用户名: 密码: 验证码:
基于NLP建模的ICPT系统参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输(Inductively Coupled Power Transfer,ICPT)技术是一种集现代电力变换技术、控制技术、磁耦合技术等于一体的新型电源接入传输技术,具有安全、可靠、灵活、高效、易维护等优点,克服了传统有线电能传输的诸多问题,开创了电能接入的新方式。尽管ICPT技术具有广阔的应用前景,仍存在许多关键问题未得到很好地解决,如频率稳定性、参数全局优化、软开关控制等问题,特别是在参数优化方面一直缺乏一种有效的能综合考虑多方面因素的全局优化方法。
     在ICPT系统参数优化方面,传统的“三要素”法、图示估计法、迭代逐个优化法等存在的主要缺点有:
     1、是一类局部优化方法,考虑的因素较少;
     2、主要采用“求导”的方法得到连续函数的极点来作为最优值,不能用于离散函数优化问题,适应面窄;
     3、优化方法效率低,参数设计周期长;
     4、最优参数的最优性不强,参数难以达到同时最优。
     针对传统方法的不足,本文引入了非线性规划(Nonlinear Programming,NLP)的思想,并采用智能优化算法来得到系统的全局最优参数。新的全局优化方法具有如下特点:
     1、是一种能综合考虑多种因素的全局优化方法;
     2、是目前在软开关条件下考虑系统频率稳定性问题解决复杂拓扑参数优化的一种有效方法;
     3、是一种能扩展到各种拓扑的通用型优化方法;
     4、具有开放性,能加入更多的要素;
     5、优化方法效率高,一次优化能得到所有参数的最优解或得到多种最优参数组合方案;
     6、最优解质量高,能使各参数同时达到最优。
     总体结构以“全局优化”为目标,以“NLP建模”及“约束优化”为2个关键点,将参数优化过程分为NLP建模及模型优化处理两部分。首先,为了更好地建立系统的规划模型,以电压型ICPT系统为例,分别对4种典型拓扑的输入输出关系及频率稳定性等进行了研究,得到了一些不同于传统观点的新特性。其次,针对ICPT系统的特点提出了将具体的电路模型抽象为一般的规划模型的基本规则,即需要考虑的各种因素;并结合系统特性基于优化思想提出了4种NLP建模方法,为引入优化方法来处理多参数多约束问题打好基础。接着,在对NLP模型进行优化处理过程中,发现了一类难点问题即约束优化问题,以该问题为出发点对约束处理方法进行了系统研究,在一些经典算法的基础上,结合其他优化策略,分别提出了一种改进型自适应罚函数法及一种改进型多目标优化法。最后,通过一个ICPT系统参数优化实例,对2种改进算法、交流阻抗NLP建模方法及大范围频率稳定等特性进行仿真及实验验证。
     文章主要贡献及创新点有:
     1、为了提高参数设计的合理性及可靠性,对ICPT系统输入输出等特性进行了研究,得到了一些有利于参数优化建模的新观点:ICPT原边输入采用恒流或恒压设计方式应该根据负载输出恒流或恒压特性进行选择,负载输出特性为恒流源或恒压源应该根据系统的整体结构来判断。
     2、在传统频率稳定性问题研究基础上,进一步研究了电压型ICPT系统在分叉域内的频率稳定性问题,分析了4种典型拓扑在分叉域内的不同规律,得到了系统在频率分叉域内不一定不稳定的结论,即频率分叉域内系统的谐振频率有可能保持为最佳谐振频率点不变,降低了NLP模型中频率稳定性条件的约束强度。
     3、为了合理、全面、规律地建立规划模型,提出了ICPT系统NLP规划的建模规则,即需要考虑频率稳定性条件、参数的额定值约束、系统品质因数约束、器件的实际限制条件、参数间相互关系约束等主要因素。
     4、为了实现ICPT系统由具体电路模型向数学规划模型转换,基于ICPT电路分析的常用方法及优化算法的基本思想,提出了交流阻抗NLP模型、广义状态空间平均NLP模型、时域微分NLP模型、基于仿真的综合NLP模型4种规划模型,以更好地利用优化领域的研究成果得到系统全局最优参数。
     5、针对自适应罚函数法在处理约束优化问题中存在全局搜索能力、收敛性、鲁棒性等方面的不足,采用了排序归一化策略、自适应权重罚系数策略、动态精英保留策略3点改进,提出了一种改进的自适应罚函数法。
     6、为了提高多目标优化法的约束处理能力、全局收敛性能、最优解的稳定性、算法的鲁棒性等,采用4种策略即猫映射混沌初始化、自适应拉普拉斯交叉算子、按需分层机制、隔代交替的约束处理策略对其进行了改进,提出了一种改进的多目标优化法。
Inductively coupled power transfer (ICPT) technology is a new wireless powertransfer technology by combination of modern power conversion, control and magneticcoupling techniques, and has the advantage of security, reliability, flexibility, highefficiency, and easy maintenance, it overcomes many shortcomings brought by thetraditional power transmission with cable and a new method has been opened up.Although the ICPT technology has broad application prospects, there are still many keyissues have not been a good solution, in particular, there has always been a lack of aneffective comprehensive consideration of various factors in ICPT parameteroptimization aspect.
     In ICPT parameter optimization design aspect, the traditional ‘three-factor’ method,icon estimation method, iteration individually optimization method etc. have thefollowing disadvantages:
     1. They are local optimization ways considering little factors.
     2. Using ‘derivation’ as the main method to find the pole of a continuous functionas the optimal value, the application adaptation is so narrow that they are not capable ofdiscrete function.
     3. Operation efficiency is low and the design cycle is long.
     4. Quality of the optimal solution is low, parameters are difficult to achieve optimalsimultaneously.
     For shortcomings of traditional methods, this paper introduces the NLP thoughtand using intelligent optimization algorithm to get global optimal system parameters.New global optimization method has the following characteristics:
     1. It is a comprehensive consideration of various factors open global optimizationmethod.
     2. It is an effective way to solve parameter optimization problems of complextopologies considering the frequency stability in soft-switching conditions nowadays.
     3. It is a general optimization method can be extended to a variety of topologies.
     4. It is an open method that can add more factors.
     5. The optimization method is high efficiency that can get the optimal solution forall parameters or get many combination programs of optimal parameters in one time.
     6. The optimal solution with high quality can achieve various parameters optimal at the same time.
     Overall structure of this article is taking ‘optimization’ as the only goal, taking‘NLP model’ and ‘constrained optimization’ as two key problems, separating theoptimization process into NLP modeling and model optimization handing two parts.First, in order to establish the programming model in a better way, taking voltage-fedICPT system as examples, we studied the input-output relationship and frequencystability issues of four typical topologies, some new features different from traditionalview were brought up. Second, based on the characteristics of ICPT system, weproposed a general principle that transfer specific circuit model into general NLP model,i.e. the various factors needed to consider. Combining system features and based onoptimization idea, four different NLP modeling method was proposed in order to lay agood foundation to deal with the multi-parameter multi-constraint problems. Third,there is a class of difficult problems in the process of sloving model optimizationproblems, i.e. constrained optimization problem, then, taking this problem as a startingpoint we made a systematic research to constraint handing methods, based on someclassical algorithm, combining with other optimization strategies, an inproved adaptivepenalty function method and an modified multi-objective optimization method wereproposed. Finally, the two improved methods and an AC impedance NLP modelingmethod and characteristics such as a wide range of frequency stability etc. were provedby simulation and experiments of an ICPT system parameter optimizaton instance.
     Major contribution and innovation of this paper are as follows:
     1. In order to improve the rationality and reliability of parameter design, ICPTsystem input-output characteristics etc. were studied, some new perspectives can helpparameter optimization modeling were summarized. ICPT primary input constantcurrent or constant voltage design should be selected according to the load outputconstant current or constant voltage characteristics. The output characteristics of theconstant current source or constant voltage source should be based on the overallstructure of the system to determine.
     2. Based on the traditonal research of frequency stability problem, a further studyof frequency stability problem in bifurcation region of the voltage-fed ICPT systemswas taken, the different laws of four typical topologies were analysed, it is concludedthat system frequency is not necessarily unstable in bifurcation domain especially forcomplex topologies, i.e. system resonant frequency in bifurcation frequency domainmay remain as the best resonant frequency unchanged, made the constraint strength of frequency stability condition in NLP model less strict.
     3. To be reasonable, comprehensive, regularly to establish programming model, aNLP modeling rule of ICPT system was proposed, i.e. some main factors such asfrequency stability, parameter rating, system quality factor, practical limitations ofdevices and relationship between parameters etc. need to be considered.
     4. In order to achieve the conversion from specific circuit model to mathematicalprogramming model for ICPT systems, based on the common method of ICPT systemanalysis and the basic idea of optimization algorithms, the four programming modelsthat is the AC impedance NLP model, the generalized state space averaging NLP model,the time domain differential NLP model, the integrated NLP model based on simulationwas proposed, so that it can make better use of the research achievement in optimizationfield.
     5. For a more advanced adaptive penalty function method still has shortcomings todeal with constrained optimization problems in global search capability, convergenceand robustness etc. aspects, based on it a improved adaptive penalty function wasproposed in three aspects i.e. the sort normalization strategy, the adaptive weightpenalty coefficient strategy, and dynamic elitist strategy.
     6. In order to improve constraint handing capacity, global convergenceperformance, stability of the optimal solution and robustness of the algorithm of amulti-objective optimization method, a modified multi-objective optimization problemwas proposed and it has four improvement aspects i.e. the cat mapping chaosinitialization strategy, the adaptive Laplace crossover operator, the demand tieredmechanism and the generational alternating constraint handling strategy.
引文
[1]戴卫力,费峻涛,肖建康等.无线电能传输技术综述及应用前景[J].电气技术,2010(07):1-6.
    [2] Hu A P. Selected resonant converters for IPT power supplies[D]. Auckland: The University ofAuckland,2001.
    [3]柏杨,黄学良,邹玉炜等.基于超声波的无线电能传输的研究[J].压电与声光,2011(02):324-327.
    [4]张建华,黄学良,邹玉炜等.利用超声波方式实现无线电能传输的可行性的研究[J].电工电能新技术,2011(02):66-69.
    [5] Chao L, Hu A P, Nair N K C, et al.2-D alignment analysis of capacitively coupled contactlesspower transfer systems[C]. Energy Conversion Congress and Exposition (ECCE),2010IEEE.2010.652-657.
    [6] Chao L, Hu A P, Budhia M. A generalized coupling model for Capacitive Power Transfersystems[C].36th Annual Conference on IEEE Industrial Electronics Society.2010.274-279.
    [7]杨民生,王耀南.新型无接触感应耦合电能传输技术研究综述[J].湖南文理学院学报(自然科学版),2010,22(1):44-53.
    [8] Wu H H, Gilchrist A, Sealy K, et al. A review on inductive charging for electric vehicles[C].IEEE International Electric Machines&Drives Conference.2011.143-147.
    [9] Abdolkhani A, Hu A P. A novel detached magnetic coupling structure for contactless powertransfer[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.1103-1108.
    [10]王天宇.基于松耦合变压器的大功率感应电能传输技术研究[D].哈尔滨工业大学,2010.
    [11]严沁.感应耦合能量传输系统关键技术的研究[D].东华大学,2010.
    [12] Mcdonough M, Shamsi P, Fahimi B. Application of multi-port power electronic interface forcontactless transfer of energy in automotive applications[C]. IEEE Vehicle Power andPropulsion Conference.2011.1-6.
    [13] Kissin M L G, Hao H, Covic G A. A practical multiphase IPT system for AGV and roadwayapplications[C]. IEEE Energy Conversion Congress and Exposition.2010.1844-1850.
    [14] Robertson D, Chu A, Sabitov A, et al. High power IPT stage lighting controller[C]. IndustrialElectronics (ISIE),2011IEEE International Symposium on.2011.1974-1979.
    [15] Chopra S, Bauer P. On-road contactless power transfer-case study for driving rangeextension of EV[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.4596-4602.
    [16]周煜,于歆杰,程锦闽等.用于心脏起搏器的经皮能量传输系统[J].电工技术学报,2010,25(03):48-53.
    [17]周煜,于歆杰,李臻等.无线经皮能量传输系统的试验研究和分析[J].电工技术学报,2010,25(7):14-18.
    [18]张巍,陈乾宏,曹玲玲.植入式设备非接触电能传输系统的研究进展[J].电源学报,2011(04):36-45.
    [19]徐磊.并联谐振型非接触通用供电平台设计与实现[D].郑州:郑州大学,2006.
    [20] Hui S Y R, Ho W W C. A new generation of universal contactless battery charging platformfor portable consumer electronic equipment[J]. IEEE Transactions on Power Electronics,2005,20(3):620-627.
    [21]张凯.非接触供电技术及其水下应用研究[D].国防科学技术大学,2008.
    [22]张强,王玉峰.海洋浮标的非接触式电能与数据传输[J].仪器仪表学报,2010(11):2615-2621.
    [23]张旭.感应耦合式电能传输系统的理论与技术研究[D].北京:中国矿业大学,2011.
    [24]周雯琪.感应耦合电能传输系统的特性与设计研究[D].杭州:浙江大学,2008.
    [25]张凯,潘孟春,翁飞兵等.感应耦合电能传输技术的研究现状与应用分析[J].电力电子技术,2009(03):76-78.
    [26] Pantic Z, Bai S, Lukic S M. ZCS LCC-Compensated Resonant Inverter forInductive-Power-Transfer Application[J]. IEEE Transactions on Industrial Electronics,2011,58(8):3500-3510.
    [27] Tang C S, Dai X, Wang Z H, et al. Frequency bifurcation phenomenon study of a softswitched push-pull contactless power transfer system[C]. IEEE Conference on IndustrialElectronics and Applications.2011.1981-1986.
    [28]杨民生,王耀南,欧阳红林等.基于可控电抗器的无接触电能传输系统动态补偿[J].电工技术学报,2009(05):183-189.
    [29]赵祖伟,赵彩霞,李贵强.一种并联谐振型ICPT电路频率稳定性控制方法[J].微计算机信息,2009(14):286-288.
    [30]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报,2008,28(3):119-124.
    [31] Liu W, Tang H J. Analysis of voltage source inductive coupled power transfer systems basedon zero phase angle resonant control method[C]. IEEE Conference on Industrial Electronicsand Applications. Harbin, China,2007:1873-1877.
    [32]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术,2005(02):44-47.
    [33]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59.
    [34] Wang C S, Covic G A, Stielau O H. Power Transfer Capability and Bifurcation Phenomena ofLoosely Coupled Inductive Power Transfer Systems[J]. IEEE Transactions on IndustrialElectronics,2004,51(1):148-157.
    [35]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [36] Wang C S, Covic G A, Stielau O H. General stability criterions for zero phase anglecontrolled loosely coupled inductive power transfer systems[C].27th Annual Conference ofthe IEEE Industrial Electronics Society. Denver, CO, United states:2001.1049-1054.
    [37] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfersystems[J]. Electric Power Applications,2000,147(1):37-43.
    [38] Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonantconverter for ICPT power supplies[C]. International Conference on Power SystemTechnology.2000.327-332.
    [39] Chopra S, Bauer P. Analysis and design considerations for a contactless power transfersystem[C]. IEEE33rd International Telecommunications Energy Conference.2011.1-6.
    [40]牛王强,沈爱弟,顾伟等.可变负载非接触电能传输系统的无功功率补偿[J].上海海事大学学报,2011(01):49-53.
    [41] Ma H, Zhou W Q. Modeling a current source push-pull resonant converter for loosely coupledpower transfer systems[C].30th Annual Conference of IEEE Industrial Electronics Society.Busan, Korea:2004.1024-1029.
    [42] Villa J L, Sallan J, Sanz Osorio J F, et al. High-Misalignment Tolerant CompensationTopology For ICPT Systems[J]. IEEE Transactions on Industrial Electronics,2012,59(2):945-951.
    [43] Hao L L, Hu A P, Covic G A. A Direct AC–AC Converter for Inductive Power-TransferSystems[J]. IEEE Transactions on Power Electronics,2012,27(2):661-668.
    [44] Hao H, Covic G, Kissin M, et al. A parallel topology for inductive power transfer powersupplies[C].26th Annual IEEE Applied Power Electronics Conference and Exposition.2011.2027-2034.
    [45] Hao H, Covic G, Kissin M, et al. A parallel topology for inductive power transfer powersupplies[C].26th Annual IEEE Applied Power Electronics Conference and Exposition.2011.2027-2034.
    [46]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009(01):133-139.
    [47] Xun L, Ng W M, Lee C K, et al. Optimal operation of contactless transformers with resonancein secondary circuits[C].23rd Annual IEEE Applied Power Electronics Conference andExposition.2008.645-650.
    [48] Zhou W Q, Ma H. Design considerations of compensation topologies in ICPT system[C].IEEE Applied Power Electronics Conference and Exposition. Anaheim, CA, United states:Institute of Electrical and Electronics Engineers,2007.985-990.
    [49] Fernandez C, Garcia O, Prieto R, et al. Overview of different alternatives for the contact-lesstransmission of energy[C].28th Annual Conference of the IEEE Industrial Electronics Society.Sevilla, Spain:2002.1318-1323.
    [50]唐春森.非接触电能传输系统软开关工作点研究及应用[D].重庆:重庆大学,2009.
    [51]孙跃,李砚玲.非接触传输系统的广义状态空间平均法分析[J].同济大学学报(自然科学版),2010(10):1521-1524.
    [52] Madawala U K, Thrimawithana D J. A ring inductive power transfer system[C]. IEEEInternational Conference on Industrial Technology.2010.667-672.
    [53]杨民生,王耀南,欧阳红林.新型恒定一次侧电流无接触电能传输系统的建模与优化(英文)[J].中国电机工程学报,2009(04):34-40.
    [54] Zhou W Q, Ma H. Steady-state analysis of the inductively coupled power transfer system[C].32nd Annual Conference on IEEE Industrial Electronics. Paris, France:2006.2438-2443.
    [55]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005(10).
    [56]孙跃,戴欣,苏玉刚等.广义状态空间平均法在CMPS系统建模中的应用[J].电力电子技术,2004(03):86-88.
    [57] Wang C S, Stielau O H, Covic G A. Load models and their application in the design of looselycoupled inductive power transfer systems[C]. International Conference on Power SystemTechnology.2000.1053-1058.
    [58] Rao K S R, Chew C K. Simulation and design of a dc-dc synchronous converter by intelligentoptimization techniques[C]. International Conference on Intelligent and Advanced Systems.Kuala Lumpur, Malaysia: IEEE Computer Society,2010.
    [59]戴欣.软开关变换电路离散映射建模方法及非线性行为研究[D].重庆:重庆大学,2006.
    [60] Keeling N A, Covic G A, Boys J T. A Unity-Power-Factor IPT Pickup for High-PowerApplications[J]. IEEE Transactions on Industrial Electronics,2010,57(2):744-751.
    [61] Keeling N A, Boys J T, Covic G A. Unity power factor inductive power transfer pick-up forhigh power applications[C].34th Annual Conference of IEEE Industrial Electronics.2008.1039-1044.
    [62] Egan M G, O'Sullivan D L, Hayes J G, et al. Power-Factor-Corrected Single-Stage InductiveCharger for Electric Vehicle Batteries[J]. IEEE Transactions on Industrial Electronics,2007,54(2):1217-1226.
    [63] Madawala U K, Thrimawithana D J. New technique for inductive power transfer using asingle controller[J]. IET Power Electronics,2012,5(2):248-256.
    [64] Wu H H, Covic G, Boys J. A low energy storage IPT system using AC processingcontrollers[C]. IEEE Conference on Industrial Electronics and Applications.2011.351-356.
    [65] Wu H H, Boys J, Covic G, et al. A practical1.2kW Inductive Power Transfer lighting systemusing AC processing controllers[C].20116th IEEE Conference on Industrial Electronics andApplications (ICIEA),2011.345-350.
    [66] Judek S, Karwowski K. Analysis of inductive power transfer systems for variable air gap andvoltage supply frequency[C]. IEEE International Symposium on Industrial Electronics.2011.1963-1968.
    [67]赵志斌,孙跃,翟渊等.电压型CPT系统动态负载恒压输出研究[J].华中科技大学学报(自然科学版),2011(09):66-71.
    [68] Wu H H, Gilchrist A, Sealy K, et al. Design of Symmetric Voltage Cancellation Control forLCL converters in Inductive Power Transfer Systems[C]. IEEE International ElectricMachines&Drives Conference.2011.866-871.
    [69] James J E I, Chu A, Robertson D, et al. A series tuned high power IPT stage lightingcontroller[C]. IEEE Energy Conversion Congress and Exposition.2011.2843-2849.
    [70] Thrimawithana D J, Madawala U K, Neath M, et al. A sense winding based synchronizationtechnique for bi-directional IPT pick-ups[C]. IEEE Energy Conversion Congress andExposition.2011.1405-1410.
    [71] Dai X, Tao C, Tang C, et al. Study on robust controller design for inductively coupled powertransfer system[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.1614-1619.
    [72] Dai X, Tang C S, Sun Y, et al. Investigating a H∞control method considering frequencyuncertainty for CLC type Inductively Coupled Power Transfer system[C]. IEEE EnergyConversion Congress and Exposition.2011.2022-2027.
    [73]王智慧,孙跃,戴欣等. DC-AC型非接触电能传输系统变换器设计[J].重庆大学学报,2011(02):38-43.
    [74] Thrimawithana D J, Madawala U K. A primary side controller for inductive power transfersystems[C]. International Conference on Industrial Technology.2010.661-666.
    [75] Li H L, Hu A P, Covic G A. A power flow control method on primary side for a CPTsystem[C]. International Power Electronics Conference. Sapporo, Japan: Association forComputing Machinery,2010.1050-1055.
    [76]杨民生,刘亮,曾进辉等.基于模糊逻辑的感应耦合电能传输系统输出电压控制[C].International Conference on Power Electronics and Intelligent Transportation System.中国广东深圳:2010.9-12.
    [77] Kumar A, Hu A P. Linearly tuned wireless power pick-up[C]. IEEE International Conferenceon Sustainable Energy Technologies.2010.1-6.
    [78] Huang C Y, Boys J T, Covic G A, et al. Implementation and evaluation of an IPT batterycharging system in assisting grid frequency stabilisation through Dynamic DemandControl[C]. IEEE Vehicle Power and Propulsion Conference.2010.1-6.
    [79] Wu H H, Boys J T, Covic G A. An AC Processing Pickup for IPT Systems[J]. IEEETransactions on Power Electronics,2010,25(5):1275-1284.
    [80] Li H L, Hu A P, Covic G A. Current fluctuation analysis of a quantum ac-ac resonantconverter for contactless power transfer[C]. IEEE Energy Conversion Congress andExposition.2010.1838-1843.
    [81] Zaheer M, Patel N, Hu A P. Parallel tuned contactless power pickup using saturable corereactor[C]. IEEE International Conference on Sustainable Energy Technologies.2010.1-6.
    [82]苏玉刚,王小飞,唐春森等.非接触电能传输系统双模控制式交直交变换器[J].重庆大学学报,2010(08):12-16.
    [83]赵彪,陈希有,于庆广.用于非接触电能传输的自适应谐振技术原理[J].电工电能新技术,2010(02):33-37.
    [84] Li H L, Hu A P, Covic G A, et al. A new primary power regulation method for contactlesspower transfer[C]. IEEE International Conference on Industrial Technology. Churchill, VIC,Australia: Institute of Electrical and Electronics Engineers,2009.
    [85]孙跃,王智慧,苏玉刚等.电流型CPT系统传输功率调节方法[J].重庆大学学报,2009(12):1386-1391.
    [86] Si P, Hu A P, Malpas S, et al. A frequency control method for regulating wireless power toimplantable devices[J]. IEEE Transactions on Biomedical Circuits and Systems,2008,2(1):22-29.
    [87] Covic G A, Boys J T, Tam A M W, et al. Self tuning pick-ups for inductive power transfer[C].39th IEEE Annual Power Electronics Specialists Conference. Rhodes, Greece: Institute ofElectrical and Electronics Engineers,2008.3489-3494.
    [88] Chao Y H, Shieh J J, Pan C T, et al. A primary-side control strategy for series-parallel looselycoupled inductive power transfer systems[C]. IEEE Conference on Industrial Electronics andApplications. Harbin, China:2007.2322-2327.
    [89]崔明浩,卓放,王兆安.非接触感应电能传输系统中负载电压控制方案研究[C].中国电工技术学会电力电子学会第十届学术年会.中国陕西西安:2006.
    [90] Green A W, Boys J T.10kHz inductively coupled power transfer-concept and control[C].International Conference on Power Electronics and Variable-Speed Drives. London, UK: IEEConference Publication,1994.694-699.
    [91]王成,郭凤仪,张凤龙等.新型非接触电能传输系统的研究[J].电源技术,2011(11):1435-1437.
    [92]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆:重庆大学,2010.
    [93]肖冰,洪劲松,王秉中.无线输电传输效率的研究[C].2011年全国微波毫米波会议.中国山东青岛:2011.1689-1690.
    [94]杨芳勋,孙跃,赵志斌等.基于改进粒子群算法的ICPT配电系统规划[J].华中科技大学学报(自然科学版),2011,39(01):118-122.
    [95] Mcdonough M, Shamsi P, Fahimi B. Dynamic modeling of ICPT considering misalignmentand speed of vehicle[C]. IEEE Vehicle Power and Propulsion Conference.2011.1-6.
    [96]赵志斌,孙跃,周诗杰等.非接触电能传输系统参数优化的改进遗传解法[J].西安交通大学学报,2012,46(2):26-32.
    [97] Budhia M, Covic G, Boys J. Design and Optimisation of Circular Magnetic Structures forLumped Inductive Power Transfer Systems[J]. IEEE Transactions on Power Electronics,2011,PP(99):1.
    [98]孙跃,夏晨阳,赵志斌等.电压型ICPT系统功率传输特性的分析与优化[J].电工电能新技术,2011(02):9-12.
    [99] Zhang W, Wong S, Tse C K, et al. A study of sectional tracks in roadway inductive powertransfer system[C]. IEEE Energy Conversion Congress and Exposition.2011.822-826.
    [100] Xia C Y, Li C W, Zhang J. Analysis of power transfer characteristic of capacitive powertransfer system and inductively coupled power transfer system[C]. International Conferenceon Mechatronic Science, Electric Engineering and Computer.2011.1281-1285.
    [101]郑颖楠,陈红,张西恩.非接触电能传输系统的松耦合变压器实验研究[J].电工电能新技术,2011(01):64-68.
    [102]孙跃,夏晨阳,苏玉刚等.导轨式非接触电能传输系统功率和效率的分析与优化[J].华南理工大学学报(自然科学版),2010(10):123-129.
    [103] Mao Z X, Feng A M, Qin H H, et al. Characteristics and design of transformer in looselycoupled inductive power transfer system[C]. International Conference on Electrical andControl Engineering. Wuhan, China:2010.3454-3457.
    [104]马皓,孙轩.原副边串联补偿的电压型耦合电能传输系统设计[J].中国电机工程学报,2010,30(15):48-52.
    [105]孙跃,夏晨阳,戴欣等.感应耦合电能传输系统互感耦合参数的分析与优化[J].中国电机工程学报,2010(33):44-50.
    [106] Budhia M, Covic G, Boys J. A new IPT magnetic coupler for electric vehicle chargingsystems[C].36th Annual Conference on IEEE Industrial Electronics Society.2010.2487-2492.
    [107] Pantic Z, Bhattacharya S, Lukic S. Optimal resonant tank design considerations for primarytrack compensation in Inductive Power Transfer systems[C]. IEEE Energy ConversionCongress and Exposition.2010.1602-1609.
    [108] Dai X, Sun Y, Tang C S, et al. Dynamic parameters identification method for inductivelycoupled power transfer system[C]. IEEE International Conference on Sustainable EnergyTechnologies.2010.1-5.
    [109] Budhia M, Covic G, Boys J. Magnetic design of a three-phase Inductive Power Transfersystem for roadway powered Electric Vehicles[C]. IEEE Vehicle Power and PropulsionConference.2010.1-6.
    [110] Xia C Y, Sun Y, Su Y G, et al. Analysis and optimization on power transfer capability ofcontactless power transfer systems with multi-load[C]. World Congress on Intelligent Controland Automation.2010.3336-3341.
    [111]孙跃,夏晨阳,戴欣等. CPT系统效率分析与参数优化[J].西南交通大学学报,2010(06):836-842.
    [112]张巍,陈乾宏, Wong S C等.新型非接触变压器的磁路模型及其优化[J].中国电机工程学报,2010(27):108-116.
    [113] Villa J L, Sallan J, Llombart A, et al. Design of a high frequency Inductively Coupled PowerTransfer system for electric vehicle battery charge[J]. Applied Energy,2009,86(3):355-363.
    [114] Li H L, Hu A P, Covic G A, et al. Optimal coupling condition of IPT system for achievingmaximum power transfer[J]. Electronics Letters,2009,45(1):76-77.
    [115] Sallan J, Villa J L, Llombart A, et al. Optimal design of ICPT systems applied to electricvehicle battery charge[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2140-2149.
    [116] Xun L, Hui S Y. Optimal Design of a Hybrid Winding Structure for Planar Contactless BatteryCharging Platform[J]. IEEE Transactions on Power Electronics,2008,23(1):455-463.
    [117] Wang C S, Stielau O H, Covic G A. Design considerations for a contactless electric vehiclebattery charger[J]. IEEE Transactions on Industrial Electronics,2005,52(5):1308-1314.
    [118] Stielau O H, Covic G A. Design of loosely coupled inductive power transfer systems[C].International Conference on Power System Technology.2000.85-90.
    [119]戴欣,孙跃,苏玉刚等.非接触电能双向推送模式研究[J].中国电机工程学报,2010(18):55-61.
    [120] Madawala U K, Thrimawithana D J. A two-way inductive power interface for single loads[C].IEEE International Conference on Industrial Technology.2010.673-678.
    [121] Thrimawithana D J, Madawala U K. A three-phase bi-directional IPT system for contactlesscharging of electric vehicles[C]. IEEE International Symposium on Industrial Electronics.2011.1957-1962.
    [122] Madawala U K, Thrimawithana D J. Current sourced bi-directional inductive power transfersystem[J]. IET Power Electronics,2011,4(4):471-480.
    [123] Neath M J, Madawala U K, Thrimawithana D J. A new controller for bi-directional inductivepower transfer systems[C]. IEEE International Symposium on Industrial Electronics.2011.1951-1956.
    [124] Madawala U K, Thrimawithana D J. A Bi-directional Inductive Power Interface for ElectricVehicles in V2G Systems[J]. IEEE Transactions on Industrial Electronics,2011, PP(99):1.
    [125] Thrimawithana D J, Madawala U K, Francis A, et al. Magnetic modeling of a high-powerthree phase bi-directional IPT system[C].37th Annual Conference on IEEE IndustrialElectronics Society.2011.1414-1419.
    [126] Swain A K, Neath M J, Madawala U K, et al. A dynamic model for bi-directional InductivePower Transfer systems[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.1024-1029.
    [127]孙跃,王琛琛,唐春森等. CPT系统能量与信号混合传输技术[J].电工电能新技术,2010(04):10-13.
    [128] Rathge C, Kuschner D. High efficient inductive energy and data transmission system withspecial coil geometry[C]. Power Electronics and Applications,2009. EPE '09.13th EuropeanConference on.2009.1-8.
    [129] Tang C S, Sun Y, Su Y G, et al. Determining Multiple Steady-State ZCS Operating Points of aSwitch-Mode Contactless Power Transfer System[J]. IEEE Transactions on Power Electronics,2009,24(2):416-425.
    [130] Pantic Z, Sanzhong B, Lukic S M. ZCS LCC-Compensated Resonant Inverter forInductive-Power-Transfer Application[J]. IEEE Transactions on Industrial Electronics,2011,58(8):3500-3510.
    [131] Lu R G, Wang T Y, Mao Y H, et al. Analysis and design of a wireless closed-loop ICPTsystem working at ZVS mode[C].2010IEEE Vehicle Power and Propulsion Conference. Lille,France: IEEE Computer Society,2010.
    [132]孙跃,苏玉刚,戴欣等.适用于感应耦合电力传输系统的软开关模式功率变换器[C].四川省电工技术学会第七届学术年会.2003.69-70.
    [133]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报(自然科学版),2003(01):50-53.
    [134] Lorico A, Taiber J, Yanni T. Effect of inductive power technology systems on battery-electricvehicle design[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.4563-4569.
    [135] Raval P, Kacprzak D, Hu A P. A wireless power transfer system for low power electronicscharging applications[C]. IEEE Conference on Industrial Electronics and Applications.2011.520-525.
    [136]张巍.人体植入式非接触电能传输系统的研究[D].南京航空航天大学,2010.
    [137]张志博. wMPS测量系统激光器非接触电能传输设计[D].天津大学,2010.
    [138]张桂香,陈涛,胡芳.非接触式扭矩仪中的感应供电技术[J].仪表技术与传感器,2011(10):18-20.
    [139] Chen L J, Tong W I S, Meyer B, et al. A contactless charging platform for swarm robots[C].37th Annual Conference on IEEE Industrial Electronics Society.2011.4088-4093.
    [140]封阿明.基于全桥谐振变换器的非接触电能传输系统基本特性研究[D].南京航空航天大学,2011.
    [141]杨民生.基于DSP的非接触式电源系统的研究[D].湖南大学,2005.
    [142]武瑛.新型无接触供电系统的研究[D].中国科学院研究生院(电工研究所),2004.
    [143]戴欣,余奎,孙跃. CLC谐振型感应电能传输系统的H_∞控制[J].中国电机工程学报,2010(30):47-54.
    [144]孙跃,陈国东,戴欣等.非接触电能传输系统恒流控制策略[J].重庆大学学报,2008(07):766-769.
    [145] Valtchev S, Borges B V, Klaassens J B. Contactless energy transmission with optimalefficiency[C]. Proceedings of the200228th Annual Conference of the IEEE IndustrialElectronics Society. Sevilla, Spain: Institute of Electrical and Electronics Engineers ComputerSociety,2002.1330-1335.
    [146]林宁,姚缨英,李玉玲等.感应耦合电能传输系统的设计[J].浙江大学学报(工学版),2012,46(02):199-205.
    [147]吴燕玲,钟崴,童水光.锅炉尾部受热面子系统的遗传优化设计(英文)[J].中国电机工程学报,2010(8):56-62.
    [148]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [149]熊信银,吴耀武.遗传算法及其在电力系统中的应用[M].武汉:华中科技大学出版社,2004.
    [150]刘彦琴,孟向军,王曙鸿等.基于分层遗传算法的电力变压器优化设计[J].西安交通大学学报,2009(06):113-117.
    [151]赵曙光,王宇平,焦李成等.基于自适应遗传算法的无源电力滤波器综合优化方法[J].中国电机工程学报,2004(07).
    [152]雷英杰,张善文,李续武等. MATLAB遗传算法工具箱与应用[M].西安:西安电子科技大学出版社,2005.
    [153]玄光男,程润伟.遗传算法与工程设计[M].北京:科学出版社,2000.
    [154]王跃宣,刘连臣,牟盛静等.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005(1):103-106.
    [155]余文,李人厚.遗传算法对约束优化问题的研究综述[J].计算机科学,2002(6):98-101.
    [156]牟锦辉,苏三买.约束优化问题的混合遗传算法研究[J].计算机仿真,2009(8):184-187.
    [157] Coello C A C. Theoretical and numerical constraint-handling techniques used withevolutionary algorithms: a survey of the state of the art[J]. Computer Methods in AppliedMechanics and Engineering,2002,191(11-12):1245-1287.
    [158] Kim H K, Chong J K, Park K Y, et al. Differential evolution strategy for constrained globaloptimization and application to practical engineering problems[J]. IEEE Transactions onMagnetics,2007,43(4):1565-1568.
    [159] Venkatraman S, Yen G G. A simple elitist genetic algorithm for constrained optimization[C].Congress on Evolutionary Computation.2004.288-295.
    [160]苏勇彦,王攀,范衠.一种基于新约束处理方法的遗传算法[J].计算机工程与应用,2007(14):71-72.
    [161] Omran M G H, Salman A. Constrained optimization using CODEQ[J]. Chaos, Solitons andFractals,2009,42(2):662-668.
    [162] Tessema B, Yen G G. An adaptive penalty formulation for constrained evolutionaryoptimization[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems andHumans,2009,39(3):565-578.
    [163] Zhu W X, Ali M M. Solving nonlinearly constrained global optimization problem via anauxiliary function method[J]. Journal of Computational and Applied Mathematics,2009,230(2):491-503.
    [164] Tsoulos I G. Solving constrained optimization problems using a novel genetic algorithm[J].Applied Mathematics and Computation,2009,208(1):273-283.
    [165] Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methodsin Applied Mechanics and Engineering,2000,186(2-4):311-338.
    [166] Zhang M, Geng H T, Luo W J, et al. A novel search biases selection strategy for constrainedevolutionary optimization[C]. IEEE Congress on Evolutionary Computation. Vancouver, BC,Canada:2006.1845-1850.
    [167] Liu H, Cai Z X, Wang Y. A new constrained optimization evolutionary algorithm by usinggood point set[C]. IEEE Congress on Evolutionary Computation. Singapore:2008.1247-1254.
    [168] Bansal S, Mani A, Patvardhan C. Is stochastic ranking really better than feasibility rules forconstraint handling in evolutionary algorithms?[C]. World Congress on Nature andBiologically Inspired Computing. Coimbatore, India: IEEE Computer Society,2009.1564-1567.
    [169] Gao Y G, Song D Y. A new improved genetic algorithms and its property analysis[C].International Conference on Genetic and Evolutionary Computing. Guilin, China: IEEEComputer Society,2009.73-76.
    [170] Mezura M E, Coello C A C, Tun M E I. Simple feasibility rules and differential evolution forconstrained optimization[C]. Third Mexican International Conference on ArtificialIntelligence. Mexico City, Mexico: Springer Verlag,2004.707-716.
    [171] Cui C G, Wu T J. Degree preserving based crossover for constrained optimizationproblems[C].20108th World Congress on Intelligent Control and Automation. Jinan, China:Institute of Electrical and Electronics Engineers,2010.3094-3099.
    [172] Takahama T, Sakai S. Constrained optimization by applying the alpha constrained method tothe nonlinear simplex method with mutations[J]. IEEE Transactions on EvolutionaryComputation,2005,9(5):437-451.
    [173] Ming Y C, Jong K H. Grouping-based evolutionary algorithm: seeking balance betweenfeasible and infeasible individuals of constrained optimization problems[C]. Congress onEvolutionary Computation.2004.280-287.
    [174] Venkatraman S, Yen G G. A Generic Framework for Constrained Optimization Using GeneticAlgorithms[J]. IEEE Transactions on Evolutionary Computation,2005,9(4):424-435.
    [175] Wu W H, Lin C Y. The second generation of self-organizing adaptive penalty strategy forconstrained genetic search[J]. Advances in Engineering Software,2004,35(12):815-825.
    [176] Coello C A C. Use of a self-adaptive penalty approach for engineering optimizationproblems[J]. Computers in Industry,2000,41(2):113-127.
    [177] Barbosa H J C, Lemonge A C C. An adaptive penalty scheme in genetic algorithms forconstrained optimization problems[C]. Genetic and Evolutionary Computation Conference.2002.287-294.
    [178] Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization[J].IEEE Transactions on Evolutionary Computation,2003,7(5):445-455.
    [179] Lin C Y, Wu W H. Self-organizing adaptive penalty strategy in constrained genetic search[J].Structural and Multidisciplinary Optimization,2004,26(6):417-428.
    [180] Ebenau C, Rottschafer J, Thierauf G. An advanced evolutionary strategy with an adaptivepenalty function for mixed-discrete structural optimisation[J]. Advances in EngineeringSoftware,2005,36(1):29-38.
    [181] Schlüter M, Gerdts M. The oracle penalty method[J]. Journal of Global Optimization,2010,47(2):293.
    [182]吴亮红,王耀南,周少武等.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007(3):128-133.
    [183] Yeniay O. Penalty function methods for constrained optimization with genetic algorithms[J].Mathematical and Computational Applications,2005,10(1):45-56.
    [184] M Z, Huang C C, A S. Penalty Function Method for Peer Selection over Wireless MeshNetwork[C].2010IEEE72nd Vehicular Technology Conference Fall.2010.1-5.
    [185] Angantyr A, Andersson J, Aidanpaa J O. Constrained optimization based on a multiobjectiveevolutionary algorithm[C]. Congress on Evolutionary Computation.2003.1560-1567.
    [186] Mezura M E, Coello C A C. A survey of constraint-handling techniques based on evolutionarymultiobjective optimization[C].2006.1-18.
    [187] Kurpati A, Azarm S, Wu J. Constraint handling improvements for multiobjective geneticalgorithms[J]. Structural and Multidisciplinary Optimization,2002,23(3):204-213.
    [188] Gong W Y, Cai Z H. A multiobjective differential evolution algorithm for constrainedoptimization[C]. IEEE Congress on Evolutionary Computation. Hong Kong, China: Inst. ofElec. and Elec. Eng. Computer Society,2008.181-188.
    [189] Coello C A C. Constraint-handling using an evolutionary multiobjective optimizationtechnique[J]. Civil Engineering and Environmental Systems,2000,17(4):319-346.
    [190] Flores M J I, Mezura M E. Dynamic adaptation and multiobjective concepts in a particleswarm optimizer for constrained optimization[C]. IEEE Congress on EvolutionaryComputation. Hong Kong, China: Inst. of Elec. and Elec. Eng. Computer Society,2008.3427-3434.
    [191] Liu H L, Wang Y P. Solving constrained optimization problem by a specific-designmultiobjective genetic algorithm[C]. Fifth International Conference on ComputationalIntelligence and Multimedia Applications.2003.200-205.
    [192] Liu C A. New Multi-objective Genetic Algorithm for Nonlinear Constrained OptimizationProblems[C]. IEEE International Conference on Automation and Logistics. Jinan, China:2007.118-120.
    [193] Liu C A. New method for solving a class of dynamic nonlinear constrained optimizationproblems[C]. Sixth International Conference on Natural Computation.2010.2400-2402.
    [194] Li M S, Zeng P H, Zhong R W, et al. A Complex-genetic algorithm for solving constrainedoptimization problems[C]. International Conference on Machine Learning and Cybernetics.Kunming, China:2008.869-873.
    [195] Zhao Y X, Xiong S W, Li M F. Constrained Single-and Multiple-Objective Optimization withDifferential Evolution[C]. International Conference on Natural Computation.2007.451-455.
    [196] Hernández Aguirre A, Botello Rionda S, Lizárraga Lizárraga G, et al. IS-PAES: aconstraint-handling technique based on multiobjective optimization concepts[C]. Springer,2003.70.
    [197] Aguirre A H, Rionda S B, Coello Coello C A, et al. Handling constraints using multiobjectiveoptimization concepts[J]. International Journal for Numerical Methods in Engineering,2004,59(15):1989-2017.
    [198] Summanwar V S, Jayaraman V K, Kulkarni B D, et al. Solution of constrained optimizationproblems by multi-objective genetic algorithm[J]. Computers&Chemical Engineering,2002,26(10):1481-1492.
    [199]朱学军,攀登,王安麟等.混合变量多目标优化设计的Pareto遗传算法实现[J].上海交通大学学报,2000(3).
    [200] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [201] Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective EvolutionaryOptimization[J]. Evolutionary Multi-Criterion Optimization,2001,1993:284-298.
    [202] Hu Y B, Wang Y P, Guo F Y. A new penalty based genetic algorithm for constrainedoptimization problems[C]. International Conference on Machine Learning and Cybernetics.Guangzhou, China:2005.3025-3029.
    [203] Barbosa H J C, Lemonge A C C. A new adaptive penalty scheme for genetic algorithms[J].Information SciencesEvolutionary Computation,2003,156(3-4):215-251.
    [204] Runarsson T P, Yao X. Search biases in constrained evolutionary optimization[J]. IEEETransactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2005,35(2):233-243.
    [205] Mu S J, Su H Y, Chu J, et al. An infeasibility degree selection based genetic algorithms forconstrained optimization problems[C]. IEEE International Conference on Systems, Man andCybernetics.2003.1950-1954.
    [206] Koppen M. No-free-lunch theorems and the diversity of algorithms[C]. Congress onEvolutionary Computation. Portland, OR, United states: Institute of Electrical and ElectronicsEngineers,2004.235-241.
    [207] Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use ofdominance-based tournament selection[J]. Advanced Engineering Informatics,2002,16(3):193-203.
    [208]李砚玲,孙跃,戴欣. π型感应电能传输系统的鲁棒稳定性分析[J].湖南大学学报(自然科学版),2011(10):50-55.
    [209]李砚玲,孙跃,戴欣等. π型谐振IPT系统的混合灵敏度H_∞鲁棒控制[J].华南理工大学学报(自然科学版),2011(02):12-19.
    [210]胡友强,戴欣.基于电容耦合的非接触电能传输系统模型研究[J].仪器仪表学报,2010(09):2133-2139.
    [211]戴欣,周继昆,孙跃.具有频率不确定性的π型谐振感应电能传输系统H_∞控制方法[J].中国电机工程学报,2011(30):45-53.
    [212]美凯利维茨.演化程序-遗传算法和数据编码的结合[M].北京:科学出版社,2000.
    [213]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.
    [214] Huang Z J, Wang C G, Tian H. A genetic algorithm with constrained sorting method forconstrained optimization problems[C]. IEEE International Conference on IntelligentComputing and Intelligent Systems. Shanghai, China:2009.806-811.
    [215] Mezura M E, Coello C A C. Adding a diversity mechanism to a simple evolution strategy tosolve constrained optimization problems[C]. The2003Congress on EvolutionaryComputation.2003.6-13.
    [216] Sanders S R, Noworolski J M, Liu X Z, et al. Generalized averaging method for powerconversion circuits[J]. IEEE Transactions on Power Electronics,1991,6(2):251-259.
    [217] Bhat A K S. A generalized steady-state analysis of resonant converters using two-port modeland Fourier-series approach[J]. IEEE Transactions on Power Electronics,1998,13(1):142-151.
    [218]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008.
    [219] Deep K, Thakur M. A new crossover operator for real coded genetic algorithms[J]. AppliedMathematics and Computation,2007,188(1):895-911.
    [220]唐云岚,赵青松,高妍方等. Pareto最优概念的多目标进化算法综述[J].计算机科学,2008(10):25-27.
    [221]郑强.带精英策略的非支配排序遗传算法的研究与应用[D].浙江大学,2006.
    [222]陈婕,熊盛武,林婉如. NSGA-Ⅱ算法的改进策略研究[J].计算机工程与应用,2011(19):42-45.
    [223] Cai Z, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrainedoptimization[J]. IEEE Transactions on Evolutionary Computation,2006,10(6):658-675.
    [224] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and thestrength Pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271.
    [225] Hammache A, Benali M, Aube F. Multi-objective self-adaptive algorithm for highlyconstrained problems: Novel method and applications[J]. Applied Energy,2010,87(8):2467-2478.
    [226] Patel R, Raghuwanshi M M, Malik L G. An Improved Ranking Scheme for Selection ofParents in Multi-Objective Genetic Algorithm[C].2011International Conference onCommunication Systems and Network Technologies (CSNT),2011.734-739.
    [227]刘旭红,刘玉树,张国英等.多目标优化算法NSGA-II的改进[J].计算机工程与应用,2005(15):73-75.
    [228] Deb K, Sinha A, Kukkonen S. Multi-objective test problems, linkages, and evolutionarymethodologies[C]. ACM,2006.1141-1148.
    [229] Kumar A, Sharma D, Deb K. A hybrid multi-objective optimisation procedure using PCXbased NSGA-II and sequential quadratic programming[C]. Proceedings of the Congress onEvolutionary Computation, Singapore,2007,3011-3018.
    [230]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007(12):146-151.
    [231] Yu X, Chu X. Improved Crowding Distance for NSGA-II[C].2011.
    [232] Liu H, Gu F. A improved NSGA-II algorithm based on sub-regional search[C]. IEEECongress on Evolutionary Computation.2011.1906-1911.
    [233]姚俊峰,梅炽,彭小奇.混沌遗传算法(CGA)的应用研究及其优化效率评价[J].自动化学报,2002(06):935-942.
    [234] Chen G, Mao Y, Chui C K. A symmetric image encryption scheme based on3D chaotic catmaps[J]. Chaos, Solitons&Fractals,2004,21(3):749-761.
    [235] Deb K, Sindhya K, Okabe T. Self-adaptive simulated binary crossover for real-parameteroptimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2007), UCL London,2007.1187-1194.
    [236]聂瑞,章卫国,李广文等.基于改进的NSGA-Ⅱ算法的飞机等效拟配[J].西北工业大学学报,2011(01):27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700