用户名: 密码: 验证码:
纤维素乙醇废水生物处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究纤维素乙醇废水治理方法,涉及新能源和环境工程两个行业。针对能源危机,寻找新能源成为人们关注的重点。在所有从植物物质获得的燃料中乙醇尤其受到人们的关注,是来自可再生资源的最有发展前景的液体燃料,但目前生物法生产的乙醇还主要来自糖类和淀粉发酵,面对世界人口的急剧膨胀和粮食短缺,用粮食生产酒精的发展将受到限制。随着全球性能源危机、粮食危机和环境危机的到来,以秸秆为原料的纤维素乙醇引起世界各国的高度重视。由于纤维素乙醇原料秸秆化学结构复杂,纤维素、半纤维素不但被木质素包裹,而且半纤维素共价和木质素结合,纤维素具有高度有序晶体结构,因此必须经过预处理,破坏晶体结构,降低聚合度。预处理采用秸秆粉碎蒸汽爆碎技术,产生的废水中含有部分纤维素、木质素、半纤维等难生物降解物质,生产过程产生的冷凝水含有大量的挥发性酸、糠醛及挥发性酚类物质,是一种危害很大的废水。本文以河南南阳某集团纤维素生产线预处理工段产生滤液为研究对象,进行小试试验、中试试验、并将实验结果工程化,建成处理800t/d污水处理工程,取得以下主要研究成果:
     1、采用固定化白腐菌对河南南阳某集团纤维乙醇蒸汽爆破之后板框压滤滤液进行试验,在试验过程中考察pH、停留时间及瘤胃微生物对处理效果影响,为纤维素乙醇处理奠定基础。
     2、通过实验选择预处理、生化、深度处理适当工艺。对比气浮、微电解/H2O2、Fenton试剂催化氧化对废水进行预处理。对比厌氧、好氧对废水进行生化处理。通过实验对比,确定采用微电解+厌氧+好氧实验装置对废水进行处理是可行的,且该系统具有较强的抗冲击负荷能力;对废水深度处理进行探索,对比絮凝沉淀、ClO2催化氧化、Fenton试剂催化氧化、Fenton试剂催化氧化+接触氧化的去除效果,Fenton试剂催化氧化后COD去除率为50%左右,废水可生化性提高。
     3、对纤维素乙醇废水采用中试处理,研究了中试处理效果及COD负荷、停留时间、pH对处理效果的影响,从而得出最佳运行COD负荷、停留时间、pH,对废水处理工程化提供指导意义。
     4、基于前述技术论证及中试研究,对河南某集团纤维乙醇预处理滤液及综合废水采用预处理+UASB+一级好氧反应器+催化氧化、接触氧化复合好氧的处理工艺,建设废水处理工程。对废水处理进行调试,处理系统运行较为稳定,出水达到污水综合排放一级标准,可实现达标排放;在经过一级好氧处理后废水可生化性差,经过Fenton试剂催化氧化后,废水可生化性提高,为后继接触氧化提供条件;催化氧化后再采用接触氧化法可进一步降低废水污染物浓度,实现达标排放。
     5、瘤胃微生物可缩短厌氧装置的启动时间,强化厌氧处理效果;白腐真菌可促进好氧菌胶团的形成,提高好氧处理效果。
     6、废水污染物浓度较高,处理难度较大,该工程采用较多工段,废水运行费用较高,约3.56元/t。
     7、本研究使纤维质原料生产乙醇过程中产生的废水在厌氧处理过程中又可产生燃料沼气,为天然纤维质原料生物量获得全利用奠定基础。
This paper describes the wastewater treatment methods,which is produced in the new energy of cellulosic ethanol production, involving both new energy industry and environmental engineering industry. Because of the energy crisis, the search for new energy sources is becoming the focus of attention. In all the material obtained from plants, particularly, ethanol attracts people's concern, which is the most promising liquid fuel coming from renewable resources, but currently biological production of ethanol primarily from sugar and starch fermentation, facing the rapid expansion of the world's population and food shortages, the development of alcohol produced with grain will be restricted. As the advent of global energy crisis, food crisis and environmental crisis, cellulosic ethanol has drawn worldwide attention. Because of the complexity of the chemical structure of Straw cellulosic ethanol in which cellulose and hemi cellulose not only have been wrapped lignin,but also covalently with cellulose,with highly ordered crystal structure, it must be pretreatmented to damage crystal structure, reduce the degree of polymerization. The steam explosion pre-treatment technology is used. The waste water from Ethanol production contains some cellulose,lignin, hemicelluloses and so on,which is difficult to be degraded.The condensate from Ethanol production contains a large number of volatile acid, furfural and volatile phenols.In the paper, filtrate from Ethanol production pretreatment process is as the object, carryed out small scale testing, pilot testing, and the results have been used to the engineering and the processing 800t/d sewage treatment project was builted,which has achieved the following research results:
     (1) In the experiment, we used the immobilized white-rot fungi on the filtrate from cellulosic ethanol steam explosion frame filter press process t. In the course of the experiment, we studyed the treatment effect impact of pH, residence time, and dosing rumen micro-organisms, and the results will help lay the foundation. for cellulosic ethanol processing.
     (2) In the experiment, we can select the appropriate technology for pre-processing system, biochemical, in-depth processing. We compared some pretreatment technology, flotation, micro-electrolysis/H2O2, Fenton reagent catalytic oxidation; and compared to anaerobic, aerobic biological treatment of wastewater. Through the experimental comparison, we determined it was feasible which was the use of micro-electrolysis+anaerobic+aerobic experimental device for wastewater treatment, and the system has a strong ability for the impact load;We explored the depth of processing for wastewater, contrasted the removal effect of the coagulation and sedimentation, ClO2 catalytic oxidation, Fenton's reagent oxidation, Fenton's reagent oxidation catalytic oxidation +contact oxidation, after Fenton's reagent oxidation the COD removal is 50%, waste water biodegradability increase.
     (3) In the system, we used pilot treatment for wastewater from cellulosic ethanol production, studyed the treatment effect and the impact of treatment effect by COD load, residence time, pH and thus the optimum running COD load, residence time, pH, provide guidance to the wastewater treatment engineering.
     (4) This system is based on the aforementioned and technical feasibility studies and research by Nanyang, Henan one Group of cellulosic ethanol and treatment of the filtrate and the comprehensive wastewater using an aerobic pretreatment+UASB+ first aerobic reactor+oxidation+combined aerobic contact oxidation treatment process, and build waste water treatment engineering. During debugging wastewater treatment, the initial trial keep a relatively stable operation, and the effluent wastewater can achieve the discharge standards; in the treated wastewater through an aerobic biodegradability is poor, but when it have the catalytic oxidation of Fenton's reagent, wastewater biodegradability will increased, and provide the conditions for follow-up contact oxidation; contact oxidation after catalytic oxidation can be used to further reduce wastewater pollutant concentrations,the wastewater will achieve discharge standards.
     (5) According to microorganism growth picture condition analysis, the result indicated Rumen micro-organisms reduce start time of aerobic and strengthen processing effect; white-rot fungi promote formation of Fungus rubber group and enhance processing effect.
     (6) Because of the high concentrations of pollutants in wastewater, handling is difficulty, the project used several steps, and the costs of the wastewater operating are high, about 3.56 yuan/t.
     (7) In this paper, wastewater which is produced in the new energy of cellulosic ethanol production product methane in the process of anaerobic and it Settles foundation for natural fiber raw material Biomass for full used.
引文
[1]Campbell C J, Laherrere J H. The end of cheap oil:Scientific American[J]. Sci. America, 1998(278):78-83.
    [2]杨艳,卢滇楠,李春,等.白腐真菌在碳素循环中的地位和作用[J].化工进展,2002,21(5):299-322.
    [3]陈国符.植物纤维化学[M].北京:中国轻工业出版社,1980:186.
    [4]Berg C. World Ethanol Production 2001. England:UK office,2001. http:// www.distill.com/world_elhanol_production.html.
    [5]Stuart E D, Latimer V M. Treatment method for fibrous lignocellulosic biomass using fixed stator device having nozzle tool with opposing coaxial toothed rings to make the biomass more susceptible to hydrolysis. US,5498766[P],1996.
    [6]Stuart E D. Treatment of fibrous lignocellulosic biomass by high shear forces in a turbulent couette flow to make the biomass more susceptible to hydrolysis. US,5370999[P],1994.
    [7]Azzam A M. Saccharification of bagasse cellulose pretreated with ZnCl2 and HCl[J]. Biomass, 1987 (12):71-77.
    [8]I. Ballesterosl, J. M. Oliva, et al. Effect of chip size on steam explosion pretreatment of softwood[J]. Appl. Biochem. Biotechnol.,2000(84-86):97-110.
    [9]Grethlein H E. Chemical breakdown of cellulosic materials[J]. J. Applied Chemistry Biotechnology,1978(28):296-308.
    [10]Brink D L. Method of treating biomass material. US,5536325[P],1998.
    [11]Senthilkumar V, Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges[J]. J. Sci. Ind. Res.,2005,64(11): 845-853.
    [12]李洪刚,段堂荣.纤维素酶在酒精生产中的应用评论推荐[J].酿酒科技,1996,75(3):44-45.
    [13]Chen L F, Gong C S. Continuous ethanol production using induced yeast aggregates[J]. Applied Microbiology and Biotechnology[J],1986(25):208-212.
    [14]K C Thomas, W M Ingledew. Fuel Alcohol Production:Effects of Free Amino Nitrogen on Fermentation of Very-High-Gravity Wheat Mashes[J]. Appl. Environ. Microbiol.,1990(56): 2046-2050.
    [15]A M Jones, K C Thomas, W M Ingledew. Ethanolic fermentation of blackstrap molasses and sugarcane juice using very high gravity technology [J]. J. Agric. Food. Chem.,1994(42): 1242-1246.
    [16]K C Thomas, W M Ingledew. Production of 21%(v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes[J]. J. Ind. Microbiol. Biotechnol.,1992(10):61-68.
    [17]W M Ingledew, A M Jones, et al. Fuel Alcohol Production from Hull-less Barley[J]. Cereal Chem.,1995(72):147-150.
    [18]Leao C, Van U N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae[J]. Biochim. Biophys. Acta,1984(774):43-48.
    [19]李慧蓉.白腐真菌在碳素循环中的地位和作用[J].微生物学通报,1996,23(2):105-109
    [20]Barr D P, Aust S D. Pollutant degradation by white rot Fungi[J]. Rev. Environ. Contam. Toxicol.,1994(138):49-72.
    [21]Higuchi T. Biodegradation mechanism of lignin by white-rot basi-diomycetes[J]. J. Biotechnol.,1993(30):1-8.
    [22]Kelley R L, Reddy C A. Identification of Glucose Oxidase Activity as the Primary Source of Hydrogen Peroxide Production in Lgninolytic Cultures of Phanerochaete chrysosprium[J]. Arch. Microbiol.,1986(144):248-253.
    [23]Kersten P J, Kirk T K. Involvement of a New Enzyme, Glyoxal Oxidase, in Extracellular H2O2 Production by Phanerochaete chrysosporium[J]. J. Bacteriol.,1987(169):2195-2201.
    [24]Srebotnik, E Jensen K A, Hammel K E. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase[J]. Proc. Proc. Natl. Acad. Sci. USA,1994(91): 12794-12797.
    [25]Johansson T, Nyman P O. Isoenzymes of lignin peroxidase and man ganese Peroxidase from the white-rot basidiomycete Trametes versicolor. Isolation of enzyme forms and characterization of physical and catalytic properties[J]. Arch. Biochem. Biophys.,1993(300): 49-56.
    [26]Leonowicz A, Matuszewska A, Luterek J, et al. Biodegradation of lignin by white rot fungi[J]. Fungal Genet. Biol.,1999(27):175-185.
    [27]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展[J].重庆教育学院,2001,14(3):64-65
    [28]尹峻峰,王涛.真菌降解木质素的研究现状[J].云南林业科技,2003,(1):75-78
    [29]席冬梅,邓卫东,毛华明.白腐真菌降解木质的机理及培养的营养调控[J].中国饵料,2002,(9):8-10.
    [30]王洪柞,刘世勇.酶和细胞的固定化[J].化学通报,1997,60(2):22-27
    [31]沈耀良,黄勇,等.固定化微生物污水处理技术[M].北京:化学工业出版社,2002,163-174
    [32]肖美燕,徐尔尼,等.包埋法固定化细胞技术的研究进展[J].食品科学,2003,24(4):158-161
    [33]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2001.
    [34]Brodelius P, Deus B, et al. Immobilized plant cells for the production and transformation of natural products[J]. FEBS Lett.,1979(103):93-97.
    [35]Truong L D, Williams R, et al. Adult Mesoblastic Nephroma:Expansion of the Morphologic Spectrum and Review of Literature[J]. Am. J Surg. Pathol.,1998(22):827-839.
    [36]Rilling P, T. Walter, et al. Encapsulation of cytochrome C by multilayer microcapsules. A model for improved enzyme immobilization[J]. J Membr. Sci.,1997(192):283-287.
    [37]魏宏斌,陈世和.废水生物处理中固定化技术的研究与应用[J].江苏环境科技,1996(2):10-22.
    [38]Eaton D, Chang H, Fungal decolorization of kraft bleach plant effluents[J], Tappi J., 1980(63):103-108.
    [39]Huynh V B, Chang H M, et al. Dechlorination of chloro-organics by a white-rot fungus[J]. Tappi J.,1985(68):98-102.
    [40]Pellinen J, Joyee T W, et al. Dechlorination of high-molecular weight chloro lignin by the White-rot fungus Phanero-chaete chrysosporium[J]. Tappi J.,1988(71):191-194.
    [41]Paszczynski A, Crawford R L. Potential for Bioremediation of Xenobiotic Compounds by the White-Rot Fungus Phanerochaete chrysosporium[J]. Biotechnol. Progr.,2008(11): 368-379.
    [42]王双飞,陈喜翔,等.吸附法固定白腐菌处理苇漂白废水的研究[J].中国造纸,1995,(6):44-48.
    [43]Lewandowskia G A, Armenante P M, et al. Reaetor design for hazaxdous waste treatment using a white-rot fungus[J]. Water Res.,1990(24):75-82.
    [44]Livernoehe D, Jurasek L, et al. Removal of color from kraft mill wastewaters with cultures of white-rot fungi and with immobilized mycelium of Coriolus versicolor.[J]. Biotechnol. Bioeng.,1983(25):2055-2065.
    [45]王双飞.PVA-H3BO3改良法包埋-处理苇浆漂白废水的研究[D].广州:华南理工大学,1995.
    [46]赵亚乾,杨镭,李康敏.海藻酸钠包埋活性炭与活性污泥的固定化技术[J].上海环境科学,1997,16(9):28-30.
    [47]李宗义.刘国生.李学梅.微生物实验技术[M].北京:气象出版社,1997:322.
    [48]Tien M, Kirk T K. Lignin peroxidase of phanerochaete chrysosporium[J]. Methods Enzymol., 1988(161):238-249.
    [49]王海磊,郭伟云,于广丽,等.金针菇降解木质素的能力及相关酶活研究[J].河南师范大学学报(自然科学版),2004,32(4):96-99.
    [50]蒋挺大.木质素[M].北京:化学工业出版社,2001:13-14.
    [51]叶汉玲,尤纪雪,房桂干.选择性降解木质素白腐菌筛选的研究[J].纤维素科学与技术,2004,12(1):19-26.
    [52]王亚珍,吴庆禹,池玉杰,等.针叶树上主要多孔菌培养特性[J].东北林业大学学报,1998,26(5):26-29.
    [53]M H Gold, M Alice, Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium[J]. Microbiol. Rev.,1993(57),605-622.
    [54]陈铭,周晓云.固定化细胞技术在有机废水处理中的应用与前景[J].水处理技术,1997,23(2):98-104.
    [55]建龙,施汉吕.聚乙烯醉包埋固定化微生物的研究及进展[J].工业微生物,1998,28(2):35-39.
    [56]高宝玉,岳钦艳,程小冬.固定化细胞在废水处理中的用[J].山东环境,1999(2):3-5.
    [57]Sayadi S, Ellouz R. Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters[J]. Appl. Environ. Microbiol.,1995(61):1098-1103.
    [58]Eaton D C, Chang H M, et al. Fungal decolorization of kraft bleach plant effluents, Tappi J., 1980 (63):103-106.
    [59]Abernethy G A, Walker J R L. Degradation of the insecticide Hydramethylnon byPhanerochaete chrysosporium[J]. Biodegradation,1993(4):923-9820.
    [60]Pallerla S, Chambers R P. New urethane prepolymer immobilized fungal bioreactot for decolorization and dechlorination of kraft bleach effluent, Tappi J.,1996, (79):155-161.
    [61]Kirk T K, Chang H M. Treatment of bleach plant effluent by the mycopor system[M]. Newton:Biotechnology in Pulp and Paper Manufacture,1990:245.
    [62]王双飞,陈嘉翔,等.吸附法固定自腐菌处理苇浆漂白废水的研究[J].中国造纸,1995(6):44-48.
    [63]Enayatzamir K, Alikhani H A, et al. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads[J]. Environ. Sci. Technol.,2010(17): 944-1344.
    [64]Marvin-Sikkema F D, Richardson A J, et al. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi[J]. Appl Environ Microbiol.,1990 (56):3793-3997.
    [65]Orpin C G Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis[J]. J. Gen. Mi-crobiol.,1977 (98):423-430.
    [66]Bauchop T. Rumen anaerobic fungi of cattle and sheep[J]. Appl. Environ. Microbiol.,1979 (38):148-158.
    [67]Orpin CG. Isolation of Cellulolytic Phycomycete Fungi from the Caecum of the Horse[J]. J. Gen. Microbiol.,1981 (123):287-296.
    [68]Akin D E, Windham W R, Influence of Diet on Rumen Fungi[M]. Australia:Penambu Books, 1989:75-82.
    [69]Wood T M, Wilsona C A. A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis[J]. FEMS Microbiol. Lett.,2006(34):37-40.
    [70]Windham W R, Akin D E. Rumen fungi and forage fiber degradation [J]. Appl. Environ. Microbiol.,1984(48):473-476.
    [71]MarkBranine,张庆才.瘤胃生态系统的特点及日粮对其影响[J].国外畜牧科技,1998(1):12-15.
    [72]Krause D O, Denman S E, et al. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics[J]. FEMS Microbiol. Rev.,2003(27):663-693.
    [73]Devillard E, Bera-Maillet C, et al. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose[J]. Biochem J.,2003(373):495-503.
    [74]李慧蓉.白腐真菌在碳素循环中的地位和作用[J].微生物学通报,1996,23(2):105-109.
    [75]Kirk T K, Shimada M. Lignin biodegradation:the microorganisms involved and the physiology and biochemistry of degradation by white rot fungi[M]. Orlando Fla:Academic Press,1985:579-605.
    [76]Reid I D. Biodegradation of lignin[J]. Can. J. Bot.,1995(73):1011-1018.
    [77]徐海娟,梁文芷.白腐菌降解木素酶系及其作用机理[J].环境污染治理技术与设备,2000,1(3):51-54.
    [78]王宜磊,孙迅,邓振旭.木素生物降解研究进展[J].微生物学杂志,1998,18(1):48-51.
    [79]李慧蓉.白腐真菌的研究进展[J].环境科学进展,1996,4(6):69-77.
    [80]Tuor U, Winterhalter K, et al. Enzymes of white rot fungi involved in lignin degradation and ecological determinants for wood decay[J]. J. Biotechnol.,1995(41):1-17.
    [81]Leonowicz A, Matuszewska A, et al. Biodegradation of Lignin by White Rot Fungi[J]. Fungal Genet. Biol.,1999(27):175-185.
    [82]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展[J].重庆教育学院学报,2001,14(3):64-67.
    [83]张建军,罗勤慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001,6(2):470-477.
    [84]尹峻峰,土涛.真菌降解木质素的研究现状[J].云南林业科技,2003,1:75-78.
    [85]Mester T, Tien M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants[J]. Int. Biodeterior. Biodegrad.,2000(6):51-59.
    [86]Beguin P, Aubertb J P. The biological degradation of cellulose[J]. FEMS Microbial. Rev., 1994(13):25-58.
    [87]Ayers A R, Ayers S B, et al. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum[J]. Eur. J. Biochem.,1978(90):171-181.
    [88]Renganathan V, Usha S N, et al. Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium:interaction with microcrystalline cellulose[J]. Appl. Microbiol. Technol.,1990(32):609-613.
    [89]Kremer S M, Wood P M. Conlinuous monitoring of cellulose oxidation by cellobiose oxidase from Phanerochaete chrysosporium[J]. FEMS Microbiol. Lett.,1992(92),187-192.
    [90]Kerem Z, Hadar Y. Effect of manganese on preferential degradation of lignin by pleurotus ostreatus during solid-state fermentation[J]. Appl. Environ. Microbiol.1995(61):3057-3062.
    [91]段新源,土蔚,卢雪梅,等.多种小分子物质在木素降解中的作用研究进展[J].中国生物工程,2003,23(1):51-56
    [92]Hammel K E, Kapich A N, et al. Reactive oxygen species as agents of wood decay by fungi[J]. Enzyme Microb. Technol.,2002(30):445-453.
    [93]Gunnar H, Gunnar J, et al. A critical of cellobiose dehydrogenase[J]. J. Biotechnol,2000(78): 93-113.
    [94]Wood P M. Pathways for production of Fenton's reagent by wood-rotting fungi[J]. FEMS Microbiol. Rev.,2006(13):313-320.
    [95]Kremer S M, Wood P M. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium[J]. Eur. J. Biochem.,1992(208): 807-814.
    [96]Hyde S M., Wood P M. A mechanism for production of hydroxyl radicals by the brown-rot fungus Cohiophora putahea:Fe(Ⅲ) reduction by cellobiose dehydrogenase, and Fe(Ⅱ) oxidation at a distance from the hyphae[J]. Microbiology,1997(143):259-266.
    [97]Park J S B, Wood P M, et al. A kinetic and ESR investigation of iron (Ⅱ) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxyl radicals[J]. Free Radical Res., 1997(27):447-458.
    [98]Kerem Z, Jensen K A, et al. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum:evidence for an extracellular hydroquinone-driven fenton reaction[J]. FEBS Lett.,1999(446):49-54.
    [99]Tanaka H, Itakura S, Enoki A. Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor[J]. J. Biotechnol,1999(53):21-28.
    [100]Tanaka H, Fuse G, Enoki A. An extracellular H2O2-producing and H2O2 reducing glycopeptide preparation from the lignin-degrading white-rot fungus irpex lacteus[J]. Mokuzal Gakkaishi,1991(37):986-988.
    [101]Tanaka H, Itakura S, et al. An extracellular substance from the white-rot basidiomycete Phaherochaete chrysosporium for reducing molecular oxygen and ferric iron[J]. Holzforschung,1996(50):541-548.
    [102]Enoki A, Itakura S, et al. The involvement of extracellular substances for reducing molecular oxygen to hydroxyl radical and ferric iron to ferrous iron in wood degradation by wood decay fungi[J]. J. Biotechnol,1997(53):265-272.
    [103]Tatsumi K, Terashima N. Oxidative degradation of lignin VII Cleavage of the P-O-4 linkage of guaiacylglycerol-p-guaiacyl ether by hydroxyl radicals[J]. Mokuzail Gakkaishi, 1985(31):316-317.
    [104]Kapich A N, Jensen K A, et al. Peroxyl radicals are potential agents of lignin biodegradation[J]. FEBS Lett.,1999(4641):115-119.
    [105]Halliwell B, Gutteridge J M C. Free radicals inbiology and medicine[M]. New York: Oxford University Press,1999.
    [106]Wilson C A, Wood T M. Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose [J]. Enzyme Microb. Technol.,1992(14):258-264.
    [107]Roger V, Fonty G, et al. Effects of Phvsicochemical Factors on the Adhesion to Cellulose Avical of the ruminal Bacteria Rumiuococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes[J]. Appl. Environ. Microbiol.,1990(56):3081-3087.
    [108]植村定治郎,等.发酵与微生物Ⅱ瘤胃发酵与微生物[M].北京:科学出版社,1979,292-307.
    [109]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学和生物物理进展,1999,26(3):233-237.
    [110]Aylward J H, Gobius K S, et al. Neocallimastix patriciarum cellulase, CeID, contains three almost identical catalytic domains with high specific activties on Avicel[J]. Enzyme Microb. Technol.,1999(24):609-614.
    [111]Xue G P, Denman S E, et al. Modification of a xylanase cDNA isolated from an anaerobic fungus Neocallimastix patriciarum for higl-level expression in Escherichia coli[J]. J. Bacteriol.,1995(38):269-277.
    [112]Tajima K, Aminov R I, et al. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries[J]. FEMS Microbiol. Ecol.,1999(29):159-169.
    [113]Weimer P J. Effect of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture[J]. Arch. Microbiol., 1993(160):288-294.
    [114]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):70-73.
    [115]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24.
    [116]汤心虎,甘复兴,乔淑玉.铁屑腐蚀电池在工业废水治理中的应用[J].工业水处理,1998,18(6):4-6.
    [117]熊英键,何伟光.一种新型水处理技术一絮凝床渍现状及展望[J].工业水处理,1996,16(3):4-7.
    [118]曹曼.铁屑固定床及其在废水处理中的应用[J].上海环境学,1994,13(2):9-43.
    [119]杨风林,全燮,高桂英,等.铁屑过滤法处理染料废水的研究[J].化工环保,1988,8(6):330-333.
    [120]祁梦兰,张晶,刘华成.铁屑电化学反应一絮凝沉淀一砂滤组合工艺处理镜片染色废水[J].化工环保,1994,14(1):20-23.
    [121]郝瑞霞,程水源,黄群贤.铁屑过滤法预处理可生化性差的印染废水[J].化工环保,1999,19(3):135-139.
    [122]张天胜,孙又山,陈欣,等.铁屑内电解法处理含酚废水[J].环境保护,1997(8):17-20.
    [123]蒋金勋,等.金属腐蚀学[M].北京:国防工业出版社,1986.
    [124]Sonnenberg L B, Watte S J, et al. TAPPI proceedings of 1994 Intenrational Enviornmental Confeernce, Portland,1994[C]. Atlanta:TAPPI Press,1994.
    [125]李风仙,张成禄,李善坪,等.电化腐蚀-还原降解-混凝吸附法处理印染废水的研究[J].中国环境科学,1995,15(5):378-382.
    [126]Wang W Y, Thomson J A. Nucleotide sequence of thece/A gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1[J]. Mol. Gen. Genet.,1990(222):265-269.
    [127]冀春雪,杜风光等.纤维乙醇用纤维素酶的研究发展[J].酿酒科技,2007(7):118-121
    [128]章克吕,酒精与蒸馏工艺学[M].北京:中国轻工业出版社,1997.
    [129]Moreira J R, Goldemberg J. The alcohol program-recent performance and challenges for the 1990s[J]. Energy Polocy,1999(27):229-245.
    [130]曲音波.纤维素乙醇产业化[J].化学进展,2007(7):1099-1108.
    [131]李燕松,张志鹏,等.酶解木质纤维素的预处理技术研究进展[J].酿酒科技,2006,(8):97-100.
    [132]潘亚杰,张雷,郭军,等.农作物秸秆生物法降解的研究[J].可再生能源,2005,(3):33-35.
    [133]Visvanathan C, Ben A R, et al. Membrane separation bioreactors for wastewater treatment[J]. Crit. Rev. Env. Sci. Technol.,2000(30):1-48.
    [134]Rosebverger S, Witzig R, et al. Operation of different membrane bioreactors:experimental results and physiological state of the microorganisms[J].Water Sci. Technol.,2000(41): 269-277.
    [135]杨元晖.影响膜生物反应器膜过滤过程的因素[J].机电设备,2003(3):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700