用户名: 密码: 验证码:
高效非线性优化算法在水环境系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境系统是一个无序的、非稳定的、非平衡的随机系统,不同元素之间往往存在着随机性、协同现象和相干效应。加上受天文、气象、气候、人文等众多方面的影响,水环境系统中的优化问题常常表现出高维、多峰值、不连续、非凸性、带噪声等特征,复杂程度已经远远超越了传统优化方法的处理能力。近些年来,虽然国内外已有不少专家致力于水环境优化问题的研究,但其理论和方法在实际应用上仍然有很大的局限性,造成了资源、资金的巨大浪费。
     因此,本文在总结了传统最优化方法的基础上,初步探讨了高效非线性优化算法存水环境系统中的应用,集中对非线性算法中较为常见的遗传算法、模拟退火算法和人工神经网络的理论、算法及模式进行了研究,并针对这些算法固有的缺点,结合模糊数学理论、单纯形法和小波分析,建立了改进的高效非线性优化方法。最后用于解决水污染控制系统规划、排放口优化、多目标综合规划、水质模型参数识别及水质预测等问题。研究结果表明:
     无论是确定性的水污染规划模型还是不确定性的水污染规划模型,非线性优化算法可以大大减少计算的复杂程度,并且可以很快搜索到全局最优解。优化结果与起始点选择无关,只要优化参数选取合适,该算法完全可以有效的求出最优解;
     多目标规划中,通过引入模糊数学理论,克服了传统优化算法中决策者直接给出最优权重的困难,避免对某些目标进行简单量化带来的误差和数据损失。计算结果表明,鉴于非线性算法全局寻优能力强和模糊非线性优化理论能够协调模糊变量间的关系等优点,使得求解过程更加简单,同时能够保证得到水污染控制系统多目标规划全局最优解;
     在对河流水质参数进行最优估值的时候,目标函数往往是一个复杂的非线性函数,尤其是当估计的参数较多时,目标函数可能会存在许多局部极值点,用常规的最优化方法难以实现。非线性优化算法及其改进算法既考虑了新点产生的随机性,又在一定程度上保证了搜索的整体性,从而加快了全局寻优速度,优化结果具有一定可信度;
     高效非线性优化算法的预测模型对于提高预测精度,合理反映历史数据的内部关系,对于指导环境决策部门制定战略或中长期环境规划目标等都具有十分重要的意义。与常规方法不同,该方法以实验数据为样本,利用网络的自学习和联想记忆能力对实验数据进行学习,具有极佳的函数逼近能力,能很好的拟合历史样本,达到识别各影响因子之间复杂的非线性映射关系,也为提高水质预测模型
    
    何之}:学位论文
    的精度和实用性J「辟了一条新的途径。
     将高效非线性算法应用于水环境系统中,可以协调各要素之间的关系,实现
    经济效益、环境效益和社会效益的统一,使水质规划、评价、预测建立在更加科
    学的基础之卜,提出合理的规划方案,从而为水质工作者提供一定的参考依据。
    可以预书},:动效一1卜线性优化方法将在环境科学优化领域中具有极为广阔的应用前
    !、卜
    声J互。
Water environmental system is unordered, unstable and non-equilibrium, where usually exists the randomicity, cooperative phenomena and coherent effects. However, due to the influences of many factors, such as chronometer, weather, climate and human science, the optimization problems in water environmental system are always high-dimensional, multi-peak, discontinuous, non-convex and with noise, which is so complicated that surpasses the abilities of traditional optimization methods. In recent years, more and more scholars commit themselves to the research of optimization problems in water environment system, the theories and methods of which are of limitations in practice use and result in the enormous waste of resource and funds finally.
    Therefore, the paper primarily explores the application of efficient non-linear algorithms in water environmental system and puts stress on the discussion of Genetic Algorithm (GA), Simulated Annealing (SA) and Artificial Nerve Network (ANN). Focusing on the defects of the algorithms mentioning above, the improved efficient non-linear algorithms are also proposed combining Fuzzy mathematics, Simplex algorithm and wavelet analysis. Eventually, the paper solves the programming in water pollution control system, the optimization of discharge fort, multi-objective programming, identifying of water quality models parameters and the prediction of water quality using the efficient non-linear algorithms. The results show that:
    The solving processes of certain or uncertain water pollution system programming models are simplified greatly by using non-linear algorithms. And global optimums can be found quickly. The results don't depend on initial values if the optimization parameters are appropriate selected;
    The difficulties of how to select the weights of each object and avoid the errors and losses by simplifying certain object ones in traditional methods can be solved by using Fuzzy mathematic theory. Combining the advantages of non-linear algorithms and Fuzzy theory, the improved algorithm corresponds the relations between each objects and gets the global optimums of multi-objective programming in water pollution controlling system;
    The objective functions are frequently complex and non-linear when estimating the parameters of water quality models. Especially, when many parameters are needed estimating, there will exist many local optimums in objective function, which is
    
    
    
    difficult to solve for traditional methods. Non-linear algorithms or improved algorithms considering the randomicity of the generation of new values and assuring the integrity of searching at some extents, will accelerate the speed of searching optimums;
    Efficient non-linear algorithms estimating models can raise the estimation precision and reflect the relations between historical data, which are much valuable for environmental decision department to establish the stratagem, metaphase'or long-term programming targets. Differing from traditional methods, the algorithm uses experimentation data as swatch and studies the data using the abilities of self-studying and memories, which is approximate to the swatch, distinguish the non-linear mapping between each influence factors and is a new approach to improve the precision and practicability in water quality estimation.
    The relationships between each factors can be corresponded, the unifying of economic benefits, environmental benefits and society benefits can be achieved and the water quality programming, evaluation and estimation will be more reliable by using efficient non-linear algorithms into water environmental system. Therefore, it's believed that non-linear algorithm would have its extensively applied prospect in the field of optimization in environmental science.
引文
[1]姚汝祥.水资源系统分析及应用.北京:清华大学出版社,1987,88-90
    [2]刘培同.环境科学基础.北京:化学工业出版社,1987,79-83
    [3]王华东.水环境污染概论.北京:北京师范大学出版社,1985,305-410
    [4]耿精忠.环境与健康.北京:华夏出版社,1993,20-23
    [5]孟繁是坚,杨汝均.环境系统工程导论.北京:烃加工出版社,1987,62-70
    [6]Hamed M M, Brfirny P B. On the performance of computational methods for the assessment of risk from ground-water contamination. Ground Water, 1997, 35(4): 638-646
    [7]王炳坤.现代环境科学概论.南京:南京大学出版社,1992,27-36
    [8]孙晓安.图象重建中的最优化方法.中国图像图形学报,1999,4(2):105-109
    [9]王卫.我国耕地保护的最优化分析.中国人口.资源与环境,1999,9(1):27-32
    [10]宋竞正,秦洪德.最优化方法在船舶运动预报中的应用.哈尔滨工程大学学报,2000,21(4):1-4
    [11]Sloss Leon. Nuclear employment policy and optimal exchange strategies. New York: Brassey's Defense Publishers, 1995, 198-204
    [12]张毕西.多品种离散型生产系统物流批量最优化分析.系统工程理论与实践,2000,5(9):21-25
    [13]林柏梁.铁路上带权重的车流路径优化方法.北方交通大学学报,1996,20(6):645-650
    [14]Nicolis G. Prigogine 1: self-organization in none-equilibrium systems. New York: John Wiley & Sons, 1997, 129-131
    [15]Haken H. Synergetics. New York: Springer, 1983, 207-216
    [16]Mabey W, Mill T. Critical review of hydrolysis of organic compounds in water under environmental conditionals. Phys. Chem., 1987, (7): 383-415
    [17]程声通,陈毓龄.环境系统分析.北京:高等教育出版社,1990,68-79
    [18]Rodriguze Iturbe I, Rinaldo A. Fractal river basin: chance and selforganization, UK: Cambridge University Press, 1997, 155-161
    [19]Schultz G A. A change of paradigm in environmental and water sciences at the turn of the century. In: Proceedings of International Conference on Water Resources and Environmental Research: Towards the 21 st Century. Kyoto, 1996, 1-20
    [20]Huang G H, Xia J. Barriers to sustainable of differented prediction approach and
    
    interval analysis for the prediction of weather variables under uncertainty. Environmental Management, 2001, 6(1): 1-23
    [21] Xia J. Part2-nonlinear system approach, in: The 3rd International Workshop on River Flow Forecasting. Ireland: UGG, 1989, 191-206
    [22] Makela P, Neittaanmaki. Nonsmooth optimization: analysis and algorithms with applications to optimal contral. World Scientific Publishing, 1992, 25(3): 200-233
    [23] Renpu Ge. A filled function method for finding a global minizer of a function of several variables. Math. Prog., 1990, 46(2): 191-204
    [24] Aubin J P. Nonlinear programming: theory, algorithms and applications. New York: John Wiley & Sons, 1983, 159-171
    [25] Renpu Ge, Qin Y F. A class of filled fuctions for finding a global minizer of several variables, Optim. Theory Appl., 1987, 54(2): 179-198
    [26] Aubin J P. Applied functional analysis. New York: John Wiley & Sons, 1979, 46-58
    [27] 付国伟,程声通.水污染控制系统规划.北京:清华大学出版社,1985,56-77
    [28] 吴嘉陵.大型城市污水处理厂费用函数的研究.上海环境科学,1986,5(3):8-12
    [29] Russel D, Edward M. Model of the saint John River. In: Models for water quality management. Asit K. Biswas, 1981, 91-127
    [30] Tang Y. Spatial and temporal analysis of water pollution in China. Geojoural, 1996, 40(1): 3-7
    [31] Rogers P. Measuring environmental quality in Asia. Cambridge: Harvard University Press, 1997, 33-68
    [32] Arrow K. Economic growth, carrying capacity and the environment. Science, 1995, 268:520-525
    [33] Rogers P. Environmental indicators and indices: assessing resources and financing requirements for enhancing environmental quality in DMC'S. In: Environmental indicatiors and indices project. London, 1994, 115-124
    [34] 付国伟.河流水质数学模型及其模拟计算.北京:中国环境科学出版社,1987,25-44
    [35] 曾光明,阳春平.随机因素度河流水质模型参数估计最优估值影响.中国环境科学,1995,15(5):333-337
    [36] 夏军.狄色系统理论在水科学领域中的应用与展望,现代水科学不确定性研究与进展.成都:成都科技大学出版社,1995,14-19
    [37] 叶常明.水环境数学模型的研究进展.环境科学进展,1993,1(1):74-80
    [38] W金博士.水环境数学模型.北京:中国建筑工业出版社,1987,69-88
    [39] 郭劲松.水质模型及其应用研究进展.重庆建筑大学学报,2002,24(2):109-115
    
    
    [40]胡晓林.河流常用水质数学模型参数估计方法评述.环境科学丛刊,1986,7(11):533-536
    [41]张孟威,康德梦.环境的数学解法及计算机应用.北京:中国环境科学出版社,1989,66-71
    [42]侯然杰.系统识别与参数估计方法在河流水质模型中的应用.环境科学,1982,3(3): 58-63
    [43]Shen Yongming, Zheng Yonghong, Komatsu, et al. A three dimensional prediction system for water quality pollution in coastal waters. Environmental Science, 2000, 12(4): 430-439
    [44]史忠科.最优估计的计算方法.北京:科学出版社,2001,75-87
    [45]Ferranti M P. Environmental biotechnology, in: Biotechnology of waste treatment and exploitation. England: Sidwick Ellis Horwood Limited, 1987, 9-15
    [46]钱颂迪.运筹学.北京:清华大学出版社,1998,103-112
    [47]王应洛.系统工程理论、方法与应用.北京:高等教育出版社,1998,69-71
    [48]邓聚龙.灰色控制系统.武汉:华中工学院出版社,1985,35-64
    [49]Horst R,Pardalos P M,Thoai N V Introduction to global optimization.黄红选译.第2版.北京:清华大学出版社,2003,233-300
    [50]Ronald L, Graham, Donald E. Knuth. Concrete mathematics: a foundation for computer science. 北京:机械工业出版社,2002, 66-152
    [51]Ahlfeld D P. Contaminated groundwater remediation design using simulation, optimization and sensitivity theory, model development. Water Resource Res., 1988, 24(3): 733-745
    [52]Loueks D P, Stedinger J R, Haith D A. Water resource systems planning and analysis. Prentice: Cornell University, 1981, 45-53
    [53]方乐润.水资源工程系统分析.北京:水利电力出版社,1990,61-78
    [54]赵凤治,尉继英.约束最优化计算方法.北京:科学出版社,1991,63-77
    [55]Chang L. Optimal time varying pumping rates for groundwater remediation: application of a constrained optimal control algorithm. Water Resource Res., 1992, 28(12): 3157-3176
    [56]杨纶标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社,2002,97-104
    [57]汪寿阳,李仲飞,杨丰梅.多目标规划的一个标量化定理.科学通报,1993,38(1):5-7
    [58]杨丰梅,刘棠,汪寿阳.多目标规划局部弱有效解的二阶最优性条件.系统科学与数学,1991,11(4):349-360
    
    
    [59] Bazarra M S, Shetty C M. Nonlinear programming: theory and algorithms. New York: Wiley, 1979, 25-36
    [60] Chankong V, Haimes Y Y. Multiobjective decision making: theory and methodology. New York: North Holland, 1983, 223-252
    [61] Gailly B, Boulier F, Installe M. Application of multicriteria and multiperson decision making to the planning of the developing of rural areas, support systems for decision and negotiation process. Warsaw: Polish Academic Press, 1992. 141-146
    [62] 薛履中.工程最优化技术.天津:天津大学出版社,1988,79-92
    [63] Steuer R. Multiple criteria optimization: theory, computation and application. New York: Wiley, 1986, 241-255
    [64] 席少霖.约束变尺度法.上海:上海科技情报所,1984,133-162
    [65] Zionts S, Wallenius J. Identifying efficient vectors: some theory and computational results. Operations Research, 1980, 28(4): 785-793
    [66] Goldberg D E. Genetic algorithm in search, optimize and machine learing. New York: Addiso Wesley, 1993,372-385
    [67] Kirpatrick S. Optimization by simulating annealing. Science, 1983, 220(45): 671-685
    [68] 邢文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999,89-102
    [69] 王黎,马光文.Streeter-Phelps模型参数估计的遗传算法.水科学进展,1997,8(1):32-37
    [70] 黄明海,齐鄂荣,吴剑.遗传梯度法在水质数学模型参数估值的应用.环境科学学报,2002,22(3):315-319
    [71] 秦肖生,曾光明.遗传算法在水环境灰色非线性规划中的应用.水科学进展,2002,13(1):31-36
    [72] Riezel B J, Eheart J W, Ranjithan S. Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resource Res., 1994, 30(5): 1589-1593
    [73] 何强.水污染控制系统规划方法研究.重庆建筑大学学报,1999,21(6):31-34
    [74] 刘国东,丁晶.水环境中不确定方法的研究现状与展望.环境科学进展,1996,4(4):46-53
    [75] 曾光明,张国强,曾北危.河流水质系统灰色规划和应用.中国环境科学,1994,14(4):289-295
    [76] 邹瑞,郭怀成.洱海流域环境经济相协调的农林土地利用不确定性系统规划.环境科学学报,1999,19(2):186-193
    
    
    [77] 曾光明,杨春平.环境系统灰色理论与方法.北京:中国科学技术出版社,1994,65-79
    [78] Melehing, Charles S,Bauwens. Uncerntainty in coupled nonpoint source and stream water quality models. Water Resources Planning & Management, 2001, 127(6): 403-414
    [79] Zeng G M, Yin Y Y. A two-dimensional water-quality model for a winding and topographically complicated river. Environmental Management, 2001, 61 (1):113-122
    [80] Martin L, Weitzman J. Environ Econ. Mana, 1994, 26(4): 200-209
    [81] 曹瑞钰.环境经济学.上海:同济大学出版社,1993,101-103
    [82] Aarts H L, Korst. Simulated annealing and Boltzmann machines. New York: John Wiley & Sons, 1989, 378-381
    [83] Palshikar, Girish Keshav. Simulated Annealing: a heuristic optimization algorithm. Software tools for the professional programmer, 2001, 26(9): 121-124
    [84] Bandyopadhyay, Sanghamitra, Sankar K, et al. Simulated annealing based pattern classification. Information Sciences, 1998, 109(4): 165-185
    [85] Treadgold, Nicholas K, Gedeon. Simulated annealing and weight decay in adaptive learning: the SARPROP algorithm. IEEE Transactions on Neural Networks, 1998, 9(4): 662-669
    [86] Kurbel, Karl, Schneider. Solving optimization problems by parallel recombinative simulated annealing and genetic algorithms. IEEE Transactions on Systems, Man & Cybernetics: Part B, 1998, 28(3): 454-462
    [87] Chen Hao, Flann, Nicholas S. Parallel genetic simulated annealing: a massively parallel SIMD algorithm. IEEE Transactions on Parallel & Distributed Systems, 1998, 9(2): 126-137
    [88] Siarry, Patrick, Berthiau. Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Transactions on Mathematical Software, 1997, 23(2): 209-229
    [89] Obayashi, Shigeru, Tsukahara, et al. Comparison of optimization algorithms for aerodynamic shape design. Journal of AIAA, 1997, 35 (8): 1413-1416
    [90] 康立山.非数值并行算法——模拟退火算法.北京:科学出版社,1997,63-87
    [91] 范鸣玉,张莹.最优化基础.北京:清华大学出版社,1982,36-88
    [92] Corana A, Marchesi M, Martin C, et al. Minimizig multimodal functions of continuous variables with the simulating annealing algorithm. ACM Transaction on Mathematical Software, 1987, 13(3): 262-280
    
    
    [93]熊德琪.水环境污染系统规划的模糊非线性规划.水利学报,1994,(12):25-30
    [94]Zhang Qingfeng, Fu Guowei. System analysis and system design of urban water environmental decision support system, in: Sino Canada Bilateral Symposium on Methodology of Urban Water Pollution Control Planning. China: Shenyang, 1992, 369-401
    [95]Deng Julong. Extentin for mation cover in grey system theory. Grey Systems, 1995, 7(2): 131-138
    [96]Deng Julong. Grey hazy sets. Grey System, 1992, 4(1): 13-30.
    [97]邓聚龙.灰色控制系统(第2版).武汉:华中理工大学出版社,1993,102-110
    [98]吕峰.灰色系统关联度之分辨系数的研究.系统工程理论与实践,1997,17(6):49-54
    [99]夏军,张祥伟.河流水质系统灰色非线性规划的理论与应用.水利学报,1993,(12):29-33
    [100]张祥伟,夏军.河流水质大系统灰色非线性规划的分解协调方法.环境科学,1994,15(1):25-30
    [101]李庆杨,王能超,易大义.数值分析.武汉:华中理工大学出版社,1999,158-169
    [102]余俊,周济.优化方法程序库OPB-1:原理及使用说明.北京:机械工业出版社,1991,109-1334
    [103]达庆利.大系统理论与应用.南京:东南大学出版社,1989,142-155
    [104]段玉倩,贺家李.遗传算法及其改进.电力系统及其自动化学报,1998,10(1):39-51
    [105]Goldberg D R. Simple genetic algorithm and the minimal deceptive problem. Genetic Algorithm and Simulated Annealing. London: Pitman, 1987,74-78
    [106]Eiben A E, Aarts E H, Van Hee, et al. Global convergence of genetic algorithm: an infinite Markov chain analysis. Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1991, 4-12
    [107]Pezeshk S, Camp C V. Design of nonlinear framed structures using genetic optimization. Journal of Structural Engineering, 2000, 126(3): 382-389
    [108]Yao, Leehter. Genetic algorithm based identification of nonlinear systems by Sparse Volterra filters. IEEE Transactions on Signal Processing, 1999, 47(12): 3433-3436
    [109]Mohan S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of Hydraulic Engineering, 1997, 123(2): 137-143
    [110]恽为民,席裕庚.遗传算法的运行机理分析.控制理论与应用,1996,13(3):289-297
    
    
    [111]陈国良,王熙法.遗传算法及其应用.北京:人民邮电出版社,1996,101-127
    [112]吴文江.实用数学规划.北京:机械工业出版社,1993,76-99
    [113]罗承忠.模糊集引论.北京:北京师范大学,1989,26-70
    [114]王凡.模糊数学与工程数学.哈尔滨:哈尔滨船舶工程学院出版社,1988,113-124
    [115]王培庄,韩立岩.应用模糊数学.北京:北京经济学院出版社,1989,46-96
    [116]Lai Y J, Hwang C L. Fuzzy mathematical programming. Berlin: Spring Verlag. 1992, 263-276
    [117]Wang Dingwei, Fang S C. A genetic based approach for aggregated production planning in a fuzzy environment. IEEE Trans. Syst., Man and Cybern, 1997, 27(5): 636-645
    [118]毛宗源.自调整比例因子Fuzzy控制器控制工业锅炉燃烧过程。自动化学报,1991, 17(5):611-615
    [119]Yang Lunbiao. Simplest models of switching systems. Advances in Modeling and Analysis, 1993, 15(3): 59-63
    [120]张文修.模糊数学引论.西安:西安交通大学出版社,1991,175-180
    [121]Koichi Nara, Shiose A, Kitagawa M. Implement of genetic algorithms for distribution systems loss minimum reconfiguration. IEEE Trans on Power System, 1992, 7(3): 1044-1051
    [122]Shirmohammdi D, Hong H W. Reconfiguration of electric distribution networks for resistive line loss reduction. IEEE Trans on Power Delivery, 1989,4(2): 1492-1498
    [123]Baran M E, Wu F F.. Optimal capacitor placement on distribution system. IEEE Trans on Power Delivery, 1989, 4(1): 725-732
    [124]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proe of International Conference on Genetic Algorithms and Their Applications. London, 1985, 93~100.
    [125]Hajela P, Lin C Y. Genetic search strategies in multiple objective optimal design. Structural Optimization, 1992, 5(4): 120~145
    [126]徐宗本,高勇.遗传算法过早收敛现象的特征与预防.中国科学,1996,26(4):371-375
    [127]Scrinvas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans SMC, 1994, 24(4): 656-661
    [128]El Halwagi, Vasilios Manousiothakis. Synthesis of mass exchange networks. AIChE J, 1989, 35(8): 1233-1244
    [129]Papalexandri K P, Pistikoulos E N, Floudas A. Mass exchange networks for waste
    
    minimization: A simultaneous approach. Trans IChemE Part A, 1994, 72 (5): 279-294
    [130] Gupta, Manousiouthakis. Minimum utility cost of mass exchange networks with variable single component supplies and targets. Ind. Eng. Chem. Res., 1993, 32: 1937-1950
    [131] Bagajewicz M J, Pham R, Manousiouthakis V. On the state space approach to mass/heat exchanger network design. Chem. Engng. Sci., 1998, 53(14): 2595-2621
    [132] Anthony G, Erics F. Mass exchange networks synthesis using genetic algorithms. Commpu Chem Engng, 1998, 22(12): 1837-1850
    [133] Coello C A. An updated survey of GA-based multiobjective optimization. ACM Computing Surveys, 2000, 32(2): 109-119
    [134] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the first international conference on genetic algorithms and their applications. Hillsdale, 1985, 93-100
    [135] Beck M. Water quality modeling: a review of the analysis of uncertainty. Wat. Res. Res., 1987, 23(8): 1393-1442
    [136] Chen J, Wheater H S. Indentification and uncertainty analysis of soil water retention models-using lysimeter data. Wat. Res. Res., 1999, 35(8): 2401-2414
    [137] Duan Q Y. Shuffled complex evolution approach for effective and defficinet golbal minimization. Optimization Theory and Applications, 1993, 76(3): 501-521
    [138] 王伟,张健.模拟退火算法在电机优化设计中的应用.微电机,2000,33(3):10-13
    [139] Tang Renyuan, Sun Jianzhong. Optimization of electromagnetic devices by using intelligent simulated annealing algorithm. IEEE Transactions on Magnetics, 1998 Part 1 of 2, 34(5): 2992-2996
    [140] Wilson, Jeffrey D. A simulated annealing algorithm for optimizing RF power. IEEE Transactions on Electron Devices, 1997, 44(12): 2295-2300
    [141] Barradas N P, Jeynes C. Simulated annealing analysis of Rutherford backs-tattering data. Applied Physics Letters, 1997, 71 (2): 291-294
    [142] Ravi V, Murty B S. Nonequilibrium simulated annealing-algorithm applied to reliability optimization of complex systems. IEEE Transactions on Reliability, 1997, 46(2): 233-240
    [143] Mantawy A H, Abdel Magid, Youssef L, et al. A simulated annealing algorithm for unit commitment. IEEE Transactions on Power Systems, 1998, 13(1): 197-205
    [144] Duan Q Y. Optimal use of the SCE-UA global optimization method for calibrating
    
    water shed models. Hydrol., 1994,158:265-284
    [145] Freedman V L. Parameter indentifiability for catch mentscale erosion modeling: a comparison of optimization algorithms. Hydrol., 1998, 207:83-97
    [146] Price W L. A controlled random search procedure for global optimization. The Comput., 1977, 20:367-370
    [147] Pan L H, Wu L S. A hybird global optimization method for inverse estimation of hydraulic parameters: annealing simplex method. WR97-418, Department of Soil Environmental Science. California: University of California, Riverside, 1997, 87-196
    [148] Price W L. Golbal optimization by controlled random search. Optimization Theory and Applications, 1983, 40:333-348
    [149] Cooper V A. Evaluation of global optimization methods for conceptual railfall-runoff methods for calibration. Wat. Sci. Teeh., 1997, 36(5): 53-60
    [150] Press W L. Numerical recipes in Fortran. New York: Cambridge Univ. Press, 1992, 6-97
    [151] 钱孝星.水文地质计算.北京:水利电力出版社,1995,115-121
    [152] 张乃良,孙宗池.最优化方法.济南:山东大学出版社,1995,53-69
    [153] 姚姚.蒙特卡洛非线性反演方法及应用.第一版.北京:冶金工业出版社,1997,43-212
    [154] 潘正君,康立山.演化算法.北京:清华大学出版社,1998,89-95
    [155] 田澎,杨自厚.一类非线性规划的模拟退火求解.控制与决策,1994,9(3):173-189
    [156] Ratkowsky D A. Nonlinear regression modeling: a unified practical approach. New York: Marcel Dekker Ine, 1983, 126-129
    [157] 李玉琢,王其文.前向人工神经网络模型用于时间序列分析.武汉工业学院学报,1996,(4):67-72
    [158] 孙鸣,徐品.灰色模型在地下水水质预测中的应用河北地质学院学报,1994,17(2):193-197
    [159] 易顺民,赵文谦,蒲迅赤.地下水污染的自组织预测模型及其应用.地球科学——中国地质大学学报,1999,24(6):643-647
    [160] 胡守仁,余少波,戴蔡.神经网络导论.长沙:国防科技大学出版社,1993,15-30
    [161] Ibnkahla, Mohamed. Statistical analysis of neural network modeling and identification of nonlinear systems with memory. IEEE Transactions on Signal Processing, 2002, 50(6): 1508-1518
    
    
    [162] Setiono, Wee Kheng Leow, Zurada. Extraction of rules from artificial neural networks for nonlinear regressio. IEEE Transactions on Neural Networks, 2002, 13(3): 564-578
    [163] XiaYoushen, Leung, Henry. A projection neural network and its application to constrained optimization problems. IEEE Transactions on Circuits & Systems Part Ⅰ, 2002, 49(4): 447-459
    [164] Michael D. Sohn. Reducing uncertainty in site characerization using Bayes Monte Carlo methods. Environmental Engineering, 2000, 126(10): 893-902
    [163] 阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000, 65-79
    [164] Neelakantan, Pundarikantahan. Neural network-based simulation-optimization model for reservoir operation. Water Resources Planning and Management, 2000, 126(2): 57-64
    [165] Chandramouli, Raman. Multireservior modeling with dynamic programming and neural networks. Water Resources Planning and Management, 2001, 127(2): 89-98
    [166] Sasikumar P P, Mujumdar. Fuzzy opimization model for water quality management of a river system. Water Resources Planning and Management, 1998, 124(2): 79-88
    [167] Yin Y Y, Xu X M. Applying neural technology for multiobjective land use planning. Environmental Management, 1991, (32): 349-356
    [168] Tiesong Hu. Multireservior using an artifical neural network. In: International Symposium on Medium and Small Sized hydropower Station. Beijing, 1993,114-117
    [169] Hirose Y, Yamashite, Hijiya S. Back-propagation algorithm which varies the number of hidden units. Neural Networks, 1991, 4(1): 61-66
    [170] Karnina E A. A simple procedure for pruning back-propagation trained neutral networks. IEEE Transaction on Neural Networks, 1990, 1(2): 239-242
    [171] Daubechies I. Orthonormal bases of compactly supported wavelet. Common Pure. Appl. Math., 1988, 41(7): 909-996
    [172] Mallat S G. A theory formultiresolution signal decomposition: the wavelet representation. IEEE Transon PAMI, 1989, 11(7): 674-693
    [173] Kreinovich V, Sirisaengtaksin O. Wavelet neural networks are asymptotically optimal approximators for functions of one variable. In: Proc of IEEEI CNN'94. Florida, 1994, 299-304
    [174] Kugarajah T, Zhang Qinghua. Multidimentional wavelet frames. IEEE Transon NN, 1995, 6(6): 1552-1556
    
    
    [175] 张邦礼,李银国.小波神经网络的构造及其算法的鲁棒性分析.重庆大学学报,1995,18(6):88-95
    [176] 吴耀军.B样条小波神经网络.模式识别与人工智能,1996,9(3):228-233
    [177] 李银国,张邦礼.小波神经网络及其结构设计方法.模式识别与人工智能,1997,9(3):197-205
    [178] 水鹏朗,保铮,焦李成.一种基于子波神经网络的多尺度差分方程求解新方法.电子科学学刊,1997,19(6):733-737
    [179] Song Xianyu. Adaptive Wavelet neural network for pattern recognition. In: Proc of IEEE ICNNSP'95. Nanjing, 1995, 386-389
    [180] Zhang Qinghua. Using wavelet network in nonparametric estimation. IEEE Transon NN, 1997, 8(2): 227-236
    [181] Pati Y C, Krishnaprasad P S. Analysis and synthesis of feed forward neural network using discrete affine wavelet. IEEE trans on NN, 1993, 4(1): 73-75
    [182] Zhang Qinghua, Benveniste A. Wavelet networks. IEEE trans on NN, 1992, 3(6): 889-898
    [183] Szu H. Neural network adaptive wavelets for signal representation and classification. Optical Engineering, 1992, 31(9): 1907-1916
    [184] Baskshi B R, Stephanopoulous G. Wave-net: a multire solution, hierarchical neural network with localized learning. Amer Inst Chem Eng, 1993, 39(1): 57-81
    [185] Boubez T, Peskin R L. Wavelet neural networks and receptive field partitioning. In: Proc of IJCNN'93. SanFraneisco, 1993, 1544-1549
    [186] Zhang Jun. Wavelet neural networks for function learning. IEEE transon SP, 1995, 43(6): 1485-1497
    [187] 高协平,张钹.区间小波神经网络——理论与实现.软件学报,1998,9(3):217-221
    [188] 秦肖生.考虑非线性特征的水环境规划理论与方法的初步研究:[硕士学位论文].长沙:湖南大学,2001,38-59
    [189] 何理.水环境突发性与非突发性风险分析的理论与方法的初步研究:[硕士学位论文].长沙:湖南大学,2002,60-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700