用户名: 密码: 验证码:
稀土—钡—钴—氧材料的氧扩散与电输运性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非化学计量性氧化物很多独特的特性使得它们受到了广泛研究。氧空位的出现导致氧离子能够在材料表面和内部以一定的速率吸附、脱附或扩散,因此,非化学计量性氧化物在气体分离膜,固体氧化物燃料电池,氧传感器,以及储氧、产氧等领域被广泛应用。
     先前的研究表明,双层钙钛矿结构材料RBaCo_2O_(5+δ)(R代表稀土元素)具有高电导率和快速氧扩散能力,在固体氧化物燃料电池以及透氧膜等领域具有潜在的应用价值。在本文中,我们选取了三个典型的双层钙钛矿结构氧化物RBaCo_2O_(5+δ)(R=Pr,Gd,Y),利用热重分析方法研究了它们的氧扩散行为,以获得其透氧性能、氧的脱附与吸附速率常数,以及氧空位浓度差之间的关系。实验结果表明,RBaCo_2O_(5+δ)材料的氧吸附速率常数k_α明显大于氧脱附速率常数k_d。与立方结构的钙钛矿材料相比,双层钙钛矿材料具有较大的氧吸附与脱附速率,这表明它们在气-固界面具有快速的氧交换能力。但是,它们在氧气与氮气下的质量差△δ/V_(mol)明显小于立方钙钛矿材料,导致双层钙钛矿材料的透氧量J_(O_2)与立方钙钛矿材料基本相同。高的氧吸附与脱附速率常数表明双层钙钛矿材料是一种有前景的催化材料。它可以用作膜修饰材料,通过提高固相与气相间的氧交换速率来提高透氧膜的透氧量。
     RBaCo_4O_7(R表示稀土元素)是新近合成的一类氧化物材料。与一般的氧化物不同,RBaCo_4O_7显示出一种独特的氧吸附与脱附特性。当在含氧气氛中升温时,RBaCo_4O_7会经历两个氧吸附和脱附过程。其中一个大约在200~450℃之间,另一个在660~1050℃之间,氧量的变化会引起样品约4%的质量变化。这一发现意味着RBaCo_4O_7材料有可能在气体分离、储氧、产氧等涉氧领域获得应用。XRD结果显示,低温时所吸附的氧离子并没有明显改变其晶体结构,而高温时所吸附的氧离子几乎完全破坏了RBaCo_4O_7结构,使其分解为其它相。在被吸附的氧释放后,所有样品又能恢复到原来的结构。RBaCo_4O_7的氧吸附性能与其晶格结构以及Co离子的可变价性密切相关。元素替代的研究表明,由于Zn离子的不可变价性,Zn部分替代Co抑制了RBaCo_4O_7的氧吸附性能;由于Fe离子具有和Co离子相似的变价能力,Fe部分替代Co对RBaCo_4O_7的氧吸附性能几乎没有影响。
     电输运性能的研究表明,RBaCo_4O_7样品的电阻率随温度的升高而减小,表现为半导体导电特性。塞贝克系数为正值,说明RBaCo_4O_7是p型半导体,空穴是主要载流子。RBaCo_4O_7样品的导电机制可以确定为小极化子跃迁导电。在含氧气氛中,氧吸附与脱附显著影响了RBaCo_4O_7的电输运性能。氧吸附增大了空穴浓度,导致电阻与塞贝克系数降低;氧脱附减小了空穴浓度,导致电阻率和塞贝克系数增大。Zn部分替代Co增大了YBaCo_(4-x)Zn_xO_7样品的电阻率但降低了塞贝克系数。由于Zn替代Co不会导致空穴浓度的下降,因此Zn替代样品的载流子迁移率应随Zn含量增加而降低。此外,Zn部分替代Co使得晶格参数增大,这就导致空穴跃迁所要克服的能量势垒随之增大,因此电导活化能随着Zn含量的增加而增加。功率因子的计算表明RBaCo_4O_7是性能较好的氧化物热电材料,其热电性能值得进一步研究。
     在较低温度下RBaCo_4O_7巨大的氧吸附与脱附能力使其具备了作为脱氧剂进行氮气纯化的条件。本文中,我们选取了YBaCo_4O_7作为脱氧剂材料进行了氮气纯化的性能研究。小批量的实验表明,在500℃脱氧后,1kg YBaCo_4O_7脱氧剂在300℃工作温度下,能够把160L纯度为98.6%的普氮转化为纯度大于99.9999%的高纯氮气。双层钙钛矿材料RBaCo_2O_(5+δ)具有较快的氧表面交换速率和较大的可变氧量,这意味着它同样可能是一种潜在的脱氧剂材料。实验表明,在600℃脱氧后,1kgYBaCo_2O_(5+δ)脱氧剂在300℃工作温度下,能够把300L纯度为98.1%的普氮转化为纯度大于99.9999%的高纯氮气。进一步的研究有可能把这两类氧化物开发成为新一代的无氢脱氧剂材料。
Nonstoichiometric oxides have been extensively studied due to their much unique properties. The existence of oxygen vacancies makes it possible that oxygen ions can be adsorbed into or desorbed from the surface of materials and diffuse in the bulk materials. Therefore, nonstoichiometric oxides have wide application in many fields such as gas separation membranes, solid state oxide fuel cells, and oxygen sensors.
     Previous studies have shown that double perovskite oxides RBaCo_2O_(5+δ) (R = rare earth element) have the high conductivity and fast oxygen diffusion ability, which means that they have potential application in the fields such as solid state oxide fuel cell and oxygen permeation membrane. In this paper, we selected three typical double perovskite oxides RBaCo_2O_(5+δ) (R = Pr, Gd, Y) and investigated their oxygen diffusion behaviors with thermogravimetric analysis method. Oxygen permeationflux J_(O2), oxygen adsorption and desorption rate constants k_a , k_d , and difference of oxygen vacancy in oxygen and nitrogen atmosphereΔδ/ V_(mol) for these sampleswere calculated from experimental data. Our results show that oxygen adsorption rate constants of RBaCo_2O_(5+δ) are larger than oxygen desorption rate constants. Compared with the cubic perovskite oxides, the oxygen adsorption/desorption rate constants of these double perovskite oxides are markedly increased, indicating fast oxygen exchange ability for gas-solid interface. Since the difference of oxygen vacancy in oxygen and nitrogen is smaller than the commonly used cubic perovskite materials, their oxygen permeation flux is only approximately equal to that of cubic perovskite materials. Whereas, the large oxygen adsorption/desorption rate constants of these double perovskite oxides suggest that they are potential catalytic coating materials and can be used as surface modified materials on other membranes surfaces to improve the oxygen permeability by improving the velocity of oxygen between solid and gas phases.
     Recently, a new class of oxide RBaCo_4O_7 (R = rare earth element) has been synthesized. RBaCo_4O_7 has interesting oxygen diffusion properties. When heated in oxygen flow, it experiences two oxygen adsorption and desorption processes. One is in the temperature range of 200~450℃, and the other is 660~1050℃. The amount of changeable oxygen accounts for about 4% of the weight of the sample. This discovery means that the kind of materials may be used in the fields related to oxygen such as gas separation, oxygen storage, and oxygen supply. XRD results show that the oxygen ions adsorbed at the lower temperature do not change the crystal structure significantly and the oxygen adsorbed at the higher temperature destroys the structure and RBaCo_4O_7 decompose into other phases. All samples can be recovered to their original structures after releasing the adsorbed oxygen. The special oxygen adsorption properties of RBaCo_4O_7 should related to its special crystal structure and the changeable valence of Co ions. Zn substituted for Co will prevent oxygen adsorption because of unchangeable valence of Zn ion. Co substituted by Fe has little effect on the oxygen adsorption processes because Fe ion has similar changeable valence to Co ion.
     The studies on the electronic transport properties of RBaCo_4O_7 samples show that electrical resistivity is reduced with the increase of temperature and shows a typical semiconducting behavior in the investigated temperature region. Seebeck coefficients of all samples are positive in the whole temperature range measured, indicating p-type semiconductors, i.e., holes are major carrier. The conduction mechanism of RBaCo_4O_7 may be determined as a small polaron hopping model. When measured in the oxygen-containing atmosphere, oxygen adsorption and desorption influences the electronic transport properties of RBaCo_4O_7 markedly. Oxygen adsorption increases hole concentration, which results in the decrease of resistivity and Seebeck coefficients. However, oxygen desorption decreases hole concentration and resistivity and Seebeck coefficients rise consequently. Zn partially substituted for Co increases resistivity of YBaCo_(4-X)Zn_XO_7, but Seebeck coefficient is reduced. Since Zn substituted for Co does not decrease hole concentration, so the carrier mobility should decrease with the increasing Zn concentration. Moreover, when Zn partially substituted for Co in the lattice, the cell parameters increase with the increasing Zn concentration and the distance of hopping also becomes larger, which increases the barrier height encountered by the hopping holes. The activation energy is, therefore, expected to increase with increasing Zn concentration. Power factors calculated from the data are large, indicating that RBaCo_4O_7 is potential oxide thermoelectric materials. Further study is needed to improve its thermoelectric performance.
     The large oxygen adsorption and desorption capacity at low temperature indicates that RBaCo_4O_7 is potential deoxidizer materials for nitrogen purification. In this paper, we selected YBaCo_4O_7 and investigated its performance as deoxidizer for nitrogen purification. Our results show that, after releasing oxygen at 500℃, 1kg YBaCo_4O_7 deoxidizer can transform about 160L nitrogen with purity of 98.6% to high purity nitrogen (purity >99.9999%) when work temperature is 300℃. Similarly, double perovskite oxides RBaCo_2O_(5+δ) are also potential deoxidizer materials because they possess fast surface oxygen exchange rate constant and large changeable oxygen content in the lattices. Experimental results show that, after releasing oxygen at 600℃, 1kg YBaCo_2O_(5+δ) deoxidizer can transform about 300L nitrogen with purity of 98.1% to high purity nitrogen (purity >99.9999%) when work temperature is 300℃. It is possible that the two kinds of oxides can be developed to new hydrogen-free deoxidizer. Of course, further study is necessary to achieve this aim.
引文
(1) J. D. Jorgensen, B. Dabrowski, S. Pei, D. R. Richards, D. G. Hinks. Structure of the interstitial oxygen defect in La_2NiO_(4+δ). Phys. Rev. B, 1989, 40: 2187-2199.
    (2) H. Fjellvag, O. H. Hansteen, B. C. Hauback, P. Fischer. Structural deformation and non-stoichiometry of La_4Co_3O_(4+δ). J. Mater. Chem., 2000, 10: 749-754.
    (3) B. C. Tofield, W. R. Scott. Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J. Solid State Chem., 1974, 10: 183-194.
    (4) M. Muroi, R. Street. Evolution of ferromagnetism in LaMnO_(3+δ). Aust. J. Phys., 1999, 52: 205-225.
    (5) H. Tagnchi, A. Sugita, M. Nagao, K. Tabata. Surface characterization of LaMnO_(3+δ)powder armealed in air. J. Solid State Chem., 1995, 119: 164-168.
    [6] J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L.J. Nowicki, et al. Structural properties of oxygen-deficient YBa_2Cu_3O_(7-δ). Phy. Rev. B, 1990, 41: 1863-1877.
    [7] M. O. Eatough, D. S. Ginley, B. Morosin, et al. Orthorhombic-tetragonal phase transition in high-temperature superconductor YBa_2Cu_3O_7. Appl. Phys. Lett., 1987, 51 (5): 367-368.
    [8] J. D. Jorgensen, M. A. Beno, D. G. Hinks, et al. Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa_2Cu_3O_(7-δ). Phys. Rev. B, 1987, 36 (7): 3608-16.
    [9] T. Sφrensen. Nonstoichiometric Oxides, Academic Press: New York, 1981 : p 441.
    [10] J. U. Brehm, M. Winterer, H. Hahn. Synthesis and local structure of doped nanocrystalline zinc oxides. J. Appl. Phys., 2006, 100:064311.
    [11] H. Dong, N. P. Shao, et al. Inverestigation on POM reaction in a new perovskite membrane reactor. Catal Today, 2001, 67: 3-13.
    [12] Sumio Kato, Daisuke Kikawa, Masataka Ogasawara, et al. Synthesis and oxygen permeability of the perovskite-type oxides in the LaSrFeMnO system.Solid State Ionics,2005,176:1377-1381.
    [13] H.J.M.Bouwmeester.Cramic membranes for methane conversion.Catal Today,2003,82:141-150.
    [14] P.V.Hendriksen,P.H.Larsen,M.Mogensens.Prospects and problems of dense oxygen permeable membranes.Catal Today,2000,56:283-295.
    [15] Y.Teraoka,H.M.Zhang,S.Furukawa,N.Yamazoe.Oxygen permeation through perovskite-type oxides.Chem.Lett.,1985,14(11) :1743-1746.
    [16] Y.Teraoka,T.Nobunaga,N.Yamazoe.Effect of cation substitution on the oxygen semipermeability of perovksite oxides.Chem.Lett.,1988,17(3) :503-506.
    [17] Y.Teraoka,T.Nobunaga,K.Okamoto,N.Miura,N.Yamazoe.Influence of constituent metal cations in substituted LaCoO_3 on mixed conductivity and oxygen permeability.Solid State Ionics,1991,48:207-212.
    [18] C.H.Chen,H.Kruidhof,H.J.M.Bouwmeester,A.J.Burggraaf.Ionic conductivity of perovskite LaCoO_3 measured by oxygen permeation technique.J.Appl.Electrochem.,1997,27(1) :71-75.
    [19] V.V.Kharton,F.M.Figueiredo,A.V.Kovalevsky,A.P.Viskup,E.N.Naumovich,A.A.Yaremchenko,I.A.Bashmakov,F.M.B.Marques.Processing,microstructure and properties of LaCoO_(3-δ)ceramics.J.Eur.Ceram.Soc,2001,21(13) :2301-2309.
    [20] L.M.van der Haar,M.W den Otter,M.Morskate,H.J.M.Bouwmeester,H.Verweij.Chemical diffusion and oxygen surface transfer of La_(1-x)Sr_xCoO_(3-δ)studied with electrical conductivity relaxation.J.Electrochem.Soc,2002,149(3) :J41-J46.
    [21] A.Mineshige,M.Inaba,T.Yao,Z.Ogumi.Crystal structure and metal-insulator transition of La_(1-x)Sr_xCoO_(3-δ).J.Solid State Chem.,1996,121(2) :423-429.
    [22] I.A.Leonidov,V.L.Kozhevnikov,M.V.Patrakeev,E.B.Mitberg,K.R.Poeppelmeier.High-temperature electrical conductivity of Sr_(0. 7) La_(0. 3) FeO_(3-δ),Solid State Ionics,2001,144(3-4) :361-369.
    [23] K.Suresh,T.S.Panchapagesan,K.C.Patil.Synthesis and properties of La_(1-x)Sr_xFeO_(3-δ),Solid State Ionics,1999,126(3-4) :299-305.
    [24] S.Li,W.Jin,P Huang,N.Xu,J.Shi,Y.S.Lin,M.Z.-C.Hu,E.A.Payzant. Comparison of oxygen permeability and stability of perovskite type La_(0. 2) A_(0. 8) Co_(0. 2) Fe_(0. 8) O_(3-δ)(A=Sr,Ba,Ca)membranes,Ind.Eng.Chem.Res.,1999,38(8) :2963-2972.
    [25] C.-Y Tsai,A.G Dixon,Y.H.Ma,W.R.Roser,M.R.Pascucci.Dense perovskite,La_(1-x)A'_xFe_(1-y)Co_yO_(3-δ)(A'=Ba,Sr,Ca)membranes synthesis,application,and characterization,J.Am.Ceram.Soc,1998,81(6) :1437-1444.
    [26] K.Huang,J.B.Goodenough.Oxygen permeation through cobalt-containing perovskites.Surface oxygen exchange vs.lattice oxygen diffusion,J Electrochem.Soc,2001,148(5) :E203-E214.
    [27] T.H.Lee,Y.L.Yang,A.J.Jacobson,B.Abeles,M.Zhou.Oxygen permeation in dense SrCo_(0. 8) Fe_(0. 2) O_(3-δ)membranes:Surface exchange kinetics versus bulk diffusion,Solid State Ionics,1997,100(1-2) :77-85.
    [28] E.C.Subbarao,H.S.Maiti.Solid electrolytes with oxygen ion conduction,Solid State Ionics,1984,11:317-338.
    [29] S.Dou,C.R.Masson,RD.Pacey.Mechanism of oxygen permeation through lime-stabilized zirconia,J.Electrochem.Soc,1985,132:1843-1849.
    [30] H.J.M.Bouwmeester,H.Kruidhof,A.J.Burggraaf,P.J.Gellings.Oxygen semipermeability of erbia-stabilized bismuth oxide,Solid State Ionics,1992,53-56(1) :460-468.
    [31] G.J.K.Acres.Recent advances in fuel cell technology and its applications,J.Power Sources,2001,100(1-2) :60-66.
    [32] M.Mogensen,K.V.Jensen,M.J.Jorgensen,S.Primdahl.Progress in understanding SOFC electrodes,Solid State Ionics,2002,150(1-2) :123-129.
    [33] T.Ishihara,H.Matsuda,Y.Takita.Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor.J.Am.Chem.Soc,1994,116:3801-3803.
    [34] K.R.kendall,C.Navas,J.K.Thomas,H.C.Z.Loye.Recent development in perovskite-based oxide ion conductor.Solid State Ionics,1995,82:215-223.
    [35] A.Endo,M.Ihara,H.Komiyama,K.Yamada.Cathodic reaction mechanism for dense Sr-doped lanthanum manganite electrodes.Solid State Ionics,1996,86-88:1191-1195.
    [36] V. Brichzin, J. Fleig, H. U. Habermeier, G. Cristiani, J. Maier. The geometry dependence of the polarization resistance of Sr-doped LaMnO_3 microelectrodes on yttria-stabilized zirconia. Solid State Ionics, 2002, 152-153: 499-507.
    [37] M. Feng, J. B. Goodenough, K. Q. Huang, C. Milliken. Fuel cells with doped lanthanum gallate electrolyte. J. Power Sources, 2000, 63: 47-51.
    [38] T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee. Stability at La_(0.6)Sr_(0.4)CoO_(3-δ)cathode/La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(2.8)electrolyte interface under current flow for solid oxide fuel cells. Solid State Ionics, 2000, 133: 143-152.
    [39] 何道清.传感器与传感器技术[M].北京:科学出版社,2003,p377-396.
    [40] 陈艾.敏感材料与传感器[M].北京:化学工业出版社,2004,p177-212.
    [41] 王雪文,张志勇.传感器原理及应用[M].北京:北京航空航天大学出版社,2003,p207-244.
    [42] T. Nakajima, H. Kageyama, M. Ichihara, K. Ohoyama, H. Yoshizawa, Y. Ueda. Anomalous octahedral distortion and multiple phase transitions in the metal-ordered manganite YBaMn_2O_6. J. Solid State Chem., 2004,177: 987-999.
    [43] A. J. Williams, J. P. Attfield, S. A. T. Redfern. High-temperature orbital, charge, and structural phase transitions in the cation-ordered manganites TbBaMn_2O_6 and YBaMn_2O_6. Phys. Rev. B, 2005, 72: 184426.
    [44] D. Akahoshi, Y. Okimoto, M. Kubota, R. Kumai, T. Arima, Y. Tomioka, Y. Tokura. Charge-orbital ordering near the multicritical point in A-site ordered perovskites SmBaMn_2O_6 and NdBaMn_2O_6. Phys. Rev. B, 2004, 70:064418.
    [45] J. Wang, W. Y. Zhang, D. Y. Xing. Role of Jahn-Teller effect in the charge ordered states of YBaM_2O_5(M=Co, Mn). Phys. Rev. B, 2002, 66: 052410.
    [46] R. Vidya, P. Ravindran, A. Kjekshus, H. Fjellvag. Spin, charge, and orbital ordering in the ferrimagnetic insulator YBaMn_2O_5. Phys. Rev. B, 2002, 65: 144422.
    [47] P. Karen, E. Suard, F. Fauth, P. M. Woodward. YBaMnCoO_5: neither valence mixed nor charge ordered. Solid State Sci., 2004, 6: 1195-1204.
    [48] J. Linden, P. Karen, A. Kjekshus, J. Miettinen, T. Pietari, M. Karppinen. Valence-state mixing and separation in SmBaFe_2O_(5+w). Phys. Rev. B, 1999, 60 (22): 15251-15260
    [49] P.Karen,P.M.Woodward,J.Linden,T.Vogt,A.Studer,P.Fischer.Verwey transition in mixed-valence TbBaFe_2O_5:Two attempts to order charges.Phys.Rev.B,2001,64:214405.
    [50] J.Nakamura,M.Karppinen,P.Karen,J.Linden,H.Yamauchi.Isovalent-substitution effect on the Verwey-type transition in the A-site-ordered double perovskite(Ba,Sr)RFe_2O_5. Phys.Rev.B,2004,70:144104.
    [51] J.Nakamura,J.Linden,M.Karppinen,H.Yamauchi.Magnetoresistance effect in the fluctuating-valence BaSmFe_2O_(5+w)system.Appl.Phys.Lett.,2000,77(11) :1683-1685.
    [52] J.Linden,P.Karen,H.Yamauchi,M.Karppinen.Valence mixing,separation and ordering in double-cell perovskite GdBaFe_2O_(5+w).J.Magn.Magn.Mater.,2004,272-276:e267-e268.
    [53] E.Suard,F.Fauth,V.Caignaert.Rhombohedral distortion in the new disordered LaBaCo_2O_6 perovskite.Physica B,2000,276-278:254-255.
    [54] T.Vogt,P.M.Woodward,P.Karen,B.A.Hunter,P.Henning,A.R.Moodenbaugh,Low to high spin-State transition induced by charge ordering in Aantiferromagnetic YBaCo_2O_5. Phys.Rev.Lett.,2000,84:2969-2972.
    [55] E.Suard,F.Fauth,V.Caignaert,I.Mirebeau,G Baldinozzi.Charge ordering in the layered Co-based perovskite HoBaCo_2O_5. Phys.Rev.B,2000,61:11871.
    [56] I.O.Troyanchuk,N.V.Kasper,D.D.Khalyavin,H.Szymczak,R.Symczak,M.Baran.Phase Transitions in the Gd_(0. 5) Ba_(0. 5) CoO_3 Perovskite.Phys.Rev.Lett.,1998,80:3380-3883.
    [57] Y.Moritomo,T.Akimoto,M.Takeo,A.Machida,E.Nishibori,M.Takata,M.Sakata,K.Ohoyama,A.Nakamura.Metal-insulator transition induced by a spin-state transition in TbBaCo2O_(5+δ)(δ=0. 5) .Phys.Rev.B,2000,61:13325.
    [58] A.A.Taskin,A.N.Lavrov,Yoichi Ando.Origin of the large thermoelectric power in oxygen-variable RBaCo_2O_(5+x)(R=Gd,Nd).Phys.Rev.B,2006,73:121101.
    [59] C.Martin,A.Maignan,D.Pelloquin,N.Nguyen,B.Raveau.Magnetoresistance in the oxygen deficient LnBaCo_2O_(5. 4) (Ln=Eu,Gd)phases.Appl.Phys.Lett.,1997,71:1421-1423.
    [60] H.Wu.Spin state and phase competition in TbBaCo_2O_(5. 5) and the lanthanide series LBaCo_2O_(5+δ)(0≤δ≤1) .Phys.Rev.B,2001,64:092413.
    [61] M.Itoh,Y.Nawata,T.Kiyama,D.Akahoshi,N.Fujiwara,Y.Ueda.Local magnetic properties and spin state of YBaCo_2O_(5. 5) :~(59) Co NMR study.Physica B,2003,329-333:751-752.
    [62] C.Frontera,J.L.Garcia-Munoz,A.E.Carrillo,A.Caneiro,C.Ritter,D.M.y Marero.Magnetism and vacancy ordering in PrBaCo_2O_(5+δ)(δ≥0. 50) .J.Appl.Phys.,2005,97:10C106.
    [63] Y.P.Chernenkov,V.P.Plakhty,V.I.Fedorov,S.N.Barilo,S.V.Shiryaev,G.L.Bychkov.X-ray diffraction study of superstructure in GdBaCo_2O_(5. 5) .Phys.Rev.B,2005,71:184105.
    [64] D.Akahoshi,Y.Ueda.Oxygen Nonstoichiometry,Structures,and Physical Properties of YBaCo_2O_(5+x)(0. 00≤x≤0. 52) .J.Solid State Chem.,2001,156:355-363.
    [65] A.Maignan,C.Martin,D.Pelloquin,N.Nguyen,B.Raveau.Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo_2O_(5+δ),Closely Related to the"112" Structure.J.Solid State Chem.,1999,142:247-260.
    [66] J.C.Burley,J.F.Mitchell,S.Short,D.Miller,Y.Tang.Structural and Magnetic Chemistry of NdBaCo_2O_(5+δ).J.Solid State Chem.2003,170:339-350.
    [67] A.A.Taskin,A.N.Lavrov,Y.Ando.Transport and magnetic properties of GdBaCo_2O_(5+x)single crystals:A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping.Phys.Rev.B,2005,71:134414.
    [68] C.Frontera,A.Caneiro,A.E.Carrillo,J.Oro-Sole,J.L.Garcia-Munoz.Tailoring Oxygen Content on PrBaCo_2O_(5+δ)Layered Cobaltites.Chem.Mater.,2005,17:5439-5445.
    [69] G.Kim,S.Wang,A.J.Jacobson,Z.Yuan,W.Donner,C.L.Chen,L.Reimus,P.Brodersen,C.A.Mims.Oxygen exchange kinetics of epitaxial PrBaCo2O_(5+δ)thin films.Appl.Phys.Lett.,2006,88:024103.
    [70] A.A.Taskin,A.N.Lavrov,Yoichi Ando.Achieving fast oxygen diffusion in perovskites by cation ordering.Appl.Phys.Lett,2005,86:091910.
    [71] M.Valldor,M.Andersson.The structure of the new compound YBaCo_4O_7 with a magnetic feature.Solid State Sci.,2002,4:923-931.
    [72] M.Valldor.Syntheses and structures of compounds with YBaCo_4O_7-type structure.Solid State Sci.,2004,6:251-266.
    [73] H.Muller-Buschbaum,C.Rabbow.On a barium rare earth aluminate zincate:BaLuAlZn_3O_7 with a note on Ba_2Er_2Zn_8O_13. Z.Naturforsch B,1996,51:343-347.
    [74] O.Sfreddo,H.Muller-Buschbaum.Partial tetrahedral oxygen coordination of indium in BaIn_2Zn_3O_7,A consideration of the Ba_2Ln_2Zn_8O_13/BaLnAlZn_3O_7 type.Z.Naturforsch B,1998,53:517-520.
    [75] H.S.Hao,J.H.Cui,C.Q.Chen,L.J.Pan,J.Hu,X.Hu.Oxygen desorption properties of YBaCo_4O_7-type compounds.Solid State Ionics,2006,177:631-637.
    [76] H.S.Hao,C.Q.Chen,L.J.Pan,J.X.Gao,X.Hu.Electronic transport and thermoelectric properties of RBaCo_4O_7(R = Dy,Ho,Y,Er).Physica B,2007,387:98-102.
    [77] M.Valldor.Disordered magnetism in the homologue series YBaCo_(4-x)Zn_xO_7(x=0,1,2,3) .J.Phys.:Condens.Matter.,2004,16:9209-9225.
    [78] M.Valldor.Magnetic properties of compounds in the system CaBaCo_(4-x-y)Zn_xAl_yO_7(x=0,1,2,y=0,1) .J.Phys.Chem.Solids,2005,66:1025-1033.
    [79] M.Valldor.Magnetic investigations on six compounds with the general formula(Ca,Y)Ba(Co,Fe,Al,Zn)_4O_7 and the structures of YBaCoFeZn_2O_7 and YBaCo_2FeZnO_7. Solid State Sci.,2005,7:1163-1172.
    [80] E.V.Tsipis,V.V.Kharton,J.R.Frade,P.Nunez.High-temperature transport and electrochemical properties of YBaCo_O_(7+δ).J.Solid State Electrochem.,2005,9:547-557.
    [81] E.V.Tsipis,D.D.Khalyavin,S.V.Shiryaev,K.S.Redkina,P.Nunez.Electrical and magnetic properties of YBaCo4O_(7+δ).Mater.Chem.Phys.,2005,92:33-38.
    [82] A.Huq,J.F.Mitchell,H.Zheng,L.C.Chapon,P.G.Radaelli,K.S.Knight,P.W.Stephens.Structural and magnetic properties of the Kagome antiferromagnet YbBaCo_4O_7. J.Solid State Chem.,2006,179:1136-1145.
    [83] N.Nakayama,T.Mizota,Y.Ueda,A.N.Sokolov,A.N.Vasiliev.Structural and magnetic phase transitions in mixed-valence cobalt oxides REBaCo_4O_7(RE=Lu,Yb,Tm).J.Magn.Magn.Mater.,2006,300:98-100.
    [84] V.Caignaert,A.Maignan,V.Pralong,S.Hebert,D.Pelloquin.A cobaltite with a room temperature electrical and magnetic transition:YBaCo_4O_7. Solid State Sci.,2006,8:1160-1163.
    [85] M.Karppinen,H.Yamauchi,S.Otani,T.Fujita,T.Motohashi,Y.-H.Huang,M.Valkeapaa,H.Fjellvag.Oxygen nonstoichiometry in YBaCo_4O_(7+δ):large low-temperature oxygen absorption/desorption capability.Chem.Mater.,2006,18:490-494.
    [1] A. A. Taskin, A. N. Lavrov, Yoichi Ando. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett., 2005, 86: 091910.
    [2] M. Sahibzada, W. Morton, A. Hartley, et al. A simple method for the determination of surface exchange and ionic transport kineties in oxides. Solid State Ionics, 2000, 136-137: 991-996.
    [3] K. Conder. Oxygen diffusion in the superconductors of the YBCO family: isotope exchange measurements and models. Mater. Sci. Eng. R, 2001, 32: 41-102.
    [4] 宋洪章,杨德林,陈昌平,胡捷,等.热重法研究BaRE(Cu_(0.5)Fe_(0.5))_2O_(5+δ)的氧含量变化及其透氧性能[J].稀土,2005,26(4):49-52.
    [5] Z. L. Zhu, D. L. Yang, Y. Q. Guo, Xing Hu, et al. Oxygen desorption activation energy of YBa_2Cu_3O_(7-x)obtained by thermo-gravimetry with different heating rates. Physica C, 2002, 383 (1-2): 169-174.
    [6] Y. Zeng, Y. S. Lin. A transient TGA study on oxygen permeation properties of perovskite-type ceramic membrane. Solid State Ionics, 1998, 110: 209-221.
    [7] 陶顺衍,张华,陆天长,杨南如.钙钛矿型混合导电体透氧性能[J].南京化工大学学报,1998,20(2):39-43.
    [8] 李传峰,钟顺和.无机膜的气体传递机理和模型[J].膜科学与技术,2000,20(3):34-36.
    [9] B. C. H. Steele. Interfacial reactions associated with ceramic ion transport membrane. Solid State Ionics, 1995, 75: 157-165.
    [10] Y. S. Lin. Oxygen permeation through thin mixed conducting solid oxide membranes. AIChE J, 1994, 40 (5): 786-798.
    [11] B. A. van Hassel, T. Kawada, N. Sakai, et al. Oxygen permeation modeling of La_(1-y)Ca_yCrO_(3-δ). Solid State Ionics, 1993, 66: 44-47.
    [12] Jie Hu, Xing Hu, Haoshan Hao, et al., A transient thermogravimetric study on the oxygen permeation at high temperature of the superconducting material YBa_2Cu_3O_(7-δ). Solid State Ionics, 2005, 176: 487-494.
    [13] 李凤生.超细粉体技术[M].北京,国防工业出版社,2000,p337-338.
    [14] A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo_2O_(5+δ), Closely Related to the "112" Structure. J. Solid State Chem., 1999, 142: 247-260.
    [15] Y. Teraoka, Y. Honbe, J. Ishii, et al. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes. Solid State Ionics, 2002, 152-153: 681-687.
    [16] J. Hu, H.S. Hao, C. P. Chen, D. L. Yang, X. Hu. Thermogravimetric study on perovskite-like oxygen permeation ceramic membranes. J. Membr. Sci., 2006, 280: 809-814.
    [1] M. Valldor, M. Andersson. The structure of the new compound YBaCo_4O_7 with a magnetic feature. Solid State Sci., 2002, 4: 923-931.
    [2] M. Valldor. Syntheses and structures of compounds with YBaCo_4O_7-type structure. Solid State Sci., 2004, 6: 251-266.
    [3] M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y.-H. Huang, M. Valkeapaa, H. Fjellvag. Oxygen nonstoichiometry in YBaCo_4O_(7+δ): large low-temperature oxygen absorption/desorption capability. Chem. Mater., 2006, 18: 490-494.
    [4] W. M. Chen, W. Hong, J. F. Geng, X. S. Wu, W. Ji, L.Y. Li, L. Qui, X. Jin. Iodometric titration for determining the oxygen content of samples doped with Fe and Co. Physica C, 1996, 270: 349-353.
    [5] Joseph E. Sunstrom Ⅳ, K. V. Ramanujachary, Martha Greenblatt. The Synthesis and Properties of the Chemically Oxidized Perovskite, La_(1-x)Sr_xCoO_(3-δ)(0.5≤x≤0.9). J. Solid State Chem., 1998, 139: 388-397.
    [6] 郑翠红.YBa_2Cu_(3-x)Co_xO_(6+δ)的氧含量测定与分析[J].安徽工业大学学报,2004,21(2):103-105.
    [7] Delin Yang, Hongwei Sun, Hongxia Lu, Yiqun Guo, Xinjian Li, Xing Hu. Experimental study on the oxidation of MgB_2 in air at high temperature. Supercond. Sci. Technol., 2003, 16:576-581
    [8] Zhili Zhu, Delin Yang, Yiqun Guo, Qingqing Liu, Zhishuang Gao, Xing Hu. Oxygen desorption activation energy of YBa_2Cu_3O_(7-x)obtained by thermogravimetry with different heating rates. Physica C, 2002, 383: 169-174.
    [9] K. N. Tu, N. C. Yeh, S. I. Park, C. C. Tsuei. Diffusion of oxygen in superconducting YBa_2Cu_3O_(7-δ)ceramic oxides. Phys. Rev. Lett., 1989, 39 (1): 304~314.
    [10] R. D. Shannon. Ionic radii of the elements. Acta Crystallogr. A, 1976, 32: 751.
    [1] 高敏,张景韶,D.M.Rowe编著.温差电转换及其应用[M].北京:兵器工业出版社,1996,p276-317.
    [2] G. Mahan, B. Sales, J. Sharp. Thermoelectric materials: new approaches to an old problem. Physics Today, 1997, 50 (1): 42-47.
    [3] F. J. DiSalvo. Thermoelectric Cooling and Power Generation. Science, 1999, 285: 703-706.
    [4] W.M.Yin,A.Amith.Bi-Te Alloys for Magneto-Thermoelectric and Thermomagnetic Cooling.Solid State Electronics,1972,15(10) :1141-1165.
    [5] F.A.Shunk.Constituents of Binary Alloys.McGraw-Hill,New York,1969.
    [6] C.M.Bahandar,D.M.Rowe.Silicon-Germanium Alloys As High Temperature Thermoelectric Materials.Contemporary Physics,1980,21(3) :219-242.
    [7] J.Seo,K.Park,D.Lee,C.Lee.Thermoelectric properties of hot-pressed n-type Bi_2Te_(2. 85) Se_(0. 15) compounds doped with SbI_3. Mater.Sci.Eng.B,1997,49(3) :247-250.
    [8] J.Seo,K.Park,D.Lee,C.Lee.Microstructure and thermoelectric properties of p-type Bi_(0. 5) Sb_(0. 5) Te_(0. 5) compounds fabricated by hot pressing and hot extrusion.Script.Mater.,1998,38(3) :477-484.
    [9] Martin-Lopez R,Lenoir B,Dauscher A,et al.Preparation of n-type Bi-Sb-Te thermoelectric material by mechanical alloying.Solid State Commun.,1998,108(5) :285-288.
    [10] J.Seo,D.Cho,K.Park,C.Lee.Fabrication and thermoelectric properties of p-type Bi_(0. 5) Sb_(1. 5) Te_3 compounds by ingot extrusion.Mater.Res.Bull.,2000,35(13) :2157-2163.
    [11] G.A.Slack:In CRC Handbook of Thermoelectrics,Ed.By D.M.Rowe,CRC Press,Boca Raton,1995,p407.
    [12] D.G.Cahill,S.K.Watson,R.O.Pohl.Lower limit to the thermal conductivity of disordered crystals.Phys.Rev.B,1992,46:6131-6140.
    [13] B.C.Sales,D.Mandrus,B.C.Chakoumakos,V.Keppens,J.R.Thompson.Filled skutterudite antimonyides:electron crystals and phonon Glasses.Phy.Rev.B,1997,56(23) :15081-15089.
    [14] G.S.Nolas,J.L.Cohn,G.A.Slack.Effect of partial void filling on the lattice thermal conductivity of skudderudites.Phys.Rev.B,1998,58:164-170.
    [15] N.P.Blake,S.Latturner,J.D.Bryan,G.D.Stucky,H.Metiu.Band structure and thermoelectric properties of the clatrates Ba-8Ga_(16) Ge_(30) ,Sr-8Ga_(16) Ge_(30) ,Ba_8Ga_(16) Si_(30) ,and Ba_8In_(16) Sn_(30) .J-Chem.Phys.,2001,115(17) :8060-8073.
    [16] M.A.Avila,K.Suekuni,K.Umeo,H.Fukuoka,S.Yamanaka,T.Takabatake. Glasslike versus crystalline thermal conductivity in carrier-tuned Ba_8Ga_(16)X_(30)clathrates (X=Ge, Sn). Phys. Rev. B, 2006, 74: 125109.
    [17] H. Hohl, A. P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher. Efficient dopants for ZrNiSn-based thermoelectric materials. J. Phys.: Condens. Matter.,. 1999, 11: 1697-1709.
    [18] C. Uher, J. Yang, S. Hu, D. T. Morelli, G. P. Meisner. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B, 1999, 59: 8615-8612.
    [19] I. Terasaki, Y. Sasago K. Uchinokura. Large thermoelectric power in NaCo_2O_4 single crystals. Phys. Rev. B, 1997, 56 (20): R12685-12687.
    [20] F. Rivadulla, J. S. Zhou, J. B. Goodenough. Chemical, structure, and transport properties of Na_(1-x)CoO_2. Phys. Rev. B, 2003, 68: 075108.
    [21] S. Li, R. Funahashi, I. Matsubara, et al. High temperature thermoelectric properties of oxide Ca_9Co_(12)O_(28). J. Mater. Chem., 1999, 9: 1659-1660.
    [22] G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou. Thermoelectric properties of Bi-and Na-substituted Ca_3Co_4O_9 system. Appl. Phys. Lett. 2002, 80 (20): 3760-3762.
    [23] 刘恩科,朱秉升,罗晋升.半导体物理学[M],国防工业出版社,北京,1994,第4版,p289-293.
    [24] N. F. Mort, H. Jones. The theory of the properties of metals and alloys. Dove, New York, 1958, p310.
    [25] A. Poddar, S. Das, B. Chattopadhyay. Effect of alkaline-earth and transition metals on the electrical transport of double perovskites. J. Appl. Phys., 2004, 95 (11): 6261-6267.
    [26] A. Banerjee, S. Pal, S. Bhattacharya, B. K. Chaudhuri, H. D. Yang. Particle size and magnetic field dependent resistivity and thermoelectric power of La_(0.5)Pb_(0.5)MnO_3 above and below metal-insulator transition. J. Appl. Phys., 2002, 91 (8): 5125-5134.
    [27] J. Androulakis, P. Migiakis, J. Giapintzakis. La_(0.95)Sr_(0.05)CoO_3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett., 2004, 84 (7): 1099-1101.
    [28] R. Ang, Y.P. Sun, Y.Q. Ma, B.C. Zhao, X.B. Zhu, W.H. Song. Diamagnetism, transport, magnetothermoelectric power, and magnetothermal conductivity in electron-doped CaMn_(1-x)V_xO_3 manganites. J. Appl. Phys., 2006, 100: 063902.
    [29] Woo-Hwan Jung. Non-adiabatic small polaron hopping conduction in Gd_(1/3)Sr_(2/3)FeO_3. Mater. Lett., 2002, 57: 697-702.
    [30] P. Mandal, B. Ghosh. Transport, magnetic, and structural properties of La_(1-x)M_xMnO_3(M=Ba, Sr, Ca) for 0≤x≤0.20. Phys. Rev. B, 2003, 68: 014422.
    [31] N. F. Mort, E. A. Davis. Electronic Processes in Noncrystalline Materials. Clarendon, Oxford, 1979.
    [32] C. Wood, D. Emin. Conduction mechanism in boron carbide. Phys. Rev. B, 1984, 29: 4582-4587.
    [33] R. R. Heikes, in: R. R. Heikes, R. W. Ure (Eds.). Thermoelectricity. Interscience, New York, 1961, p81.
    [34] Woo-Hwan Jung. Transport mechanisms in La_(0.7)Sr_(0.3)FeO_3: Evidence for small polaron formation. Physica B, 2001, 299: 120-123.
    [35] M. Matsukawa, M. Chiba, E. Kikuchi, R. Suryanarayanan, M. Apostu, S. Nimori, K. Sugimoto, N. Kobayashi. Effect of suppression of local distortion on the magnetic, electrical, and thermal transport properties of the Cr-substituted bilayer manganite LaSr_2Mn_2O_7. Phys. Rev. B, 2005, 72: 224422.
    [36] R. Ang, W. J. Lu, R. L. Zhang, B. C. Zhao, X.B. Zhu, W. H. Song, Y. P. Sun. Effects of Co doping in bilayered manganite LaSr_2Mn_2O_7: resistivity, thermoelectric power, and thermal conductivity. Phys. Rev. B, 2005, 72: 184417.
    [37] 田莳.材料物理性能[M].北京航空航天大学出版社.北京,2004,p272.
    [38] N. Nakayama, T. Mizota, Y. Ueda, A. N. Sokolov, A. N. Vasiliev. Structural and magnetic phase transitions in mixed-valence cobalt oxides REBaCo_4O_7(RE=Lu, Yb, Tm). J. Magn. Magn. Mater., 2006, 300: 98-100.
    [39] A. A. Taskin, A. N. Lavrov, Y. Ando. Transport and magnetic properties of GdBaCo_2O_(5+x)single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping. Phys. Rev. B, 2005, 71: 134414.
    [40] S. Streule, A. Podlesnyak, D. Sheptyakov, E. Pomjakushina, M. Stingaciu, K. Conder, M. Medarde, M. V. Patrakeev, I. A. Leonidov, V. L. Kozhevnikov, J. Mesot. High-temperature order-disorder transition and polaronic conductivity in PrBaCo_2O_(5.48). Phys. Rev. B, 2006, 73: 094203.
    [41] M. Valldor, M. Andersson. The structure of the new compound YBaCo_4O_7 with a magnetic feature. Solid State Sci., 2002, 4: 923-931.
    [42] K. Uemura, I. Nishida. Thermoelectric semiconductors and their application. Nikkan-Kogyo Shinbun Press, Tokyo, Japan, 1998.
    [43] S. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, S. Sodeoka. Synthesis and thermoelectric properties of the new oxide ceramics Ca_(3-x)Sr_xCo_4O_(9+δ)(x=0.0-1.0). Ceram. Intern., 2001, 27: 321-324.
    [44] G. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Zhou. Thermoelectric properties of the Bi-and Na-substituted Ca_3Co_4O_9 system. Appl. Phys. Lett., 2002, 80: 3760-3762.
    [45] Q. Yao, D. L. Wang, L. D. Chen, X. Shi, M. Zhou. Effects of partial substitution of transition metals for cobalt on the high-temperature thermoelectric properties of Ca_3Co_4O_(9+δ). J. Appl. Phys., 2005, 97: 103905.
    [46] M. Karppinen, H. Yamauchi, S. Otani, T. Fujita, T. Motohashi, Y.-H. Huang, M. Valkeapaa, H. Fjellvag. Oxygen nonstoichiometry in YBaCo_4O_(7+δ) large low-temperature oxygen absorption/desorption capability. Chem. Mater., 2006, 18: 490-494.
    [47] S. Nishiyama, D. Sakaguchi, T. Hattori. Electrical conductivity and thermoelectricity of La_2NiO_(4+δ)and La_2(Ni, Co)O_(4+δ). Solid State Commun., 1995, 94: 279-282.
    [48] R. Simon. Thermoelectric Figure of Merit of Two-Band Semiconductors. J. Appl. Phys., 1962, 33(5): 1830-1841.
    [1] 朱银在.氮气纯化工艺技术应用进展[J].低温与特气,2006,24(1):9-14.
    [2] 冯续,黄琼.国内外脱氧剂概述[J].化学工业与工程技术2005,26(6):1-5.
    [3] 刘必武.0603型脱氧催化剂的研制[J].南化科技,1986,3:59-62.
    [4] 徐贤伦,刘淑文,马军,等.高效脱氧除氢催化剂的研制和应用[J].工厂动力,1997,4:37-39.
    [5] 于建国,宋兴福,刘够生,等.高效非贵金属氧化钼脱氧催化剂的研制[J].精细与专用化学品,2001,13:13-14.
    [6] 宋兴福,万江,汪瑾,等.Co-Mo/γ-Al_2O_3非贵金属高效脱氧催化剂的研究[J].工业催化,2004,8:46-49.
    [7] 杨继涛.石油加工[J].石油学报,1990,4:6-8.
    [8] 张俊香,李景芝,梁艳辉,等.一种钯/氧化锰脱氧剂[P].中国专利:1070128A.
    [9] 任杰,李永红,孙予罕.高浓度一氧化碳气体脱氧催化剂的研究[J].化工催化剂及甲醇技术,2005,5:56-57.
    [10] 吕顺风,周维东,秦燕璜,等.Pd/Al_2O_3催化剂在合成气脱氧过程中的反应性能[J].石油化工,2003,32:165-166.
    [11] 杨德林,胡行,等.钇钡铜氧在气体纯化和空分方面应用初探[J].稀土,2002,23(3):11-13.
    [12] 高之爽,郭郑元,莫炯,等.YBa_2Cu_3O_(7-x)的空分纯化机理与应用[J].低温与特气,2006,24(3):31-35.
    [13] 高之爽,郭郑元,刘大军,等.YBCO的空分纯化机理与应用[J].低温与超导,2003,31(3):49-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700