用户名: 密码: 验证码:
聚丙烯腈基碳纳米管复合材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用原位聚合和溶液共混的方式制备出了聚丙烯腈基碳纳米管复合材料。使用傅立叶变换红外光谱仪(FTIR)、热重分析仪(TG)、扫描电镜(SEM)、透射电镜(TEM)、R/SCC同轴圆柱体流变仪、X-射线衍射仪(XRD)、差示扫描热量仪(DSC)等测试方法研究了碳纳米管纯化前后的结构与性能的变化,并且利用以上分析手段研究了碳纳米管对聚丙烯腈基碳纳米管复合材料的结构和性能的影响,利用Fluke 1508型绝缘电阻测试仪测试复合薄膜的表面电阻率
     研究发现,利用浓硝酸在常温下可以很好的除去碳纳米管(CNTs)中的杂质,同时在没有破坏碳纳米管本身优良的长径比结构的前提下接枝上COOH、OH基团。同时对碳纳米管在不同溶剂中的溶解程度进行了研究,结果表明,碳纳米管在DMAc中分散性最好,碳纳米管在不同溶剂中分散性为:DMAc>DMSO>DMF。
     对原位聚合法制备的复合材料进行了转化率及结构形态的研究,结果表明:碳纳米管对复合材料的转化率产生影响,随着碳纳米管含量的增加,反应转化率逐渐升高,但当含量高于0.3%时聚合反应的转化率开始下降;通过对制得的复合材料进行FTIR、DSC、XRD测试可以看出,PAN可以有效的接枝到碳纳米管上使聚合粉料的预氧化温度提前,放热量和放热速率均降低,这有效的避免了预氧化过程中的集中放热;碳纳米管使其结晶程度也有所减弱,但并没有改变聚合物的结晶晶型,只是有序度改变了;对复合薄膜的断面进行SEM观察,结果表明,PAN基复合材料的导电性能明显提高,碳纳米管的单根分散为增强复合材料提供了可能。
     通过溶液共混法制备复合溶液并对其流变性能进行了研究。结果表明,在低剪切速率下,随着碳纳米管含量的增加,复合溶液的表观粘度出现减小趋势,但当其含量超过0.5%时,复合溶液表观粘度又出现增大趋势,这证实了纳米粒子在含量较低时,增稠作用只有在较高剪切速率下才能体现出来;并且在碳纳米管含量较低时,随着测试温度的升高,溶液表观粘度的减小趋势减弱,说明此时溶液粘度对温度表现的敏感;随着碳纳米管含量的进一步提高,溶液的粘度逐渐增大,结构化程度提高,物理稳定性变差,可纺性难度增大,但整体变化不大,其对剪切速率的变得敏感。
     对复合材料进行了DSC测试可以看出,溶液共混同样可以改善复合材料的热性能,减少复合材料集中放热的可能;通过XRD测试表明,预氧化后复合材料的结晶峰由2θ≈17°转移到20≈25°附近,这是代表材料芳构化结构的峰,说明复合材料在较低的预氧化温度下就完成了很好的环化而纯PAN在该处的峰则不十分明显。两种材料经400℃低温碳化后,在10°~40°之间均产生了一个肩峰,说明在400℃下材料均已完成环化作用,二者的不同只是体现为材料有序区与无序区分布的不同。
     对材料进行FTIR、TEM研究表明,碳纳米管在复合薄膜中主要以物理结合形式存在,但在预氧化阶段对环化有促进作用,C≡N和CH2等一些主要吸收特征峰逐渐减弱并消失,而C=C和C=N基团的伸缩振动峰逐渐出现并增强,同时复合薄膜中的C≡N降低量明显高于纯PAN的。当碳纳米管的含量达到2%时,复合薄膜的环化率达到70.41%,而纯PAN环化率仅为20.24%,碳化阶段碳纳米管对材料的影响不大;碳纳米管在复合材料中部分呈单根分散状态,但也有很多团聚结构存在
     对复合薄膜的表面电阻率的研究表明,当碳纳米管含量达到5%时,复合薄膜的表面电阻率由大于104MΩ迅速变为5.74 MΩ,但碳纳米管含量再增加时电阻率变化不大,说明碳纳米管一旦在薄膜材料中形成网络结构,材料的导电性能就迅速增强。
In this paper polyacrylonitrile (PAN)-based carbon nanotubes (CNTs) composite were produced by insitu polymerization and solution blending. Effects of CNTs content on the structure and the performance of composite were studied. The structure and proformance of CNTs before and after treated with structures and properties of composite were observed, which were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectra (LRS), X-ray diffraction (XRD), thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), R/SCC coaxial cylinder rheometer, scanning electron microscopy (SEM) and transmission electron microscopy(TEM). The surface resistivity of composite film was tested by using Fluke 1508 type insulation resistance tester.
     It has been found that we can remove the impurities of CNTs by using nitric acid (65%) in room temperature very well, and can graft-COOH,-OH group onto the CNTs whitout disrupting the excellent length-diameter ratio stucture of CNTs. The dispersion for CNTs in different solvent was tested as follows:dimethylacetamide (DMAc)>dimethylsulphoxide (DMSO)>dimethyl formamide (DMF) in room temperature.
     Composites which produced by insitu polymerization were studied and found some phenomenon as follows:with the increase of the content of CNTs, the reactions conversion increased gradually, but when the content reached to 0.3%, the conversion began to decline; at the same time, the preoxidation temperature of polymer was in advance because of CNTs, and alleviated the exothermic reaction, all of which would improve the peoperty of PAN; in some extent, it hindered polymer crystallization, but the structure and crystal of polymer could change.
     The investigation on the composites solution rheology showed that the viscosity reduces fristly and then increases with the CNTs content increases, which was produced by solution blending. Solution viscosity became lower when the CNTs content achieved 0.5%, but in high shear rate this phenomenon disappeared, this indicated that thickening role can be reflected with low content of CNTs. The viscosity and the structure viscous index became higher, the Non-Newtonian index was smaller and the physical stability was worse while the content of CNTs was higher. The solution was temperature-sensitive with the low content of CNTs but was tended to be shearing-sensitive with the higher one.
     The analysis of DSC、XRD showed that the carbon nanotubes could improve the thermal properties of composite materials, and alleviated the exothermic reaction. During the preoxidation process the position of crystallization of composite was varied from 20≈16°to 29≈25°, which suggested the structure of aromatization appear; in addition, they produced a shoulder peak at about 20≈10°~40°in carbonization stage, the cyclization was completed, it had different distribution of the order and the disorder region.
     The analysis of FTIR showed that during the preoxidation process the stretching vibrations of nitrile (C≡N) and the methane group (CH2) decreased and nearly disappeared such as C=C and C=N during the preoxidation process(255℃), which represented the ladder structure appeared and became stronger gradually. At the same time the dope of C=N group in composite film decreased quickly than that the formed pure PAN, and the cycilzation rate of film increased from 20.24% to 70.41%, when the content of CNTs was 2%, however, the effect of CNTs was not basically discovered in carbonization stage (400℃). On one hand, the part of carbon nanotubes in the composites was in a single dispersion state, on the other hand, the aggregate structure of the carbon nanotubes was found.
     When the content of CNTs reached to 5%. the surface resistivity of composite film reduced to 5.74 MΩfrom> 104 MΩquickly, and it has a little change with the content of CNTs increase.
引文
[1]董纪震.合成纤维生产工艺学(下册)[M].北京:中国纺织出版社,1991.
    [2]Chand S. Review carbon fibers for composites[J]. Journal of materials science,2000.35(6):1303-1313.
    [3]张家杰.国内外碳纤维研究现状及发展趋势[J].化工技术经济,2005,23(4):12-15.19.
    [4]Basovar YV. HamadaY, Miyashita K. Effect of oxidation-reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999, (1):540-544.
    [5]贺福,赵建国.世纪之交展望我国的碳纤维工业[J].化工新型材料,2000,28(3):3-7.
    [6]鹿海军,梁国正,张宝艳,马晓燕,陈祥宝.纳米碳管在聚合物中的应用及其复合材料研究进展[J].材料导报,2003,17(7):57-60.
    [7]王垚,吴珺,魏飞,骞伟中,余皓.碳纳米管团聚结构的电镜研究[J].电子显微学报,2002.21(4):422-428.
    [8]孙宝云,韩晓晨.碳纳米管及新型一维碳纳米功能材料[J].现代物理知识,2007,19(4):25-27.
    [9]Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite[J]. Science,1994, 265(5176):1212-1214.
    [10]潘止伟,常保和,孙连峰,钱露茜,等.超长、开口定向碳纳米管阵列的制备[J].中国科学(A辑),1999,29(8):743-749.
    [11]Henning T H, Salama F. Carbon-Carbon in the universe [J]. Science, 1998,282:2204
    [12]Vincent HC. Relations between global and local topology in multiple nanotube junctions[J]. Physical Review B.1998,58(19):12671.
    [13]Saito R. Fujita M. Dresselhaus G, et al. Electronic structure and growth mechanism of carbon tubules[J]. Material Science and Engineering:B,1993, 19:185-191.
    [14]Dai H, Wong EW.Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes[J]. Science,1996,272(5261): 523-526.
    [15]Deheer WA, Bacsa WS, Chatelain A, Humphrey-Baker R, Forro L, Ugarte D. Aligned carbon nanotube films:production and optical and electronics properties[J]. Science,1995,268(5212):845-847.
    [16]杨古红.李新海,陈志国,王红强,李晶,方慧会.碳纳米管的纯化[J].化工新材料.1999,27(2):22-24.
    [17]Iijima S. Pentagons, hentagons and negative curature in graphite microtubule growth[J]. Nature,1992,356:776-778.
    [18]Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature,1992,359:707-709.
    [19]Ajayan PM, Ichihashi T, Iijima S. Distribution of pentagons and shapes in carbon nanotubes and nanoparticles[J]. Chemical Physics Letters,1993, 202(5):384-388.
    [20]Tsang SC, Chen YK, Harris PJF, Green MLH. A simple chemical method of opening and filling carbon nanotubes[J]. Nature,1994,372:159-162.
    [21]Hou PX, Bai S, Yang QH, Liu C, Cheng HM. Multi-step purification of carbon nanotubes[J]. Carbon,2002,40(1):81-85.
    [22]周亮,刘吉平,李晓合.碳纳米管的纯化[J].化学通报,2004,(2):96-103.
    [23]张丽霞,齐鲁.多壁碳纳米管分散性研究[J].合成纤维SFC,2008,(6):32-35.
    [24]Tzavalas S, Drakonakis V, Mouzakis DE, Fischer D, Gregoriou VG. Effect of carboxy-functionalized multiwall nanotubes(MWNT-COOH) on the crystallization and chain conformations of poly(ethylene terephalate) PET in PET-MWCNT nanocomposites[J]. Macromolecules.2006,39:9150-9156.
    [25]姚承照,宋怀河,冯志海,李仲平,李嘉禄.碳纳米管表面硝酸氧化改性研究[J].宇航材料工艺.2008,(2):34-38.
    [26]唐玉生.顾军渭,孔杰.多壁碳纳米管(MW-CNTS)表面纯化改性研究[J].西安石油大学学报(自然科学版).2009,24(1):67-70.
    [27]沈剑锋,黄玮石,吴利平,胡轶喆,李俊,叶明新.多壁碳纳米管的纯化及修饰[J].材料导报,2006,20(专辑VI):117-119.
    [28]王川,邢哲,夏延致,隋坤艳,纪全,孔庆山.多壁碳纳米管的处理及其在芳纶1313中的分散[J].功能材料.2009,40(2):325-327.
    [29]郑成斐,杨胜林,李光,江建明.碳纳米管在聚内烯腈中的分散状态[J].功能高分子学报.2004,17(1):25-29.
    [30]Zhan GD, Kuntz JD, Wan J, Mukherjee AK. Single-wall carbon nanotubes as attractive toughing agents in alumina-based nanocomposites[J]. Nature Materials,2003,2(1):38-42.
    [31]贾志杰,徐才录,梁吉,魏秉庆,吴德海,朱绍文.关于尼龙-6/炭纳米管复合材料的研究[J].新型炭材料,1999,14(2):32-35.
    [32]沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究[J].新型炭材料,2001,16(1):1-4.
    [33]成明会,刘畅,丛洪涛.具有优异储氢性能的高质量单壁碳纳米管的合成[J].物理,2000,29(8):449-450.
    [34]王敏炜,李凤仪,彭年才.碳纳米管一新型的催化剂载体[J].新型炭材料,2002,17(3):75-79
    [35]Ma RZ, Liang J, Wei BQ, Xu CL, Wu DH. Study of electrochemical capacitors utilizing carbon nanotube electodes[J]. Journal of Power Sources,1999,34: 126-129
    [36]Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitor[J]. Carbon,2002:1193-1197.
    [37]梁逵.陈艾,周旺,王巍.碳纳米管作为超大容最离子电容器电极的研究[J].电子学报.2002,30(5):621-623.
    [38]李莉香,李峰,英哲.杨全红.成会明.碳纳米管/聚合物功能复合材料[J].新型炭材料.2003,18(1):69-73.
    [39]Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH. Smalley RE. Polyacrylonitrile single-walled carbon nanotube composite fibers[J]. Advanced Materials.2004.16(1):58-61.
    [40]董艳,张清华,李静.夏清明,陈大俊.聚丙烯腈/多壁碳纳米管共混纤维的研制[J].合成纤维SFC,2008,(4):1-4.
    [41]Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ. Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique[J]. Carbon,2006,44(4): 778-785.
    [42]贾志杰,王止元,徐才录,梁吉,魏秉庆,吴德海.张增民.原位法制取碳纳米管/尼龙-6复合材料[J].清华大学学报(自然科学版),2000,40(4):14-16.
    [43]牛丽红,唐应武,张复实.卟啉修饰碳纳米管研究进展[J].化学通报,2009,(2):100-104.
    [44]Curren SA, Ajayam PM, Blau WJ, Coleman JN, Dalton AB, Davey AP, Deury A, McCarthy B, Maier S, Strevens A. A composit from poly (m-pyeny-lenevine-co-2,5-dioctoxy-p-phen-ylenevinylene) and carbon nanotubes:a novel material for molecular optoelectronics[J]. Advanced Materials,1998, 10(14):1091-1093.
    [45]Sandier J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer,1999,40:5967-5971.
    [46]Jurewice K, Delpeux S, Bertagna V, Beguin F, Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites[J]. Chemical Physics Letters,2001. 347:36-40.
    [47]Gong XY, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-sisted processing of carbon nanotube/polymer composites[J]. Chemistry of Materials,2000,12(4):1049-1052.
    [48]胡平,张天翔.聚合填料型超高分子量聚乙烯/碳纳米管复合材料的研究[J].中国化学会全国高分子学术交流会论文集,1999,171-172.
    [49]马雷,郑雪枫,李常清,童元建,徐樑华.碳纳米管/聚丙烯睛复合纤维的制备及结构研究[J].合成纤维工业,2008,31(5):1-3.
    [50]Zhao YQ, Wang CG, Bai YJ, Chen GW, Jing M, Zhu B. Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere[J]. Journal of Colloid and Interface Science,2009,329:48-53.
    [51]金日光,华幼卿.高分子物理(第二版)[M].北京:化学工业出版社,2005.
    [52]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2001.
    [53]董纪震,罗鸿烈,王庆瑞,曾宪珉.合成纤维生产工艺学[M].北京:中国纺织出版社,1996.
    [54]Iijima S. Helical microtubules of graphite carbon[J]. Nature,1991,354: 56-58.
    [55]Schadler LS, Giannaris SC, Ajayan P M. Load transfer in carbon nanotube epoxy composites[J]. Applied Physics Letters,1998,73(26):3842-3844.
    [56]Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters,2000,76(20):2868-2870.
    [57]Thostenson ET, Zhi F, Chou TW. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology,2001,61(13):1899-1912.
    [58]Chen RJ, Zhang Y, Wang DW, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society,2001,123(6):3838-3839.
    [59]李艳亮,程斌,沈曾民.酸处理对多壁碳纳米管形态的影响[J].北京化[大学学报,2004,31(4):60-64.
    [60]Liu J, Rinzler, AG, et al. Fullerene pipes[J].Science,1998,280:1253-1256.
    [61]Anglaret E, Dragin F, Penicaud A, Martel R. Raman studies of solutions of single-wall carbon nanotubes salts[J]. Journal of Physical Chemistry B,2006, 110(9):3949-3954.
    [62]Zhang HL, Xu LH, Yang FY, Geng L. The synthesis of polyacrylonitrile/ carbon nanotubes microspheres by aqueous deposition polymerization under ultrasonication[J]. Carbon,2010,48:688-695.
    [63]杨军平,高绪珊,童俨.碳纳米管增强PA6纤维的性能[J],材料研究学报,2004,18(5):556-560
    [64]郑亚萍,陈青华,陈立新,等.纳米碳管/环氧树脂纳米复合材料的研究[J],高分子材料科学与工程,2006,22(4):216-218.
    [65]郭振福,高绪珊,童俨.碳纳米管/聚酯抗静电纤维的制备和性能[J],合成纤维,2007.7:15-17.
    [66]荣常如.聚芳醚/纳米碳复合材料的制备及性能研究[D].吉林大学博十学位论文,2010.
    [67]张旺玺,王艳芝.活性炭对聚内烯腈共混熔液流变性的影响[J].广东化纤,1999,(1):17-19.
    [68]黄白尘,顾莉琴,顾利霞.纳米ATO的表面修饰及抗静电腈纶的制备[J].胶体与聚合物,2007,25(1):8-10.
    [69]吴雪平,盛丽华,张先龙,陈敏,陈天虎,朱王勇.碳添加剂对聚丙烯腈流变性能影响的研究[J].合成纤维SFC,2008,(12):29-34.
    [70]Wang M, Wang WZ, Liu TX, Zhang WD. Melt rheological properties of nylon 6/multi-walled carbon nanotube composites[J]. Composites Science and Technology,2008, (68):2498-2502
    [71]朱德杰,胡盼盼,赵炯心.吴承训,钱宝均.缠结对超高分子量聚丙烯腈特性粘度测定的影响[J].中国纺织大学学报,1996,22(1):1-8.
    [72]孙宁.聚丙烯腈/碳纳米管复合纳米纤维膜的制备与性能研究[D].青岛大学硕十论文,2008
    [73]_王鹏PAN/DMSO溶液的流变性及干湿纺可纺性能研究[D].东华大学硕十学位论文.2005.
    [74]董兴广.聚丙烯腈纤维纺丝成形及工艺相关性研究[D].山东大学博士学位论文,2009.
    [75]张国萍,毛萍君,张林,杨明远,王荣光.用于碳纤维原丝的聚丙烯腈纺丝溶液的性质研究[J].青岛大学学报,1999,14(3):26-30.
    [76]Ferry JD. Viscoelastic Properties of Polymers[M], New York,1961.
    [77]俞三传,高从堦.浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):36-41.
    [78]周金盛,陈观文CA/CTA共混不对称纳滤膜制备过程中的影响因素探讨[J].膜科学与技术.1999,19(2):22-26.
    [79]陈立新,沈新元.相转化法的湿法成膜机理[J].膜科学与技术,1997,17(3):1-6.
    [80]武利顺,王庆瑞.湿法相转化法制膜过程对膜结构的影响[J].纺织学报,2001,22(5):314-316.
    [81]Cohen C, Tanny GB, Prager S. Diffusion-controlled formation of porous structures in ternary polymwe systems[J]. Journal of Polymer Science: Polymer Physics Edition,1979,17(3):477-489.
    [82]Reuvers AJ, van den Berg J WA, Smolders CA. Formation of membranes by means of immersion precipitation. Part Ⅰ. A model to describe mass transfer during immersion precipitation[J]. Journal of Membrane Science,1987,34(1): 45-65.
    [83]Reuvers A J, Smolders C A. Formation of membraness by means of immersion precipitation Part Ⅱ.The mechanism of formation of membranes prepared form the system cellulose acetate-acetone-water[J]. Journal of Membrane Science.1987,34(1):67-86.
    [84]Tsay CS. Mchugh AJ. Mass transfer dynamics of the evaporation step in membrane formation by phase inversion[J]. Journal of Membrane Science, 1991,64(1-2):81-92.
    [85]Radovanovic P, Thiel S W, Hwang ST. Formation of asymmetric polysulfone membranes by immersion precipitation. Part Ⅰ. Modelling mass transport during gelation[J]. Journal of Membrane Science,1992,65(3):213-229.
    [86]Baughman RH. Zakhidov AA. de Heer WA. Carbon nanotubes-the route toward applications[J]. Science,2002,297:787-792.
    [87]Chae HG, Minus ML, Kumar S. Oriented and exfoliated single wall carbon nanotubes in polyacryloniterle[J]. Polymer,2006,47(10):3494-3504.
    [88]耿丽.碳纳米管对聚丙烯腈大分子预氧化机构的影响[D].北京工业大学硕士毕业论文,2009.
    [89]Sivy GT, Coleman MM. Fourier transform IR studies of the degration of polyacrylonitrile copolymers-Ⅳ:Acrylonitrile/acrylamide copolymers[J]. Carbon,1981,19(2):137-139.
    [90]Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy[J].Composites:Part A,2001,32:401-411.
    [91]Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites[J]. Applied Physics Letters,1998,73(26):3842-3844.
    [92]马婕.碳化纤维在抗静电涂层中的网络化分布及蒙特卡洛模拟[D].山东大学博士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700