用户名: 密码: 验证码:
非晶GaN薄膜的制备及性能和碳纳米管的LB排布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分两个部分:第一部分对非晶氮化镓(a-GaN)薄膜的制备与光学性能进行了研究;第二部分探索了采用Langmuir-Blodgett(LB)技术对单壁碳纳米管的排布和机理。
     近年来,以GaN为代表的第三代半导体材料由于其独特的物理特性和在光电应用领域的潜力成为科学研究的热点和前沿。本文研究了a-GaN材料的制备方法及其光学性能,具有重要的理论价值与现实意义。获得了以下几方面研究结果。
     采用直流反应溅射方法在不同的Ar分压、不同的基片温度下制备了a-GaN薄膜,并进行了不同气氛和不同温度下的退火处理。
     利用多种结构与性能分析手段对薄膜的结构与光学性能进行了表征,表明GaN薄膜为非晶结构,薄膜中的主要化学键为Ga-N键。光致发光谱中360 nm处的发光峰来自a-GaN的带.带跃迁,在可见光区没有发光峰,表明a-GaN的带隙态密度很低。
     由UV-Vis谱得到了薄膜的吸收光谱、光学带隙、折射系数和消光系数。采用基于量子微扰理论的方程对于Urbach带尾进行拟合,得到与实验相符的拟合结果,拟合参数数值表明a-GaN具有宽的带隙、低的折射率和大的Urbach带尾。用椭偏光谱仪直接测量了薄膜的折射率,表明薄膜为非晶结构。
     研究了Ar对a-GaN薄膜性质的影响。结果表明:Ar分量对薄膜的沉积速率具有较大影响;薄膜在可见光区的透过率、光学带隙都随Ar分量的增加而减小,表明薄膜中存在未成键金属性Ga;吸收系数在低能范围的值较小,表明a-GaN在禁带的态密度很低;描述吸收跃迁宽度的特征能量参数数值表明a-GaN的带尾比单晶GaN更宽。
     研究了基片温度对薄膜性质的影响,结果表明:基片温度较高的薄膜形态为纳米GaN颗粒镶嵌在非晶GaN薄膜中,结晶性更好;随基片温度升高,薄膜的光学带隙明显变小,且基片温度较低时禁带中缺陷态较多。
     研究了不同气氛下、不同温度下的退火处理对薄膜光学性质的影响。随着退火温度的升高,在O_2气氛下退火后光学带隙逐渐变小,且吸收边变陡峭。而NH_3、N_2退火对薄膜的光学性质影响较小。
     碳纳米管作为一维纳米材料以其优异的性质在光电器件领域具有巨大的应用潜力。然而,通常方法制备的碳纳米管具有杂质,且无序排列,如何实现其纯化和大范围排列以适应未来光电器件的大规模集成化要求,是亟待解决的问题。本文正是针对这一问题,对单壁碳纳米管进行了提纯、功能化,并利用LB技术的液面排布转移法实现了碳纳米管沿着轴向大面积定向排列。得到了如下结论。
     对电弧放电法制备的单壁碳纳米管纯化工艺进行了探索。表面活性剂十二烷基硫酸钠可有效剥离吸附在碳纳米管上的杂质。稀硝酸中温度较低的缓慢反应能减少对碳纳米管的腐蚀破坏。研究了高温氧化对于单壁碳纳米管的纯化作用。采用改进的纯化工艺获得的单壁碳纳米管管壁光滑,断管碎管少,结构完美,对称性好,纯度好。
     对混酸(浓硫酸与浓硝酸)剪切单壁碳纳米管的研究表明:随着反应时间的增加,碳纳米管的长度减小;且反应时间越长,碳纳米管受到的腐蚀越大。
     经酰氯化和直接加热反应两种方法,在单壁碳纳米管表面分别嫁接了十八烷基胺,获得了溶于有机溶剂的单壁碳纳米管。对嫁接机理进行了讨论。
     采用LB工艺,用压缩-转移法在大面积的基片上制备了取向一致的碳纳米管的单层膜和多层膜。首次建立了单壁碳纳米管单层膜在亚相水面上受压运动的力学模型,对有序排列的机理进行了初步探索。对成膜的影响因素,包括温度、膜压、压缩速度、接触角、碳纳米管的长度等进行了研究和机理分析。通过多次转移获得层数可控、沉积质量良好的单壁碳纳米管多层膜。紫外-可见吸收谱表明随着层数的增加,薄膜对紫外光的吸收逐渐增强,且700 nm处的特征谱对应半导体型碳纳米管的带间跃迁。对于垂直于电极的排列,由于碳纳米管与金属电极接触产生的Schottky势垒,I-V曲线呈现非线性特征,且随着膜压的提高,电流增大。当单壁碳纳米管平行于电极排列时,两极间的电流显著减小。
This dissertation includes two parts: the first part is the research on preparation andoptical properties of amorphous GaN (a-GaN) films; and the second part is the alignment ofsingle-walled carbon nanotubes (SWNTs) by Langmuir-Blogdett (LB) technique and themechanism discussion.
     Recently, as a third-generation semiconductor material, gallium nitride (GaN) has beenconsidered to be the most promising optoelectronic material for many applications. Thisstudy is on preparation and optical properties of amorphous GaN (a-GaN) thin films.
     In this dissertation, the GaN films are prepared under different Ar pressures anddifferent substrate temperatures by DC sputtering method.
     The films were characterized by structural, optical and electronic analysis methods.The results show that the structure of the films is amorphous, and Ga-N bond is dominating.The 360 nm peak in photoluminance spectra is from band-to-band transition. No peaks inthe visible region indicate low density of gap states.
     UV-Vis spectra are recorded to obtain the absorption spectra, band gap, and refractiveindex. Fitting the Urbach tails by equations based of quantum time-dependent perturbationtheory, the results are quite consistent with the experimental data, which indicate that thea-GaN films have wide band gap, low refractive index and wide Urbach tail. The refractiveindexes are also examined by Spectroscopic Ellipsometry (SE), indicate that the films areamorphous.
     The influence of Ar flow ratio in the sputtering gas on the properties of a-GaN isstudied. The Ar flow ratio has a big influence on the deposition speed. The transmissionratio and optical gap are larger at low Ar flow ratio, indicating the presence of non-bondedmetallic Ga. The absorption coefficient is low at low energy region, which means lowdensity of gap states. The value of the fitting characteristic parameters indicates that theband tail is wider than the one of crystalline GaN.
     The influence of substrate temperatures on the properties of a-GaN is studied. Theresult shows: the higher temperature results in nanoparticles embedded in the amorphousfilm; at higher temperature the crystalline structure is improved, the band gap reduces obviously and less defect states exist.
     The influence of annealing at different temperatures and different gases on theproperties of a-GaN is studied. As the temperature of annealing in Oxygen increases, theband gap decreases, and the absorption edge turns steep. The annealing in NH_3 or N_2 hasless influence on the optical properties.
     As one-dimensional nano-material, carbon nanotubes (CNTs) have wide applicationpotential because of their extraordinary properties. However, the CNTs are absorbed byimpurities and randomly distributed after being prepared by ordinary methods. How topurify and arrange them in order by large scale is to be solved. In this dissertation, we purify,functionalize, and align the single-walled carbon nanotubes (SWNTs) by Langmuir-Blodgett (LB) technique using compression-transfer method. The conclusions are asfollows.
     A simple and effective purification for SWNTs synthesized by arc-discharge has beendemonstrated. The sodium dodecyl sulfate (SDS) could separate the impurities absorbed onthe SWNTs. The lower concentration nitric acid reacts with SWNTs slowly at lowertemperatures, which could benefit the purification because of less erosion. The hightemperature oxidation of SWNTs in air is studied. Pure SWNTs with smooth walls, lesserosion, perfect structure and good symmetry are obtained.
     By oxidizing with H_2SO_4 and HNO_3, the SWNTs are cut and introduced to carboxylicgroups. Mix acid treatment shows that as the react time increases, the damages will enhanceand the SWNTs are cut into shorter tubes.
     The amphiphilic octadecylamine (ODA) is attached by two different methods: one isby ways of reacting with thionyl chloride (SOCl_2); the other is heating directly. TheSWNTs are dissolved in organic solvent. The mechanics are discussed.
     Using LB technique, the aligned SWNT films are fabricated by compression-transfermethod. A mechanics model is constructed to demonstrate the motion of single SWNT onsubphase for the first time. The influence factors, such as temperatures, surface pressure,compression speed, contact angle and the aspect ratio are discussed. Using layer-by-layermethod, multilayers of SWNTs, which are controllable and have good deposition rate areobtained. UV-Vis spectra indicate that the absorption increases as the layer numberincreases, and the 700 nm characteristics are from the band-to-band transition. For theSWNTs aligned perpendicular to the electrodes, the I-V curves are nonlinear, because of the Schottky barrier introduced by the contact of SWNTs and electrodes. As the surfacepressure increases, the current increases. While the SWNTs aligned parallel to theelectrodes, the current decreases obviously.
引文
[1] Akasakii, Amano H, Sota S, Jpn. J. Appl. Phys. 34 (1995) L1517-L1519
    [2] H. Kim, V. Tilak, B M. Green, Phys. Stat. Sol. 188 (2001) 203
    [3] S. Nakamura, M. Senoh, N. Iwase, Jpn. J. Appl. Phys. 34 (1995) L797-L799
    [4] J K. Sheu, C J. Kao, M L. Lee, J. of Electron. Mater. 32 (2003) 400
    [5] 何宇亮,陈光华,张仿清,非晶态半导体物理学,高等教育出版社(1989)北京
    [6] W. C. Johnson, J. B. Parsons, M. C. Crew, J. Phys. Chem. 36 (1932) 2651
    [7] R. Juza, J. Hahn, Allgem. Chem. 239 (1938) 282
    [8] A. Georgakilasa, K. Amimera, P. Tzanetakisa, et. al, J. Cryst. Growth. 227 (2001)410-414
    [9] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 15 (1969) 327
    [10] T. D. Moustakas, R. J. Molnar, T. Lei, J. Mat. Res. Soc. Proc. 242 (1992) 427
    [11] J D. Mackenzie, C R. Abemathy, G T. Muhr, et. al., J. Cryst. Growth. 164 (1996)143-148
    [12] H. Amano, M. Kitoh, K. Hiramatsu, I. Akasaki, Gallium arsenide and related compounds, 1990)
    [13] S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64 (1994) 1687
    [14] Shuji Nakamura, Shigefusa E Chichibu, Introduction to Nitride semiconductor blue lasers and light emitting diodes, CRC PRESS(1999) Boca Raton, London, New York, Washington D. C.
    [15] 陈良惠,叶晓军,种明,物理.32(2003)302-307
    [16] 张德恒,刘云燕,物理.29(2000)82-85
    [17] Toshio Nishida, Naoki Kobayashi, Tomoyuki Ban, Appl. Phys. Lett. 82 (2003) 1-3
    [18] M. A. Khan, J. N. Kuznia, D. T. Olson, et. al., Appl. Phys. Lett. 60 (1992)2917-2919
    [19] F. Binet, J. Y. Duboz, E. Rosencher, et. al., Appl. Phys. Lett. 69 (1996) 1202-1204
    [20] K.S. Stevens, M. Kinniburgh, R. Beresford, Appl. Phys. Lett. 66 (1995) 3518-3520
    [21] C. G. Liang, J. Zhang, Chinese Jorunal of Semiconductor 20 (1999) 89
    [22] S.Stritand, H.Morkoc, J. Vac. Sci. Technol. B. 10 (1992) 1237-1266
    [23] M. A. Khan, Q. Chen, J. W. Yang, Inst. Phys. Conf. Ser. (1995) 985-987
    [24] O. Brandt, H. Yang, H. Kostial, K H. Ploog, Appl. Phys. Lett. 69 (1996) 2707
    [25] D. J. As, D. Schikora, A. Greiner, M. Lubbers, J. Mimkes, K. Lischka, Phys. Rev. B.54(1996) 1118
    [26] R Fischer, A Miehr, O Ambacher, J Cryst. Growth. 170 (1997) 139
    [27] J H Edgar, S Strite, I Akasaki, Gallium Nitride and Related Semiconductors INSPEC(1999) London
    [28] 李忠,魏芹芹,杨利,薛成山,微细加工技术.8213(2003)0039
    [29] N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press(1979) Oxford
    [30] T. Hariu, Appl. Phys. Lett. 32 (1978) 252
    [31] P. Stumm, et. al., Phys. Rev. Lett. 79 (1997) 677
    [32] M. Yu, et. al., Solid State Communications 108 (1998) 413
    [33] S. Nonomura, S. Kobayashi, T. Gotoh, S. Hirata, T. Ohmori, T. Itoh, S. Nitta, K. Morigaki, J. Non-Cryst. Solids. 174 (1996) 198-200
    [34] J. Tauc, Amorphous and Liquid Semiconductors, Plenum Press(1974) London
    [35] H. Chen, et al., Appl. Phys. Lett. 77 (2000) 1117
    [36] M. Kuball, et al., Jpn. J. Appl. Phys. 39 (2000) 4753
    [37] A. Bittar, et al., Appl. Phys. Lett. 78 (2001) 619-611
    [38] H. J. Trodahl, A. Bittar, Adv. Mater. 13 (2001) 1031
    [39] Y. X. Kang, D. C. Ingram, J. Appl. Phys. 93 (2003) 3954
    [40] S. Yagi, et al., Jpn. J. Appl. Phys. 38 (2000) L792
    [41] T. Miyazaki, et al., J. Appl. Phys.. 97 (2005) 093516
    [42] H. Amano, et al., Appl. Phys. Lett. 48 (1986) 353
    [43] S. Nakamura, Jpn. J. Appl. Phys. 30 (1991) 1705
    [44] S. Nakamura, et al., Jpn. J. Appl. Phys. 31 (1992) L139
    [45] H. Liu, et al., Fall meeting of the Electrochemical Society, 1995) Miami FL 328-334
    [46] Nahlah Elkashef, R. S. Srinivasa, S. Major, S. C. Sabharwal, K. P. Muthe, Thin Solid Films 333 (1998) 9-12
    [47] Minseo Park, J.-P. Maria, J. J. Cuomo, Y. C. Chang, J. F. Muth, R. M. Kolbas, R. J.Nemanich, Appl. Phys. Lett. 81 (2002) 1797
    [48] W. T. Young, S. R. P. Silva, J. V. Anguita, J. M. Shannon, K. P. Homewood, B. J.Sealy, Diamond and Related Materials. 9 (2000) 456-459
    [1] E. D. McClanahan, N. Laegreid, Sputtering by Particle Bombardment Ⅲ (R. Behrisch and K. Wittmaack, eds.) Springer-Verlag (1991)
    [2] Penning, F. M., 146 U.S. Patent 2, (1935) 025
    [1] K. Morigaki, Physics of amorphous semiconductors, World Scientific, Imperial College Press (1999)
    [2] C. Bungaro, K. Rapcewicz, J. Bernholc, Phys. Rev. B. 61 (2000) 6720
    [3] R. F. Davis, M. S. Shur, GaN-based materials and devices: growth, fabricaton, characterizaton and performance, World Scientific (2004)
    [4] X. Zhang, Y. T. Hou, J. Appl. Phys. 89 (2001) 6165
    [5] Y. Sun, T. Miyasato, N. Sonoda, J. Appl. Phys. 84 (1998) 6451
    [6] J. B. Gruber, Bahram Zandi, H. J. Lozykowski, W. M. Jadwisienczak, J. Appl. Phys. 92 (2002) 5127
    [7] H. J. Lozykowski, W. M. Jadwisienczak, I. Brown, Appl. Phys. Lett. 76 (2000) 861
    [8] P. Stumm, D. A. Drabold, Phys. Rev. Lett. 79 (1997) 677
    [9] M. Yu, D. A. Drabold, Solid State Commun. 108 (1998) 413
    [10] F. Urbach, Phys. Rev. B. 92 (1953) 1324
    [11] B. Abay, et al., J. Appl. Phys. 84 (1998) 3872
    [12] W. Martienssen, J. Phys. Chem. Solids. 2 (1957) 257
    [13] B. Abay, et al., J. Phys. D. 32 (1999) 2942
    [14] B. Abay, et al., Semicond. Sci. Tech. 15 (2000) 535
    [15] B. Abay, et al., Phys. Status Solidi B. 227 (2001) 469
    [16] B. Abay, et al., J. Phys. Chem. Solids. 62 (2001) 747
    [17] S. Chichibu, T. Mizutani, T. Shioda, H. Nakanishi, Appl. Phys. Lett. 70 (1997)3440
    [18] M. A. Jacobson, O. V. Konstantinov, D. K. Nelson, S. O. Romanovskii, Z.Hatzopoulos, J. Cryst. Growth. 230 (2001) 459
    [19] J. Ederth, G.A. Niklasson, C.G. Granqvist, Thin Solid Films. 365 (2000) 119-125
    [20] R. Mientus, K. Ellmer, Surf. Coat. Tech. 116-119 (1999) 1093
    [21] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, S. J. Chua, J. Appl. Phys. 98 (2005) 013505
    [22] F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, J. Optoelectron Adv. M. 9 (2007)2180-2185
    [23] 杨田林,韩圣浩,张鹏,王爱芳,电子元件与材料23(2004)31
    [24] R A. Smith, Semiconductor. 2nd ed, Cambridge University Press (1978)
    [25] 叶建东,顾书林,朱顺明等,高技术通讯12(2002)45
    [1]T. Detchprohm, et al. Appl. Phys. Lett. 61 (1992) 2688
    [2]H. Lee and J. S. Harris, J. Crystal. Growth 169 (1996) 689
    [3]T. Yaji, et al., SiC and Related Materials 142 (1995) 911
    [4]S. Nonomura, et al., J. Non-Cryst. Solids 198-200 (1996) 174
    [5]S. Kobayashi, at al., Appl. Surf. Sci. 113-114 (1997) 480
    [6]T. Honda, et al., J. Lumin. 102-103 (2003) 173
    [1] S. Iijima, Nature 354 (1991) 56-58
    [2] S. Iijima, T. Ichihashi, Nature 363 (1993) 603-605
    [3] D. S. Bethune, et al., Nature 363 (1993) 605-607
    [4] Mark S. Lundstrom, Jiang Guo, Nanoscale transistors device physics, modeling and simulation, Springer press (2006)
    [5] W. A. DeHeer, W. S. Bacsa, D. Ugarte, et al., Science 268 (1995) 845-847
    [6] Y. H. Huang, M. Okada, K. Tanaka, et al., Phys. Rev. B,. 53 (1996) 5129-5132
    [7] Y. Murakami, T. Shibata, K. Okuyama, et al., J. Phys. Chem. Solids. 54 (1993) 1861-I 870
    [8] M. J. Treacy, T.W. Ebbesen, et. al., Nature 381 (1996) 678-680
    [9] A. C. Dillon, K.M. Jones, T.A. Bekkedahl, et. al., Nature 386 (1997) 377-379
    [10] 解思深,李玉宝,神奇的碳纳米管,科学(1991)
    [11] Changxin Chen, Dong Xu, Eric Siu-Wai Kong, Yafei Zhang, IEEE Electron Device Letters. 27 (2006) 852-855.
    [12] S. M. O'Flaherty, R. Murphy, S. V. Hold, et al., J. Phys. Chem. B. 107 (2003)958-964
    [13] W. A. DeHeer, A. Chatelain, D. Ugarte, Science. 270 (1995) 1179-1180
    [14] W. B. Choi, Y. W. Jin, H. Y. Kim, et al., Appl. Phys. lett. 78 (2001) 1547-1549
    [15] J. L. Kwo, C. C. Tsou, Yokoyama, et al., Journal of Vacuum Science and Technology. B 19 (2001) 23-26
    [16] Takayuki Ichikawaa, Hironobu Fujii, Shigehito Isobe, et al., Appl. Phys. Lett. 86 (2005) 241914(1-3)
    [17] M. Ritschel, M. Uhlemann, Gutfleisch, et al., Appl. Phys. Lett. 80 (2002) 2985-2987
    [18] Liyue Liu, Yafei Zhang, Sensors and Actuators A: Physical. 116 (2004) 394-397
    [19] R. Antoni, Infrared Physics and Technology. 4 (2002) 187-210
    [20] O. Nakabeppu, M. Chandrachood, Y. Wu, et al., Appl. Phys. Lett. 66 (1995) 694-696
    [21] 梁晋涛,刘君华,张进永,西安交通大学学报.39(2005)856-858
    [22] A. Gorbunov, O. Jost, W. Pompe, A. Graff, Carbon. 40 (2002) 113-118
    [23] H. M. Cheng, Chemical industry Press. 104 (2002)
    [24] E. F. Kukovitsky, S. G. L'vov, N. A. Sainov, Chem.Phys.Lett. 317 (2000) 65-70
    [25] A. A. Gorbunov, R. Friedlein, O. Jost, M. S. Golden, J. Fink, W. Pompe, Appl. Phys. A. 69 (1999) S593-S596 .
    [26] H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 260 (1996) 471
    [27] Journet C. Dian, W. K. Maser, P. Bernier, et al., Nature 388 (1997) 756-758
    [28] Z. Shi, Y. Lian, X. Zhou, et al., Carbon 37 (1999) 1449-1453
    [29] J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, et al., Carbon 39 (2001) 761-770
    [30] T. W. Ebbesen, P. M. Ajayan, Nature 358 (I992) 220-222
    [31] C. D. Scott, S. Arepalli, P. Nikolaev, et al., Appl. Phys. A: Materials Science &Processing. 72 (2001) 573-580
    [32] R. Sen, Y. Ohtsuka, T. Ishigaki, et al., Chem. Phys. Lett. 332 (2000) 467-473
    [33] Alfredo M. Morales, Charles M. Lieber, Science. 279 (1998) 208-211
    [34] T. Guo, P. Nikolaev, A.Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 1-2(1995) 243
    [35] S. Zhu, C. H. Su, J. C. Cochrane, et al., J. Cryst. Growth. 234 (2002) 584-588
    [36] Han Jae-hee, Yang Won-Suk, Yoo Ji-Beom, et al., J. Appl. Phys. 88 (2000)7363-7365
    [37] R. G. Lacerda, A. S. Teh, M. H. Yang, et al., Appl. Phys. Lett. 84 (2004) 269-271
    [38] Nikolaev Pave, Bronikowski Michael J., Bradley R. Kelley, et al., Chem. Phys. Lett.313 (1999) 91
    [39] M. J. Bronikowski, P. A. Willis, D. T. Colbert, et al., Journal of Vacuum Science and Technology A. 19 (2001) 1800-1805
    [40] 张爱民,王仰东,谢得等。化学学报 58(2000)876-883
    [41] V. Ivanov, J. B.Najy, P.Lambia, et. al., Chem. Phys. Lett. 223 (1994) 329-335
    [42] 徐东升,郭国霖。桂琳琳等, 新型碳材料 13 (1998) 16
    [43] W. A. deHeer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro,D. Ugarte, Science 268 (1995) 845
    [44] D. A. Walters, M. J. Casavant, X.C. Qin, C.B. Huffman, et. al., Chem. Phys. Lett.338(2001)114
    [45] M.J. Casavant, D.A. Walters, J.J. Schmidt, R.E. Smalley, J. Appl. Phys. 93 (2003) 2153
    [46] J. E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmuller, M.J. Casavant, D.A. Walters, R.E. Smalley, J. Appl. Phys. 93 (2003) 2157
    [47] Frank Hennrich, Sergei Lebedkin, Sharali Malik, Joseph Tracy, Matthias Barczewski, et. al., Phys. Chem. Chem. Phys. 4 (2002) 2273-2277
    [48] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105
    [49] Z. P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Appl. Phys. Lett. 73(1998)3345
    [50] Z. F. Ren, Z.P. Huang, D.Z.Wang, J.G. Wen, J.W. Xu, J.H. Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Appl. Phys. Lett. 75 (1999) 1086
    [51] C. Bower, W. Zhu, S.H. Jin, O. Zhou, Appl. Phys. Lett.. 77 (2000) 830
    [52] C. Bower, O. Zhou, W. Zhu, D.J. Werder, S.H. Jin, Appl. Phys. Lett. 77 (2000) 2767.
    [53] M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Appl. Phys. Lett.. 77 (2000) 3468
    [54] H. Cui, O. Zhou, B.R. Stoner, J. Appl. Phys. 88 (2000) 6072
    [55] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701
    [56] J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Appl. Phys. Lett. 75 (1999) 367
    [57] Y.H. Sohn, S.H. Lee, Y.H. Song, S.Y. Choi, K.I. Cho, K.S. Nam, Appl. Phys. Lett. 78(2001)901
    [58] Z.H. Yuan, H. Huang, H.Y. Dang, J.E. Cao, B.H. Hu, S.S. Fan, Appl. Phys. Lett..78 (2001) 3127.
    [59] X.B. Wang, Y.Q. Liu, P.A. Hu, G. Yu, K. Xiao, D.B. Zhu, Adv. Mater. 14 (2002)1557
    [60] B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416 (2002) 495.
    [61] Y. N. Xia, J. A. Rogers, G. M. Whitesides, Chem. Rev. 99 (1999) 1823-1848
    [62] B. Messer, J. H. Song, P. D. Yang, J. Am. Chem. Soc. 122 (2000) 10232-10233
    [63] Y. Huang, X. Duan, Q. Wei, et. al., Science 291 (2001) 630-633
    [64] J. Liu, M. J. Casavant, M. Cox, et al., Chem. Phys. Lett. 303 (1999) 125-129
    [65] M. Burghard, G. Duesberg, G. Philipp, et al., Adv. Mat. 10 (1998) 584-588
    [66] Huijun Xin, Adam T. Woolley, Nano Lett. 4 (2004) 1481-1484
    [67] Kunitoshi Yamamoto, Seiji Akita, Yoshikazu Nakayama, J. Jpn. Appl. phys. 35(1996) L917-L918
    [68] Kunitoshi Yamamoto, Seiji Akita, Yoshikazu Nakayama, J. Phys. D: Applied Physics. 31 (1998) L34-L36
    [69] Karsten Bubke, Harald Gnewuch, Martin Hempstead, Appl. Phys. Lett. 71 (1997) 1906-1908
    [70] Morinobu Endo, Kenji Takeuchi, Kiyoharu Kobori, Katsushi Takahashi, Harold W. Kroto, A. Sarkar, Carbon 33 (1995) 873
    [71] D. A. Walters, M. J. Casavant, X. C. Qin, et al., Chem. Phys. Lett. 338 (2001)14-20
    [72] M. Tanase, L. A. Bauer, G. J. Meyer, et al., Nano Lett. 1 (2001) 155-158
    [73] J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Liu, Chem.Phys.Lett.303 (1999) 125-129
    [74] H. Shimoda, S. J. Oh, H. Z. Geng, et al., Adv. Mat. 14 (2002) 899-901
    [75] Yanhui li, Cailu Xu, Bingqing. Wei, et al., Chem. Mat. 14 (2002) 483-485
    [76] M D Lay, J P Novak, E S Snow, Nano Lett. 4 (2004) 603
    [77] Tobias Hertel, et al., J.Phys.Chem. B. 102 (1998) 910
    [78] Yu Huang, et. al., Science 294 (2001) 1313
    [79] 张宇军,李鹏,胡元中等,47(2002)1066
    [80] MinFeng Yu, Mark J. Dyer, George D. Skidmore, Nanotechnology. 10 (1999) 244
    [81] A.Rubio, et. al.. Eur. Phys. J. B. 17 (2000) 301
    [82] M. S. Fuhrer, et al., Physica E. 6 (2000) 868-871
    [83] Junbo Gao, Aiping Yu, Mikhail E. Itkis, Elena Bekyarova, Bin Zhao, Sandip Niyogi, Robert C. Haddon, J. Am. Chem. Soc. 126 (2004) 16698
    [84] R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, et. al., Nano Lett. 4 (2004) 459
    [85] Z. Guo, Y. Li, Z. Ge, J. Yan, D. Zhu, J. Si, P. Ye, Appl. Phys. B. 71 (2000) 545
    [86] V. Krstic, J. Muster, G. S. Duesberg, et al., Synthetic Metal. 110 (2000) 245-249
    [1] Jie Liu, Andrew G. Rinzler, Hongjie Dai, Jason H. Hafner, R. Kelley Bradley, Peter J. Boul, Adrian Lu, Terry Iverson, Konstantin Shelimov, Chad B. Huffman, Fernando Rodriguez-Macias, Young-Seok Shon, T. Randall Lee, Daniel T. Colbert, Richard E. Smalley, Science. 280 (1998) 1253
    [2] J.M. Bonard, T. Stora, W. A. deHeer, et. al., Advanced Materials. 9 (1997) 827
    [3] S. Bandow, A.M. Rao, et.al., J. Phys. Chem. B. 101 (1997) 8839
    [4] K.B. Shelimov, R.O. Esenaliev, A.G. Rinzler, et.al., Chem. Phys. Lett. 282 (1998) 429
    [5] M. Yudasaka, M. Zhang, C. Jabs, S. Iijima, Appl. Phys. A:Materials Science and Processing. 71 (2000) 449
    [6] K. Yamamoto, S. Akita, Y. Nakayama, J. Phys. D-Appl. Phys. 31 (1998) L34
    [7] R. Andrews, D. Jacques, D. Qian, E.C. Dickey, Carbon. 39 (2001) 1681
    [8] E. Dujardin, T.W. Ebbesen, A. Krishnan, M.M.J.Treacy, 1998, 10(8): 611, Adv. Mat. 10(1998)611
    [9] K. Morishita, G. Takarada, Tkagaku Kogaku Ronbunshu. 24 (1998) 670
    [10] Z.J. Shi, Y F. Lian, F. H. Liao, X. H. Zhou, Z.N. Gu, Y. G. Zhang, S. lijima, Solid State Communications. 112 (1999) 35
    [11] 林敬东,杨乐夫,蔡云,王欣莹,陈鸿博,张鸿斌,廖代伟,厦门大学学报.40(2001)888
    [12] Z. Gu, H. Peng, R. H. Hauge, et.al., Nano Letters. 2 (2002) 1009-1013
    [13] A. Rubio, S. P. Apell, L. C. Venema, et.al., The European Physical Journal B. 17 (2000) 301-308
    [14] K. Niesz, A. Siska, I. Vessel(?)nyi, et.al., Catalysis Today. 76 (2002) 3-10
    [15] (?). Kukovecz, T. Kany(?), Z. K(?)nya, et. al., Carbon. 43 (2005) 994-1000
    [16] Z. K(?)nya, J. Zhu, K. Niesz, et.al., Carbon. 42 (2004) 2001-2008
    [17] E. Farkas, M. E. Anderson, Z. H. Chen, et al., Chemical Physics Letters. 363 (2002)111-116
    [18] J. Chen, M. A. Hamon, H. Hu, et.al., Science. 282 (1998) 95
    [19] C. M. Chen, M. Chen, F. C. Leu, et.al., Diamond and Related Materials. 13 (2004) 1182
    [20] Taek Ham Hyeong, Suk Choi Yeong, Jae Chung In, Journal of Colloid and Interface Science. 286 (2005)216-223
    [21] Poulin Philippe, Vigolo Brigitte, Launois Pascale, Carbon. 40 (2002) 1741-1749
    [22] 肖素芳,王宗花,罗国安,分析化学评述与进展.33(2005)261-166
    [23] Jian Chen, Apparao M. Rao, Sergei Lyuksyutov, Mikhail E. Itkis, Mark. A. Hamon, Hui Hu, Robert W. Cohn, Peter C. Eklund, Daniel T. Colbert, Richard E. Smalley, Robert C. Haddon, J. Phys. Chem. B. 105 (2001) 2525-2528
    [24] Dimitrios Tasis, Nikos Tagmatarchis, Alberto Bianco, Maurizio Prato, Chem. Rev. 106 (2006) 1105-1136
    [25] M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, Peter C., Eklund, R. C. Haddon, Adv. Mater.. 11 (1999) 834
    [26] D Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J. Am. Chem. Soc. 125 (2003) 3370
    [27] J. Kong, H. Dai, J. Phys. Chem. B. 105 (2001) 2890
    [1] M. Kasha, H. R. Rals, M. A. El-Bayoumi, Pure Appl. Chem. 11 (1965) 371
    [2] G. G. Roberts, el. al., Thin Solid Films. 68 (1980) 223
    [3] P. Christie, et. al., J. Phys. D. 19 (1986) L167
    [4] F. L. Garter, Ed., Molecular electronic devices, 1983)
    [5] 赵猛,刘丽月,张亚非,徐东,电子显微学报22(2003)223
    [6] Jinyong Li, Yafei Zhang, Carbon 45 (2007) 493-498
    [7] 王文军,刘金凤,应用光学25(2004)52-54
    [8] J. A. Zasadzinski, R. Viswanathan, L. Madsen, et al., Science 263 (1994) 1726-1733
    [9] 朱长乐,刘茉娥,膜科学技术 浙江大学出版社(1992)
    [10] Franklin Kim, Serena Kwan, Jennifer Akana, Peidong Yang, J. Am. Chem. Soc. 123 (2001) 4360-4361
    [11] L. Onsager, Ann Ny Acad Sci. 51 (1949) 627-659
    [12] Lu Jia, Yafei Zhang, Jinyong Li, Chang You, Erqing Xiel, J. Appl. Phys. 104 (2008) 074318
    [13] K. Keshoju, H. Xing, L. Sun, Appl. Phys. Lett. 91 (2007) 123114
    [14] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press(1967)
    [15] A. T. Chwang, T. Y. Wu, J. Fluid Mech. 63 (1974) 607-622
    [16] Tim F. Alig, Heidi E. Warriner, Lily. Lee, et al., Biophysical Journal. 86 (2004)897-904
    [17] I. R. Peterson, R. M. Kenn, A. Goudot, et al., Phys. Rev. E. 53 (1996) 667-673
    [18] C Petty. Michael, Langmuir-Blodgett films: A introduction, Cambridge University Press(1996)
    [19] G. G. Roberts, Adv. Phys. 34 (1985) 475-512
    [20] Jinyong Li, Yafei Zhang, Physica E. 33 (2006) 235-239
    [21] A. R. Liu, D. J. Qian, T. Wakayama, C. Nakamura, J. Miyake, Colloid surface A. 284-285 (2005) 485-489
    [22] Jr G. L. Gaines, Insoluble monolayer at liquid gas interfaces, Wiley(1966)
    [23] Pijun Liu, Liyue Liu, Yafei Zhang, Phys. Lett. A. 313 (2003) 302
    [24] Yinzhong Guo, Jiansheng Wu, Yafei Zhang, Chem. Phys. Lett. 362 (2002) 314-318
    [25] Yeji Kim, Nobutsugu Minami, Weihong Zhu, Said Kazaoui, Reiko Azumi, Mutsuyoshi Matsumoto, Synthetic Met. 135-136 (2003) 747-748
    [26] Yinzhong Guo, Jiansheng Wu, Yafei Zhang, Chem Phys Lett. 362 (2002) 314-318
    [27] Lu Jia, Yafei Zhang, Jinyong Li, Chang You, Erqing Xie, J. Optoelectron. Adv. M. 10 (2008) 2743-2747
    [28] Changxin Chen, Yafei Zhang, J. Phys. D: Appl. Phys. 39 (2006) 172-176
    [29] Yiyun Yang, Shaowei Chen, Qinbin Xue, Alexandru Biris, Wei Zhao, Electrochim. Acta. 50 (2005) 3061-3067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700