用户名: 密码: 验证码:
对白血病化疗药物左旋天冬酰胺酶II的热稳定性改造以及微小残留白血病DNA疫苗的构建、纯化和免疫效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在治疗急性淋巴细胞白血病的临床实践中有两个长期困扰人们的难题:一个是化疗药物的副作用问题;另一个是导致白血病完全缓解后又不断复发的肿瘤细胞微小残留问题。本课题针对这两个问题进行了初步的探索。
     在急性淋巴细胞白血病的化疗方案中,左旋大肠杆菌天冬酰胺酶Ⅱ是重要的药物组成部分。但是该酶具有较大的副作用,同时由于其相对较短的半衰期和热不稳定性,使得该药在实际治疗中需要进行频繁地注射,结果使病人产生了更大的痛苦。因此在本研究课题中对如何提高该酶的热稳定性以便进一步提高其半衰期进行了初步研究:通过生物信息学分析手段确定了天冬酰胺酶蛋白质二级结构中一个与热稳定性关系密切的β-转角,并用定点突变的方法将该转角上的第178位的天冬氨酸突变为脯氨酸。实验结果显示:与野生型酶相比,突变体酶在不同温度条件下的热稳定性得到了提高;从能量角度上看,改造后的酶在保持动力学性质(K_m和K_(cat))基本不变的同时活化能得到了增加。这说明笔者对左旋天冬酰胺酶的改造在不影响酶活性的前提下提高了其热稳定性。
     对于化疗和骨髓移植不能彻底解决的白血病细胞微小残留问题,本课题对相应的免疫学解决方案进行了探索。虽然肿瘤细胞疫苗在目前来说是一种较有前景的免疫治疗形式,但出于对其安全性方面考虑,笔者决定尝试用另外一种相对安全的免疫形式——DNA疫苗,来治疗微小残留白血病,并对其免疫效果进行了初步研究。本课题采用双质粒系统,其中一个质粒表达经过改造灭活的肿瘤细胞特异性超表达抗原生存素(survivin)和能特异性引起Th1细胞免疫反应的发夹状单链RNA(ssRNA);另一个质粒表达细胞因子GM-CSF和共刺激分子CD80。结果证明用该DNA疫苗系统免疫BalB/C小鼠能引起较强的细胞免疫应答,诱导较强的T细胞增殖和对肿瘤细胞的CTL杀伤活力。这些结果为进一步研究DNA疫苗对微小残留白血病的实际治疗提供了前期实验室数据基础。
     DNA疫苗大规模纯化技术的研发是DNA疫苗走向实际临床应用和工业化生产的必不可少的环节。本课题重点对利用排阻层析纯化质粒的技术进行了研究。笔者对不同种类及不同浓度盐缓冲液存在时,各种核酸分子排阻层析行为的变化进行了观察比较。结果显示:在高浓度中性盐存在情况下,不仅是RNA,其它的核酸分子包括宿主基因组DNA和各种质粒同分异构体的层析分辨率都得到了较大提高。进一步探讨深层机制,笔者认为在这一高盐排阻层析纯化过程中同时存在两种分离模式:1、超螺旋质粒DNA主要受到压缩效应的影响以排阻模式被洗脱;2、RNA和宿主基因组DNA则主要受疏水效应的影响从而以相互作用模式被洗脱。我们的实验结果证明使用高浓度(2 M)的中性盐(硫酸铵)将提高排阻层析纯化DNA疫苗的效率。
In the treatments of acute lymphoblastic leukaemia, there are two problems puzzling people all alone: One is the side-effects caused by chemotherapy; and another is the minimal residual leukaemia which leads to the relapse of cured patient. The present study has dong some researches to try to solve these problems.
     L-Asparaginase II of E. coli is a kind of effective drug in the treatment of acute lymphoblastic leukaemia. However, during asparaginase therapy, repeated using of the drug is commonly needed because of the enzyme's relatively short half-life and instability in the processes of production and treatment. This leads to more serious toxic effects on patients. In order to stabilize the enzyme, a higher thermostable mutant L-asparaginase II was created in the present study by replacing Aspl78 with proline in a hydrogen-bonded turn (178-180DGR) which is contribute to the thermostability of the enzyme. The results displayed that values of K_m and K_(cat) for the mutant enzyme are not affected although the energy of activation is increased comparing to the wild-type enzyme. These data suggest that such alteration for L-asparaginase II enhances the thermostability of the enzyme without changing the enzyme's activity and thus the therapeutical use of L-asparaginase II might be benefit from these results.
     In present study, the immune-therapy method has been explored when it comes to the problem of minimal residual leukemia (MRL). Immunized with the DNA vaccine is a potential way to treat MRL for its better safety comparing to the tumor cells vaccines. In present study, a two-plasmid vaccine system which is used to express a tumor-special antigen (Survivin) has been constructed and immunized with mice. Furthermore, a barrette-like ssRNA, GM-CSF and a co-stimulating factor CD80 have also been co-expressed in the same system. The results displayed that strong T cell immune response and CTL activity were induced by the DNA vaccine. It demonstrated that DNA vaccine is a promising immune-therapy method to fight against MRL.
     Techniques for large-scale preparation of clinical-grade plasmid DNA serve as an important base for clinical trials and industrialization of DNA vaccines. In the present study, we compared the performances of size-exclusion chromatography for the purification of plasmid DNA when different concentrations (0.5 M, 1M, 2 M, respectively) of two types of salt (NaCl and (NH_4)_2SO_4) are present in running buffers. Our experiment results displayed that it is not only the resolution of RNA but also those of supercoiled plasmid DNA and host's genomic DNA were increased greatly in the presence of high concentration of water-structure salt. We deduce that two separation modes may be involved in the process: The supercoiled plasmid DNA is influenced mainly by compaction effect and eluted in the size-exclusion mode; whereas, RNA and genomic DNA are influenced mainly by hydrophobic effect due to their stretched and loose structures and eluted in the interaction mode. This method led to an improved efficiency of size-exclusion chromatography.
引文
[1] Pui CH. Acute lymphoblastic leukemia in children. Curr Opin Oncol. 2000; 12:3-12.
    
    [2] Margolin JF, Steuber CP, Poplack DG Acute Lymphoblastic Leukemia. In Principles and practice of pediatric oncology. P.A.P. Pizzo, D. G, editor. 2002;489-544.
    [3] Allison Blair, Nicholas J. Goulden, Nathan A. Libri, et al. Immunotherapeutic strategies in acute lymphoblastic leukaemia relapsing after stem cell transplantation. Blood Reviews. 2005; 19, 289-300.
    [4] Muller HJ, Boos J. Use of 1-asparaginase in childhood ALL. Crit Rev Oncol Hematol 1998; 28(2): 97-113.
    [5] Alexandre LS, Gledson MG, Bronislaw P, et al. Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli-asparaginase. Int J Pharm 2002; 237(1/2):163-70.
    [6] Making H, lnada Y. Immunochemical properties of asparaginase modified by chemical substitution. Immunochemistry 1975; 12:183.
    [7] Davis FF. Soluble polymer-enzyme adducts. In: Holcenberg Jc, editor. Offprints from enzymes as drugs. New York: John Wiley and Sons; 1981. p. 367-75.
    [8] Imanaka T, Shibazaki M, Takagi M. Anew way of enhancing the thermostability of proteases. Nature. 1986; 324:695-7.
    [9] Yutani K, Ogasawara K, Sugino Y, et al. Effect of a single amino acid substitution on stability of conformation of a protein. Nature. 1977; 267:274-5.
    [10] Imanaka T, Nakae M, Ohta T, et al. Design of temperature-sensitiv penicillinase repressors by replacement of pro in predicted β -turn structures. J Bacteriol.1992; 174(4):1423-5.
    
    [11] Daniel RM, Cowan DA, Morgan HW, et al. A correlation between protein thermostability and resistance to proteolysis. Biochem J. 1982; 207(3):641-4.
    
    [12] Panasik Jr N, Fleming PJ, Rose GD. Hydrogen-bonded turns in proteins: the case for a recount. Protein Sci. 2005; 14(11):2910-4.
    [13] Bolotin A, Quinquis B, Renault P, et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol. 2004; 22(12):1554-8. [Epub 2004:14].
    [14] Nishio Y, Nakamura Y, Kawarabayasi Y, et al. Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 2003; 13:1572-9.
    [15] R Stripecke, AM Levine, V Pullarkat, et al. Immunotherapy with acute leukemia cells modified into antigen-presenting cell: ex vivo culture and gene transfer methods. Leukemia. 2002,16:1974-1983
    [16] Hirano N, Takahashi T, et al. Expression of costimulatory molecules in human leukemias. Leukemia. 1996,10:1168.
    [17]Beverley M. Kerr, Andy Kang-Wei Hsu, Kathryn L. Jones, et al. Adoptive immunotherapy to treat leukemic relapse following allogeneic hematopoietic stem cell transplantation. Clinical and Applied Immunology Reviews. 2005; 5: 77-93.
    [18] M. A. Garcia, J. Gil, I. Ventoso, et al. Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative Action. Microbiology and molecular biology reviews. 2006; 1032-1060.
    
    [19] Reed JC. The survivin sagagoesin vivo. JClinlnvest, 2001, 108(7): 965-969.
    [20] Staerz UD, Karasuyama H, Garner AM. Cytotoxic T lymphocytes against a soluble protein. Nature. 1987, 329:449-451.
    [21] Harding CV, Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class IMHC molecules. J Immunol. 1994,153:4925-4933.
    [22] Falo LD Jr, Kovacsovics-Bankowski M, Thompson K, et al. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat 54 Med 1995,1:649-653.
    [23] Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med. 1993, 178:1391-1396.
    [24] Nakazaki Y, Tani K, L in ZT, et al. Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumo r immunity. Gene T her,1998, 5(10): 1355-1362.
    [25] Points to Consider on Plasmid DNA Vaccines for Preventive Infectious Disease Indications, US Food and Drug Administration, Rockville, MD, 1996.
    [26] Guidance for Industry: Guidance for Human Somatic Cell Therapy and Gene Therapy, US Food and Drug Administration, Rockville, MD, 1998.
    [27] M.M. Diogo, J.A. Queiroz, GA. Monteiro, et al. Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography.Biotechnol. Bioeng. 2000; 68:576-583.
    
    [28] A. Eon-Duval, G Burke, Purification of pharmaceutical-grade plasmid DNA by anion-exchange chromatography in an RNase-free process. J. Chromatogr. B 804(2004) 327-335.
    [29] L.M. Sandberg, A. Bjurling,et al. Thiophilic interaction chromatography for supercoiled plasmid DNA purification. J. Biotechnol. 2004;109 (1-2): 193-199.
    [30] GN. Ferreira, J.M. Cabral, D.M. Prazeres, Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications.Biotechnol Prog. 1999 ;15(4):725-31.
    [31] D.M. Prazeres, GN. Ferreira, GA. Monteiro, et al. Large-scale production of pharmaceutical-grade plasmid DNA for gene therapy: problems and bottlenecks/Trends Biotechnol. 1999 ; 17(4): 169-74.
    [32] J. Stadler, R. Lemmens, T. Nyhammar, J. Plasmid DNA purification. Gene Med.2004;6:Suppl 1:S54-66.
    [33] K. Kasai. Size-dependent chromatographic separation of nucleic acids. J.Chromatogr. 1993; 25; 618(1-2):203-21
    [34] M.M. Diogo, J.A. Queiroz, D.M. Prazeres, Chromatography of plasmid DNA. J Chromatogr A.2005;25;1069(1):3-22.
    
    [35] The Chinese pharmacopoeia (2005 ED), vol. II; 2005, p.31.
    [36] Bradford M. Arapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.
    [37] Jaenicke R. Glyceraldehyde-3-phosphate dehydrogenase from Thermotoga maritima: strategies of protein stabilization. FEMS Microbiol Rev .1996;18(2/3):215-24.
    [38]] Harms E, Wehner A, Aung HP, et al. A catalytic role for threonine-12 of E. coli asparaginase II as established by site-directed mutagenesis. FEBS Lett.1991;285(1):55-8.
    [39] Derst C, Henseling J, Rohm KH. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci. 2000; 9(10):2009-17.
    [40] Wehner A, Harms E, Jennings MP, et al. Site-specific mutagenesis of Escherichia coli asparaginase II none of the three-histidine residues is required for catalysis.Eur J Biochem 1992; 208(2):475-80.
    [41] Levitt M. Conformational preferences of amino acids in globular proteins.Biochemistry. 1978:17(20):4277-85.
    [42] Goihberg E, Dym O, Tel-Or S, et al. A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase.Proteins 2007; 66(1):196-204.
    [43]Lei Young, Qihan Dong. Two-step total gene synthesis method. Nucleic Acids Research, 2004,32,(7): e59.
    [44] Vladimir Pisarev, Bin Yu, Raoul Salup, et al. Full-Length Dominant-Negative Survivin for Cancer Immunotherapy. Clinical Cancer Research. 2003; 9:6523-6533.
    [45] Mads Hald Andersen, Lars . Pedersen, Barbara Capeller, et al. Spontaneous Cytotoxic T-Cell Responses against Survivin-derived MHC Class I-restricted T-Cell Epitopes in Situ as Well as ex Vivo in Cancer Patients. Cancer research,2001; 61,: 5964-5968.
    [46] Marc Schmitz, Petra Diestelkoetter, Bernd Weigle, et al. Generation of Survivin-specific CD81 T Effector Cells by Dendritic Cells Pulsed with Protein or Selected Peptides. Cancer research. 2000; 60: 4845-4849.
    [47]刘杰、魏海明、田志刚.Th1/Th2漂移与抗肿瘤免疫.国外医学肿瘤学分册.1977,24(3):168-170.
    [48]F.Karlsen,H.B.Steen,J.M.Nesland,SYBR green I DNA staining increases the detection sensitivity of viruses by polymerase chain reaction.J Virol Methods.1995;55(1):153-6.
    [49]T.B.Morrison,J.J.Weis,C.T.Wittwer,Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification.Biotechniques.1998;24(6):954-8,960,962.
    [50]C.T.Wittwer,M.G.Herrmann,A.A.Moss,et al.Continuous fluorescence monitoring of rapid cycle DNA amplification.Biotechniques.1997;22(1):130-1,134-8.
    [51]G.J.Smith III,M.Hell,C.Nesbet,et al.Fast and accurate method for quantitating E.coli host-cell DNA contamination in plasmid DNA preparations.Biotechniques.1999;26(3):518-22,524,526.
    [52]S.Sagar,M.Watson,A.Lee,in:A.S.Rathore,G.Vella(Eds.),Scale-up and Optimization in Preparative Chromatography:Principles and Biopharmaceutical Applications,Marcel Dekker,New York,2003,p.251.
    [53]M.S.Levy,I.J.Collins,J.T.Tsai,et al.Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing.J Biotechnol.2000;21;76(2-3):197-205.
    [54]A.Eon-Duval,K.Gumbs,C.Ellett.Precipitation of RNA impurities with high salt in a plasmid DNA purification process:use of experimental design to determine reaction conditions.Biotechnol Bioeng.2003;83(5):544-53.
    [55]A.V.Vologodskii,N.R.Cozzarelli.Conformational and thermodynamic properties of supercoiled DNA.Annu Rev Biophys Biomol Struct.1994;23:609-43.
    [56]T.Schlick,B.Li,W.K.Olson.The influence of salt on the structure and energetics of supercoiled DNA.Biophys J.1994;67(6):2146-66.
    [57]J.Bednar,P.Furrer,A.Stasiak,et al.The twist,writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo.J Mol Biol. 1994; 235(3):825-47.
    [58] G.S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides.Q Rev Biophys. 1978;11(2):179-246.
    [Rev1]郭霞,李强.急性白血病发病机制研究进展.实用儿科临床杂志,2005,20(7):690-693
    [Rev2]熊树民,胡翊群.白血病MICM分型诊断.北京:人民军医出版社,2002:54-97
    [Rev3]曹志成.白血病的综合治疗与新进展.现代肿瘤医学 2007 15(8):1051-1054.
    [Rev4]郑胡镛.儿童急性淋巴细胞白血病治疗进展.实用儿科临床杂志 2007 22(3) 167-169.
    [Rev5]Dominic AS.Updates of asparaginase and pegasparagase.Hospital Pharmacy,1997,32:992,996-997.
    [Rev6]Estlin EJ,Ronghe M,Burke GAA,et al.The clinical and cellular pharmacology of vincristine,corticosteroids,L-Asparaginase,anthracyclines and cyclophosphamide in relation to childhood acute lymphoblastic leukemia.Br J Haematol,2000,110(4-Ⅱ):780-790.
    [Rev7]Asselin BL,Whitin JC,Coppola DJ,et al.Comparative pharmacokinetic studies of three asparaginase preparations.J Clin Oncol,1993,11:1780-1786.
    [Rev8]Boos J,Werber G,Ahlke E,et al.Monitoring of asparaginase activity and asparagines levels in children on different asparaginase preparations.Eur J Haematol,1996,32A:1544-1550.
    [Rev9]Riccardi R,Holcenberg JS,Glaubiger DL,et al.L-Asparaginase pharmacokinetics and asparagine levels in cerebrospinal fluid of rhesus monkeys and humans.Cancer Research,1981,41:4554.
    [Rev10]Ahlke I,Nowak-Gotl U,Schulze-Westhoff P,et al.Dose reduction of asparaginase under pharmacokinetic and pharmacodynamic control during induction therapy in children with acute lymphoblastic leukaemia.Br J Haematol,1997,96:675-681.
    [Rev11]崔彦芹 陈福雄 吴梓梁.左旋门冬酰胺酶治疗小儿白血病的研究进展.中华儿科杂志 2004 42(3)227-230
    [Rev12]中华医学会儿科学分会血液学组,中华儿科杂志编辑委员会.小儿急性淋巴细胞白血病诊疗建议(第二次修订草案).中华儿科杂志,1999,37:305-307.
    [Rev13]谢晓恬,刘振荣,石苇,等.多中心协作方案序贯治疗儿童高危型急性淋巴细胞白血病和晚期淋巴瘤.中华儿科杂志,1999,37:169-171.
    [Rev14]吴梓梁.左旋门冬酰胺酶在儿童急性淋巴细胞白血病中的应用.中国实用儿科杂志,2002,17:330-332.
    [Rev15]邹亚伟,吴梓梁,叶铁真,等.对左旋门冬酰胺酶引起急性胰腺炎的一点 看法.中华儿科杂志,1999,37:762.
    [Rev16]Semeraro N,Montemurro P,Giordano P,et al.Unbalanced coagulation-fibrinolysis potential during L-asparaginase therapy in children with acute lymphoblastic leukemia.Thromb Haemastas,1990,64:38-40.
    [Rev17]Nowak-Gottl U,Kuhn N,Wolff JEA,et al.Inhibition of hypercoagulation by antithrombin substitution in E.coli L-ASP araginase-treated children.Eur J Haematol,1996,56:35-38.
    [Rev18]Ylikangas P,Mononen I.Serious neutropenia in ALL patients treated with L-ASP araginase may be avoided by therapeutic monitoring of the enzyme activity in the circulation.Therapeutic Drug Monitoring,2002,24:502-506.
    [Rev19]Kieslich M,Porto L,Lanfernann H,et al.Cerebrovascular complications of L-asparaginase in the therapy of acute lymphoblastic leukemia.J Pediatr Hematol Oncol,2003,25:484-487.
    [Rev20]欧英贤,魏亚明.三氧化二砷对白血病细胞DNA损伤及凋亡相关基因表达的影响.西北国防医学杂志,2002,23(1):4-6.
    [Rev21]高飞,易静,史桂英,等.As2O3诱导NB4细胞凋亡的周期选择性与活性氧水平相关.上海第二医科大学学报,2001,2l14.
    [Rev22]黄晓军.三氧化二砷诱导细胞凋亡的调节.中华血液学志,1999,20(5):258-260.
    [Rev23]Chen GQ,Zhu J,Shi XG,et al.In vitro studies on cellular and molecular mechanisms of arsenic trioxide in the treatment of acute promyelocytic leukemia:As2O3 induces NB4 cell apoptosis with down regulation of Bcl-2 expression and modulation of PML-RARa-PML proteins.Blood,1996,88:1052-1061.
    [Rev24]Chen GQ,Shi XG,Tang Wet al.Use of arsenic trioxide(As2O3) in the treatment of acute promyelocytic leukemia(APL):I As2O3exerts dose dependent dual effects on aPL cells.Blood,1997,89:3345-3353.
    [Rev25]Hair GA,Padula S,Zeff R,et al.Tissue factor expression in human leukemic cells.Leuk Res,1996,20:1-20.
    [Rev26]Pedrera CL,Jardi M,Malagon M et al.Tissue factor(TF) and urokinase plas minactivator(uPAR)and bleeding complications in leukemic patients.Throm Haemost,1997,77:62-70.
    [Rev27]赵维莅,王鸿利,郭为民,等.急性早幼粒细胞白血病维甲酸和砷剂治疗期间组织因子改变的研究.中华血液学杂志,1998,19:473-476.
    [Rev28]张鹏,王树叶,胡龙虎,等.三氧化二砷治疗急性早幼粒细胞白血病7年总结--附242例分析.中华血液学志,2000,21:67-70
    [Rev29]Dilip V,Janice P,Dutcher B,et al.Torsades depointes in 3 patients with leukemia treated with arsenic trioxide.Blood,2001,97(5):1514-1516.
    [Rev30]Garzon R,Pichiorri F,Palumbo T,et al.MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.Oncogene.2007;26(28):4148-57.
    [Rev31]OkunoM,Kojima S,Matsushima-Nishiwaki R,et al.Rrtinoids in cancer chemoprevention.Curr Cancer Drug Targets,2004,4(3):285-298.
    [Rev32]Candoni A,Damiani D,Michelutti A,et al.Clinical characteristics,prognostic factors and multidrug-resistance related protein expression in 3adult patients with acute promyelocytic leukemia.Eur J Haematol,2003,71(1):1-8.
    [Rev33]O'DwyerME,MauroMJ,DrukerBJ·Recentadvancements in the treatment of chronic myelogenous leukemia·Annu RevMed,2002,53:369-381.
    [Rev34]DeiningerMW,O'Brien SG,Ford JM,etal.Praticalmanagementof patients with chronic myeloid leukemia receiving Imatinib.J Clin Onco,l 2003,21(8):1637-1647.
    [Rev35]RostiG,Trabacchi E,Bassi S,et al.Risk and early cytogenetic response to Imatinib and interferon in chronicmyeloid leukemia-Haematologica,2003,88(3):256-259.
    [Rev36]La Rosee P,O'DwyerME,Druker BJ.Insights from pre-clinical studies for new combination treatment regimenswith the Bcr-Ablkinase inhibitor imatinib mesylate(Gleevec/Glivec) in chronic myelogenous leukemia:a translational perspective·Leukemia,2002,16(7):1213-1219.
    [Rev37]W inickNJ,CarrollW L,Hunger SP.Childhood leukemia-new advances and challenges.N EnglJMed,2004,351(6):601-603
    [Rev38]PuiCH,EvansWE.Treatmentofacute lymphoblastic leukemia[RevJ].N EnglJMed,2006,354(2):166-178.
    [Rev39]姜尔烈,韩明哲.异基因造血干细胞移植治疗慢性髓系白血病的现状和进展.国外医学输血及血液学分册2005年第28卷第4期.349-351.
    [Rev40]Druker BJ.O'Brien SG,Cortes J.et al.Chronic myelogenous leukemia.Hematology,2002,111-135.
    [Rev41]Goldman JM,Marin D.Managament decisions in chronic myeloid leukemia.Semin Hematol.2003,40(1):97-103.
    [Rev42]Choudhury BA,Liang JC,Thomas EK,et al.Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous,antileukemic T-cell responses.Blood,1999,93(3)780-786.
    [Rev43]Osman Y,Takahashi M,Zheng Z,et al.Activation of autologous or HLA-identical sibling cytotoxic T lymphocytes by blood derived dendritic cells pulsedwith tumor cell extracts.Oncol Rep,1999,6(5):1057-1063.
    [Rev44]Koh CY,Blazar BR,George T,et al.Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo.Blood,2001,97(10):3132-3137.
    [Rev45]Parham P,McQueen KL.Alloreactive killer cells:hindrance and help for haematopoietic transplants[RevJ].Nat Rev Immunol,2003,3(2):108-122.
    [Rev46]Collins RH Jr,Shpilberg O,Drobyski WR,et al.Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation.J Clin Oncol,1997,15(2):433-440.
    [Rev47]Slavin S,Nagler A,Naparstek E,et al.Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases.Blood,1998,91(3):756-763.
    [Rev48]Dazzi F,Szydlo RM,Cross NC,et al.Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia.Blood,2000,96(8):2712-2716.
    [Rev49]周晓宏,童春容.自体细胞因子诱导的杀伤细胞治疗急性B淋巴细胞白血病22例临床观察.河北医学,2003,9(4):306-308.
    [Rev50]杨永红,李惠芳,石永进,等.转mdr1基因诱导CIK细胞耐药并保持肿瘤杀伤活性.中华血液学志,2003,24(12):617-620
    [Rev51]Moriguchi Y,Kan N,Okino T,et al.The effectiveness of active specific immunotherapy using interferon-gamma-gene-transducered tumor cells in a murine tumor model[RevJ].Surg Today,1997,27(3):571-573.
    [Rev52]Dunussi-Joannppoulos K,Dranoff G,Weinstein HJ,et al.Gene therapy in murine acute myeloid leukemia:grannulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7family and other cytokine vaccines.Blood,1998,91(1):222-230.
    [Rev53]Gabrilovich DI,Giemik IF,Carbone DP,et al.Dendritic cells in antitumor immune response.I.Defective antigen presentation in tumor-bearing hosts.Cell Immunol,1996,170(1):101-110.
    [Rev54]Celluzzi GM,Falo LD.Cutting Edge:physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor refection.J Immunol,1998,160(5):3081-3086.
    [Rev55]Krug A,Rothenfusser S,Hornung V,et al.Novel roles of CpG oligodeoxynucleotides as a leader for the sampling and presentation of CpG-tagged antigen by dendritic cells.J Immunol,2001,167(1):66-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700