Mg(OH)2-based hydrogen peroxide refiner bleaching:influence of extractives content in dilution water on pulp properties and energy efficiency [J].Appita Journal,2010,63(3):218-225
    [41]BOUEHARD J, WANG J, BERRY R. MgSO, vs. Mg(0H)2as a cellulose protector in oxygen delignification [J]. Ilolzforschung,2011,65(3):295-301.
    [42]THAKORE A. The use of magnesium hydroxide as a cost effective cellulose protector in the pressurized alkaline peroxide (Eop) bleaching stage [J]. Pulp& Paper-Canada, 2005,106(5):46-49.
    [43]HE Z, QIAN X, NI Y. The tensile strength of bleached mechanical pulps from the Mg(OH)2-based and NaOH-based peroxide bleaching processes [J]. Journal of Pulp and Paper Science,2006,32(1):47-52.
    [44]GIORGI R. Nanopartieles of Mg(OH)2:Synthesis and application to paper conservation [J]. Langmuir,2005,21(18):8495-8501.
    [45]KYSILKA V. Compsn. protecting potatoes during storage based on magnesium hydroxide aq. suspension contg. desired chemical additives. Czech, CZ9101890-A3, CZ282527-B6 [P/OL].1993-02-28 [1993-01-13].
    [46]HAASE R A. Preservation of edible animals or animal parts containing fats and/or proteins e. g. meat and meat products, by applying magnesium oxide and/or magnesium hydroxide. US6066349-A[P/OL].2000-05-23 [1997-10-08].
    [47]郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,2001,30(4):25-17.
    [48]YANL, ZHUANGJ, SUN X, et al. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration [J]. Materials Chemistry and Physics,2002,76:119-122.
    [49]王路明.Mg(OH):对海水中硼的吸附效果[J],海湖盐与化工,2004,32(5):5-7.
    [50]TAN J. In situ formed Mg(OH)2 nanoparticles as pH-switchable stabilizers for emulsions [J]. Journal of Colloid and Interface Science,2011,359(1):155-162.
    [51]安田直树.氢氧化镁超细粉末制备方法及其燃性树脂组合物,2001年,专利号CN01142497.4
    [52]郑水林,杜高翔,李杨等.用水镁石制备超细氢氧化镁的研究[J],矿冶,2004,13(2):43-46.
    [53]庞卫锋,陆强,汪瑾等.超细氢氧化镁的制备工艺与方法研究进展[J],化学世界,2005,376-380.
    [54]何昌洪.纳米氢氧化镁的合成方法[J],盐湖研究,2004,12(2):33-38.
    [55]吴育飞,常淑凤,杨国营.氢氧化镁粒径与微观状态的SEM分析[J],电子显微学报,2001,20(4):312-313.
    [56]胡庆福,王民听.一步法制备氢氧化镁阻燃剂新工艺[J],现代化工,1998,18(3):22-23
    [57]尹晓磊,贾茜,袁建军.卤水通氨法制取氢氧化镁的研究[J],盐业与化工,2009,38(5):14-17.
    [58]徐宝龙,郑永飞,周根陶等.水镁石的低温化学合成及其矿物学研究[J],矿物学报,1998,18(3).
    [59]吴荣良,黄颂安,汀瑾等.从硼泥制取氢氧化镁阻燃剂[D]:(博士学位论文).上海:中国科学院上海冶金研究所,2000.
    [60]张淑祥,于惠霞.复分解法制备高纯氢氧化镁[J],无机盐工业,2007,39(2).
    [61]姜玉芝,韩跃新,印万忠.氢氧化镁晶须制备研究[J],矿冶,2006,15(2).
    [62]胡章文,王理想,杨保俊等.蛇纹石酸浸滤液提镁制备针状纳米氢氧化镁[J],非金属矿,2005,28(1).
    [63]LI Y, SUI M, DINGY, et al. Preparation of Mg (OH) 2 nanorods [J]. Advanced Materials, 2000,12:818-820.
    [64]WANG J A, NOVARO 0, BOKHIMI X, et al. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO [J]. Materials Letters,1998,35:317-319.
    [65]ARDIZZONE S, BIANCHI C L, VERCELLI B. MgO powders:interplay between adsorbed species and localization of basic sites [J]. Application Surface Science, 1998,126:169-175.
    [66]宁桂玲,庞洪吕.专利:一种基于水镁石制备高纯氢氧化镁纳米晶的方法.2010年,专利号CN1o1817542A
    [67]XIANG L, JIN Y C, JIN Y氢氧化镁的结晶习性研究[J]Chinese Journal of Inorganic Chemistry.2003,19:837-840.
    [68]PANG H C, NING G L, GONG W T, et al. Chemical Communication,2011,47:6317-6319.
    [69]TOLBERT S H, ALIVISATOS A P. Size dependence of a first order solid-solid phase transition:the wurtzite to rock salt transformation in CdSe nanocrystals [J]. Science,1994,265:373-376.
    [70]PHILIP J. BAILEY. DANIEL L, et al.6-Aminofulvene-2-aldimine, a novel class of ambidentate cyclopentadienyl/diimine ligand:synthesis and characterization of magnesium complexes [J]. Chem. Commun.,2003,12:1426-1427.
    [71]ANDREW R F, VERNON C, GIBSON, et al. Coordination complexes bearing potentially tetra dentate phenoxyamine ligands [J]. Dalton Trans.,2006,5014-5023.
    [72]JANUSZ L, MACIEJ D, IZABELA K, et al. Divergent coordination mode of magnesium and zinc alkyls supported by the bifunctional pyrrolylaldiminato ligand [J], Chem. Commun.,2005,39:4935-4937.
    [73]BABURAM S, MARY J H, CHARLES H. et al. Magnesium complexes containing β-ketiminate and P-diketiminate ligands with dimethylamino substituents on the ligand core nitrogen atoms [J]. J. Organomet. Chem.2008,693 (23):3495-3503.
    [74]席晓凤.利用水镁石制备具有特殊形貌的超细氢氧化镁[D]:(硕士学位论文).辽宁沈阳:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700