用户名: 密码: 验证码:
基于红外光谱的离子液体溶液微观结构与相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一种完全由阴阳离子组成的绿色环保溶剂,目前已经在许多领域有着广泛的应用。然而,由于其结构的特殊性,我们对其微观结构和相互作用的认识还非常有限,对其相互作用的作用机制、程度和本质还缺少了解,这也是限制离子液体推广和应用的重要原因。通过不同阴阳离子之间的组合,可以形成不计其数、功能性质迥异的离子液体。如若能通过对结构的分析,归纳总结出该类介质分子性能的普遍性规律,将对离子液体的分子设计和应用有着重要的指导作用。本论文采用谱学手段和量子化学计算相结合的方法,从分子层面上研究了离子液体的结构特点及其与各种介质分子之间的相互作用。
     本论文首先运用二维相关红外光谱的方法研究了咪唑型离子液体随着水分子加入过程中的微观结构变化以及与水分子之间的相互作用。研究结果表明,随着离子液体/水混合体系中水分含量的增加,水分子优先与阴离子形成氢键作用,其次才与阳离子作用,最后,水分子包围的离子对结构是研究浓度范围内离子液体的主要存在形式。二维红外光谱展示了离子液体在水中溶剂化的动态过程。首先,离子液体中阴阳离子之间无限扩展的三维氢键网络结构逐步被破坏而形成离子团簇,然后离子团簇又进一步解离为水分子包围的离子对结构。同时,与离子液体的阴离子端和阳离子端作用的水分子团簇彼此相连,逐渐形成水分子的三维氢键网络的“类冰”结构。
     与非质子型离子液体相比较,质子型离子液体具有一些非质子型离子液体所不具备或不及的性能,但是其微观结构和物理化学性质等的研究相对较少。本论文中,我们系统地对醋酸正丁胺型离子液体N4Ac及其水溶液的红外光谱性质进行了研究。红外光谱表明,N4Ac中正丁胺阳离子和醋酸根阴离子之间的存在着快速的质子转移平衡,阴阳离子之间的N-H…O强氢键作用极有可能是水溶液中质子型离子液体阴阳离子结合在一起的原因。通过对氢键N-H…O进行电子云密度拓扑分析(AIM)发现,水分子的加入使得N-H键的电子密度增大,醋酸根羰基氧原子与氢原子之间的电子密度变小。同时,我们也对咪唑类质子型离子液体醋酸N-甲基咪唑[Mim][Ac]和甲酸N-甲基咪唑[Mim][HCOO]的红外光谱以及相互作用进行了对比研究。结合电导率的测量,我们对质子型离子液体在水中的微观结构与宏观性质之间的关系做了关联。
     除了与水分子的相互作用外,离子液体与有机溶剂分子之间的相互作用研究也是非常重要的一个研究课题。本论文采用红外光谱和量子化学计算相结合的方法,研究了离子液体与有机溶剂二甲亚砜(DMSO)之间的相互作用,解释了体系中蓝移氢键的成因及本质。通过精心设计红外光谱对比实验,不仅定性而且定量地探索了DMSO-d6与离子液体之间形成的直接氢键作用和间接氢键作用,分别在DMSO-d6的甲基C-D伸缩振动峰频率(νCD)蓝移中的贡献。研究表明,在[Bmim][BF4]/DMSO-d6体系中,DMSO-d6中的甲基C-D与离子液体阴离子[BF4]-之间的直接氢键作用对νCD蓝移的作用是非常小的。然而,DMSO-d6中的S=O基团与离子液体咪唑阳离子的C2-H形成氢键作用后对DMSO-d6甲基VCD蓝移的间接作用却是非常显著的。对比DMSO-d6/H2O体系中的νCD蓝移现象,我们发现DMSO-d6分子中的甲基C-H与水分子之间的直接氢键水合作用,是导致νCD蓝移的主要原因。结合量子化学计算的方法,我们深层次地揭示了两个体系中蓝移氢键是由于电荷转移及分子轨道的重新杂化所导致的。
     通过以上研究,本论文主要借助谱学方法,并结合一定的理论计算,多方面多角度地对离子液体的微观结构和相互作用进行了研究,总结了离子介质中微观结构和相互作用之间的一些内在联系,构建了应用谱学和理论计算方法研究离子液体体系结构-性能关系的基本框架,为进一步研究离子液体中的结构-性能关系以及离子液体的分子设计打下了坚实的基础。
Ionic Liquids (ILs) are liquids formed solely of ions, and they are finding increasing use in many areas of technology and science. The most prominent feature of Ionic Liquids is that they can be designed for a particular application or to be present a specific set of intrinsic properties. Therefore, the study of the structure-activity relationship is the foundation of the molecule design and application of ionic liquids. In this thesis, by a combination of spectra properties and quantum calculations, we have systematically investigated the structural properties of Ionic Liquids and their interactions with other solvents or gas molecules, especially the hydrogen bond interaction.
     Water is an impurity commonly presented in ILs since all known ILs can absorb water from the air, traces of water are thought to be ubiquitous in these materials. Therefore, it is of vital importance to investigate the interactions between ionic liquids and water. First, we have investigated the microscopic structure changes and the interactions of ionic liquids with the dilution of water molecules by two-dimensional correlation analysis spectroscopy. The result indicates that, water molecules are more prone to interact with the anions first, and then interact with the cation. The extended H-bond network between cations and anions of pure ILs is destroyed gradually into huge ionic clusters, and then the ionic clusters are further dissociated into solvent-surrounded ionic pairs. Finally, the ionic pairs become the dominant form of the ILs in bulk water. Meanwhile, small water clusters bounded to both the anion part and cation part of the ionic pairs are connecting with each other, thereby a percolating network of "ice-like" water molecules is found in the mixtures.
     Aprotic Ionic liquids, such as imidazolium-based Ionic-Liquids, have been extensively studied. However, the protic Ionic Liquids, which can be considered as a unique subclass of ILs, are relatively less studied. We have systematically investigated the infrared spectrum and interactons in some protic ionic liquids, such as n-butylammonium acetate (N4Ac), N-methyl imidazolium acetate ([Mim][Ac]) as well as N-methyl imidazolium acetate ([Mim][HCOO]). We have found out that the fast proton transfer equilibrium may be responsible for the cohesion of cations and anions when protic ionic liquids dissolved in aqueous solutions. The AIM analysis of the hydrogen bond N-H…O in N4Ac indicates that small amount of water molecules stabilized the ionic pairs of ILs. Meantime, by the conductivity measurement of the protic ionic liquids, we have predicted their microscopic structures.
     Recently, Ionic liquids have been widely used in the solvent extraction and separation process. The exploring of the way ionic liquids interacting with organic molecules will shed light on the mechemincs of chemical reactions with ionic liquids. By a series of carefully designed comparative infrared spectroscopic studies, we have quantitively identified the different role played by the direct hydrogen-bond interaction and the indirect hydrogen-bond respectively in the blue-shift of the C-D stretching vibrations of DMSO-d6 methyl group in DMSO-d6/[Bmim][BF4] complexes. Results based on FTIR studies indicate that the direct interaction of C-D…F between DMSO-d6 and the anion [BF4]ˉplays a minor role in the blue-shift of vCD in the mixtures of DMSO-d6/ILs. Whereas, the indirect influence of the hydrogen bond formed by the nearby functional group S=O with C2-H of the cation significantly contributes to the blue-shift of vcD, as can be inferred from the significant differences of the blue-shift in [Bmim][BF4] and 1-buty1-2,3-dimethylimidazolium tetrafluoroborate ([Bm2im][BF4]). In contrast, in the case of DMSO-d6/F2O mixtures, direct hydration of C-H…O between the methyl groups of DMSO-d6 with the oxygen atom of water is mainly responsible for the blue shift of vcD·Furthermore, theoretical calculations revealed that charge migrations as well as rehybridization have a dominant effect on the blue-shift in both mixtures.
     All in all, by combinations of spectroscopic studies as well as quantum calculations, the relationship between microscopic structures and interactions of ionic liquids is successfully revealed. The frame of studing on the structure-property in ionic liquid is established in the systems. We expect that these methods will shed light on further investigations and may help with the designing of ILs.
引文
1.张锁江,吕兴梅.离子液体-从基础研究到工业应用.科学出版社.第一版,2006.
    2.邓友全.离子液体-性质、制备与应用.中国石化出版社.第一版,2004.
    3. Dupont J, Souza R, Suarez P. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.2002,102,3667.
    4. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev.,1999,99,2071.
    5.张星辰.离子液体——从理论基础到研究进展.化学工业出版社.第一版,2009.
    6. (a)Rogers R D, Seddon K R, Eds. Ionic Liquids IIIA:Fundamentals, Progress, Challenges, and Opportunitiess-Properties and Structure. American Chemical Society:Washington DC,2005, Vol.901; (b) RogersR D, Seddon K R, Eds. Ionic Liquids IIIB:Fundamentals, Progress, Challenges, and Opportunitiess-Transformations and Processes. American Chemical Society: Washington DC,2005, Vol.902.
    7. Rogers R D, Seddon K R, Eds. Ionic Liquids as Green Solvents:Progress and Prospects. American Chemical Society:Washington DC,2003, Vol.856.
    8.刘鹰.离子液体在催化过程中的应用.化学工业出版社.第一版,2008.
    9.张锁江.离子液体与绿色化学.科学出版社.第一版,2009.
    10.杨雅立,王晓化,寇元等.不断壮大的离子液体家族.化学进展,2003,15(6):471-476.
    11. Zhang S, Zhang X. Forum:Structure, surface, interaction and time. China Particuology (Science &Technology of Particles),2004,2 (2):50-51.
    12.徐光宪.21世纪的化学是研究泛分子的科学.见:张礼和主编.化学学科进展.北京:化学工业出版社,2005,12-21.
    13.夏之宁.相互作用分析及其应用与发展.见:梁文平,庄乾坤主编.分析化学 的明天——学科发展前沿及挑战,科学出版社.第一版,2003,295-302.
    14. Wasserscheid P, Keim W. Ionic liquids-New "solutions" for transition metal catalysis. Angew. Chem. Int. Ed.2000,39,3773-3789.
    15. Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of melt acidity. Inorg. Chem.1984,23,4352-4360.
    16. Wilkes J S, Zaworotko M J. Air and water stable 1-ethy1-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun.1992, (13):965-966.
    17. Loe-Mie F, Marchand G, Berthier J, et al. Towards an Efficient Microsystem for the Real-Time Detection and Quantification of Mercury in Water Based on a Specifically Designed Fluorogenic Binary Task-Specific Ionic Liquid. Angew. Chem. Int. Ed.2010,49,424-427.
    18. Castner E W, Wishart J F, Shirota H. Intermolecular dynamics, interactions, and salvation in ionic liquids, Acc. Chem. Res.2007,40,1217-1227.
    19. Weingaertner H. Understanding Ionic Liquids at the Molecular Level:Facts, Problems, and Controversies. Angew. Chem. Int. Ed.2008,47,654-670.
    20.张荣.生化模型分子及生物小分子水溶液弱相互作用研究:[博士学位论文].杭州:浙江大学,2006.
    21. a) Castleman A J, Hobza P. Van der Waals molecules II:introduction. Chem. Rev., 1994,94:1721-1722. b) Brutschy B, Hobza P. Van der Waals molecules III: introduction. Chem. Rev.,2000,100:3861-3862. c) Gatica S M, Cole M W, Velegol D. Designing Van der Waals forces between nanocolloids. Nano Lett., 2005,5:169-173.
    22.梁婉春.生化小分子及模型分子在溶液中的相互作用及质子转移研究:[博士学位论文].杭州:浙江大学,2007.
    23. Hobza P, Havlas Z. Blue-shifting hydrogen bonds. Chem. Rev.2000,100, 4253-4264.
    24.徐征.烷基C-H蓝移与分子间相互作用关系:[博士学位论文].杭州:浙江大学,2007
    25. Mautner M. The ionic hydrogen bond. Chem. Rev.2005,105,213-284.
    26.封勇.键离解能和氢键蓝移的理论研究:[博士学位论文].合肥:中国科学技术大学,2004.
    27. Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc.2004,15,341
    28. Katsyuba S A, Dyson P J, Vandyukova E E, Chernova A V, Vidis A. Molecular structure, vibrational spectra, and hydrogen bonding of the ionic liquid 1-ethyl-3methyl-1H-imidazolium tetrafluoroborate. Helvetica Chimica Acta.2004, 87,2556.
    29. Talaty E R, Raja S, Storhaug V J, Dolle A, Carper W R. Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J. Phys. Chem. B,2004,108,13177.
    30. Heimer N E, Del Sesto R E, Meng Z Z, Wilkes J S, Carper W R. Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J. Mol. Liquids.2006,124, 84-95.
    31. Dupont J, Suarez P A Z, De Souza R F, Burrow R A. Kintzinger J P, C-H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: Solid and solution structures. Chem. Eur. J.2000,6,2377-2381
    32. Schroder C, Rudas T, Steinhauser O, Simulation studies of ionic liquids: Orientational correlations and static dielectric properties. J. Chem. Phys.2006, 125,244506.
    33. Crowhurst L, Mawdsley P R, Perez-Arlandis J M, Salter P A, Welton T, Solvent-solute interactions in ionic liquids. Phys. Chem. Chem. Phys.2003,5, 2790-2794.
    34. Johnston K P, Meredith J C, Harrison K L. Spectroscopy:the fourth vertex on the molecular thermodynamics tetrahedron. Fluid Phase Equilib.1996,116,385-394
    35. Dieter K M, Dymek C J, Heimer N E, Rovang J W, Wilkes J S. Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-AlCl3 molten-salts. J. Am. Chem. Soc.1988,110,2722-2726.
    36. Cammarata L, Kazarian S G, Salter P A, Welton T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys.2001,3,5192-5200.
    37. Danten Y, Cabaco M I, Besnard M. Interaction of Water Highly Diluted in 1-Alkyl-3-methyl Imidazolium Ionic Liquids with the PF6- and BF4- Anions. J. Phys. Chem. A 2009,113,2873-2889
    38. Takamuku T, Kyoshoin Y, Shimomura T, Kittaka S, Yamaguchi T. Effect of Water on Structure of Hydrophilic Imidazolium-Based Ionic Liquid. J. Phys. Chem. B 2009,113,10817-10824.
    39. Jeon Y, Sung J, Kim D, Seo C, Cheong H, Ouchi Y, Wawa R, Hamaguchi H O. Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate plus water mixtures studied by infrared vibrational Spectroscopy. J. Phys. Chem. B 2008, 112,923-928.
    40. Yokozeki A, Kasprzak D J, Shiflett M B. Thermal effect on C-H stretching vibrations of the imidazolium ring in ionic liquids. Phys. Chem. Chem. Phys. 2007,9,5018-5026.
    41. Koddermann T, Wertz C, Heintz A, Ludwig R. Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium bis(triflyl)imide as a function of temperature and concentration. Chem. Phys. Chem.2006,7,1944-1949.
    42. Umebayashi Y, Jiang J C, Lin K H, Shan Y L, Fujii K, Seki S, Ishiguro S I, Lin S H, Chang H C, Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy. J. Chem. Phys.2009, 131 (23),234502.
    43. Chang H C, Jiang J C, Chang C Y, Su J C, Hung C H, Liou Y C, Lin S H, Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides:A high-pressure infrared spectroscopic study on ionic liquids. J. Phys. Chem. B 2008,112 (14),4351-4356.
    44. Chang, H. C.; Jiang, J. C.; Tsai, W. C.; Chen, G. C.; Lin, S. H., Hydrogen bond stabilization in 1,3-dimethylimidazolium methyl sulfate and 1-butyl-3-methylimidazolium hexafluorophosphate probed by high pressure:The role of charge-enhanced C-H…O interactions in the room-temperature ionic liquid. J. Phys. Chem. B 2006,110 (7),3302-3307.
    45. Umebayashi Y, Jiang J C, Shan Y L, Lin K H, Fujii K, Seki S, Ishiguro S I, Lin S H, Chang H C. Structural change of ionic association in ionic liquid/water mixtures:A high-pressure infrared spectroscopic study. J. Chem. Phys.2009,130 (12),124503.
    46. Chang H C, Jiang J C, Liou Y C, Hung C H, Lai T Y, Lin S H. Effects of water and methanol on the molecular organization of 1-butyl-3-methylimidazolium tetrafluoroborate as functions of pressure and concentration. J. Chem. Phys.2008, 129 (4),044506.
    47. Chen H, Zheng O Y, Cooks R G. Thermal production and reactions of organic ions at atmospheric pressure. Angew. Chem. Int. Ed.2006,45 (22),3656-3660.
    48. Neto B A D, Santos L S, Nachtigall F M, Eberlin M N, Dupont J. On the species involved in the vaporization of imidazolium ionic liquids in a steam-distillation-like process. Angew. Chem. Int. Ed.2006,45 (43), 7251-7254.
    49. Leal J P, Esperanca J, da Piedade M E M, Lopes J N C, Rebelo L P N, Seddon K R, The nature of ionic liquids in the gas phase. J. Phys. Chem. A 2007,111 (28), 6176-6182.
    50. Akai N, Parazs D, Kawai A, Shibuya K. Cryogenic Neon Matrix-isolation FTIR Spectroscopy of Evaporated Ionic Liquids:Geometrical Structure of Cation-Anion 1:1 Pair in the Gas Phase. J. Phys. Chem. B 2009,113 (14), 4756-4762.
    51.王晓化, 陶国宏, 吴晓牧, 寇元.离子液体酸性的红外光谱探针法研究.Acta Phys. 一Chim. Sin.2005,21,528-533.
    52. Koddermann T, Wertz C, Heintz A, Ludwig R. The association of water in ionic liquids:A reliable measure of polarity. Angew. Chem. Int. Ed.2006,45 (22), 3697-3702.
    53. Katsyuba S A, Zvereva E E, Vidis A, Dyson P J, Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J. Phys. Chem. A 2007,111 (2),352-370.
    54. Hunt P A. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? J. Phys. Chem. B 2007,111,4844-4853.
    55. Wu B, Zhang Y M, Wang H P. Insight into the Intermolecular Interactions in [Bmim]BF4/[Amim]Cl-Ethanol-Water Mixtures by Near-Infrared Spectroscopy J. Phys. Chem. B 2009,113,12332-12336.
    56. Tran C D, Lacerda S H D, Oliveira D. Absorption of water by room-temperature ionic liquids:Effect of anions on concentration and state of water. Appl. Spectrosc. 2003,57(2),152-157.
    57. Fumino K, Wulf A, Ludwig R. The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew. Chem. Int. Ed.2008,47 (20), 3830-3834.
    58. Fumino K, Wulf A, Ludwig R, Strong, Localized, and Directional Hydrogen Bonds Fluidize Ionic Liquids. Angew. Chem. Int. Ed.2008,47 (45),8731-8734.
    59. Fumino K, Wulf A, Ludwig R. Hydrogen Bonding in Protic Ionic Liquids: Reminiscent of Water. Angew. Chem. Int. Ed.2009,48 (17),3184-3186.
    60. Koddermann T, Fumino K, Ludwig R, Lopes J N C, Padua A A H.What Far-infrared Spectra Can Contribute to the Development of Force Fields for Ionic Liquids Used in Molecular Dynamics Simulations. Chem. Phys. Chem.2009,10 (8),1181-1186.
    61. Dominguez-Vidal A, Kaun N, Ayora-Canada M J, Lendl B. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy. J. Phys. Chem. B 2007,111 (17),4446-4452.
    62. Noda I, Ozaki Y. Two-dimensional Correlation Spectroscopy-Applications in Vibrational and Optical Spectroscopy, (John Wiley &Sons, Ltd, Chichester, 2004).
    63. Umebayashi Y, Mitsugi T, Fujii K, Seki S, Chiba K, Yamamoto H, Lopes J N C, Padua A A H, Takeuchi M, Kanzaki R, Ishiguro S. Raman Spectroscopic Study, DFT Calculations and MD Simulations on the Conformational Isomerism of N-Alkyl-N-methylpyrrolidinium Bis-(trifluoromethanesulfonyl) Amide Ionic Liquids. J. Phys. Chem. B 2009,113 (13),4338-4346.
    64. Katayanagi H, Hayashi S, Hamaguchi H O, Nishikawa K. Structure of an ionic liquid, 1-n-buty1-3-methylimidazolium iodide, studied by wide-angle X-ray scattering and Raman spectroscopy. Chem. Phys. Lett.2004,392 (4-6), 460-464.
    65. Holomb R, Martinelli A, Albinsson I, Lassegues J C, Johansson P, Jacobsson P. Ionic liquid structure:the conformational isomerism in 1-buty1-3-methyl-imidazolium tetrafluoroborate (bmimBF4). J. Raman Spectrosc. 2008,39 (7),793-805.
    66. Berg R W, Deetlefs M, Seddon K R, Shim I, Thompson J M. Raman and ab initio studies of simple and binary 1-alky1-3-methylimidazolium ionic liquids. J. Phys. Chem. B 2005,109 (40),19018-19025.
    67. Fujii K, Fujimori T, Takamuku T, Kanzaki R, Umebayashi Y, Ishiguro S I. Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid:Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 2006,110 (16),8179-8183.
    68. Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D. Structures of ionic liquids with different anions studied by infrared vibration Spectroscopy. J. Phys. Chem. B 2008,112 (15),4735-4740.
    69. Berg R W, Riisager A, Van Buu O N, Fehrmann R, Harris P, Tomaszowska A A, Seddon K R. Crystal Structure, Vibrational Spectroscopy and ab Initio Density Functional Theory Calculations on the Ionic Liquid forming 1,1,3,3-Tetramethylguanidinium bis{(trifluoromethyl)sulfonyl}amide. J. Phys. Chem. B 2009,113 (26),8878-8886.
    70. Saha S, Hamaguchi H O. Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J. Phys. Chem. B 2006,110 (6),2777-2781.
    71. Berg R W, Riisager A, Fehrmann R. Formation of an ion-pair molecule with a single NH+center dot center dot center dot Clˉ hydrogen bond:Raman spectra of 1,1,3,3-tetramethylguanidinium chloride in the solid state, in solution, and in the vapor phase. J. Phys. Chem. A 2008,112 (37),8585-8592.
    72. Fazio B, Triolo A, Di Marco G. Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures. J. Raman Spectrosc.2008,39 (2),233-237.
    73. Sitze M S, Schreiter E R, Patterson E V, Freeman R G. Ionic liquids based on FeCl3 and FeC2. Raman scattering and ab initio calculations. Inorg. Chem.2001, 40 (10),2298-2304.
    74. Alves M B, Santos V O, Soares V C D, Suarez P A Z, Rubim J C. Raman spectroscopy of ionic liquids derived from 1-n-buty1-3-methylimidazolium chloride and niobium chloride or zinc chloride mixtures. J. Raman Spectrosc. 2008,39(10),1388-1395.
    75. Castriota M, Caruso T, Agostino R G, Cazzanelli E, Henderson W A, Passerini S. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its mixture with LiN(SO2CF3)2. J. Phys. Chem. A 2005,109(1),92-96.
    76. Zhai C P, Liu X J, Wang J J. Applications of NMR Techniques in the Research of Room Temperature Ionic Liquids. Progress in Chem.2009,21 (5),1040-1051.
    77. Fannin A A, King L A, Levisky J A, Wilkes J S. Properties of 1,3-dialkylimidazolium chloride aluminum-chloride ionic liquids.1. Ion interactions by nuclear magnetic-resonance spectroscopy. J. Phys. Chem.1984, 88 (12),2609-2614.
    78. Katsyuba S A, Griaznova T P, Vidis A, Dyson P J. Structural Studies of the Ionic Liquid 1-Ethy1-3-methylimidazolium Tetrafluoroborate in Dichloromethane Using a Combined DFT-NMR Spectroscopic Approach. J. Phys. Chem. B 2009, 113(15),5046-5051.
    79. Avent A G, Chaloner P A, Day M P, Seddon K R, Welton T. Evidence for hydrogen-bonding in solutions of 1-ethy1-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate (Ⅲ) ionic liquids. J. Chem. Soc., Dalton Trans.1994, (23),3405-3413.
    80. Bonhote P, Dias A P, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996,35(5),1168-1178.
    81. Headley A D, Jackson N M. The effect of the anion on the chemical shifts of the aromatic hydrogen atoms of liquid 1-buty1-3-methylimidazolium salts. J. Phys. Orga.Chem.2002,15 (1),52-55.
    82. a) Zhai C P, Wang J J, Xuan X P, Wang H Q, Chen M. Chin. J. Chem. Phys.2006, 19,447; b) Zhai C P, Wang J J, Zhao Y, Tang J M, Wang H Q. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics 2006,220,775; c)Zhai C P, Wang J J, Xuan X P, Wang H Q. Acta Physico-Chimica Sinica 2006,22,456.
    83. Zhu X, Wang Y, Li H R. The Structural Organization in Aqueous Solutions of Ionic Liquids. AIChE J.2009,55 (1),198-205.
    84. Singh T, Kumar A. Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 2007,111 (27), 7843-7851.
    85. Zhao Y, Gao S J, Wang J J, Tang J M. Aggregation of ionic liquids C(n)mim Br (n=4,6,8,10,12) in D2O:A NMR study. J. Phys. Chem. B 2008,112 (7), 2031-2039.
    86. Remsing R C, Wildin J L, Rapp A L, Moyna G. Hydrogen Bonds in Ionic Liquids Revisited:35/37 Cl NMR Studies of Deuterium Isotope Effects in 1-n-Buty1-3-Methylimidazolium Chloride. J. Phys. Chem. B 2007,111,11619.
    87. Remsing R C, Liu Z W, Sergeyev I, Moyna G. Solvation and aggregation of N, N '-dialkylimidazolium ionic liquids:A multinuclear NMR spectroscopy and molecular dynamics simulation study. J. Phys. Chem. B 2008,112 (25), 7363-7369.
    88. Huang J F, Chen P Y, Sun I W, Wang S P. NMR evidence of hydrogen bonding in 1-ethy1-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid. Inorganica Chimica Acta 2001,320,7-11.
    89. Judeinstein P, Iojoiu C, Sanchez J Y, Ancian B. Proton conducting ionic liquid organization as probed by NMR:Self-diffusion coefficients and Heteronuclear correlations. J. Phys. Chem. B 2008,112 (12),3680-3683.
    90. Rollet A L, Porion P, Vaultier M, Billard I, Deschamps M, Bessada C, Jouvensal L, Anomalous diffusion of water in [BMIM][TFSI] room-temperature ionic liquid. J. Phys. Chem. B 2007,111 (41),11888-11891.
    91. Menjoge A, Dixon J, Brennecke J F, Maginn E J, Vasenkov S. Influence of Water on Diffusion in Imidazolium-Based Ionic Liquids:A Pulsed Field Gradient NMR study. J. Phys. Chem. B 2009,113 (18),6353-6359.
    92. Noda A, Hayamizu K, Watanabe M. Pulsed-gradient spin-echo H1 and F19 NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 2001,105 (20),4603-4610.
    93. Mele A, Romano G, Giannone M, Ragg E, Fronza G, Raos G, Marcon V. The local structure of ionic liquids:Cation-cation NOE interactions and internuclear distances in neat BMIMBF4 and BDMIM-BF4. Angew. Chem. Int. Ed.2006,45 (7),1123-1126.
    94. Mele A, Tran C D, Lacerda S H D. The structure of a room-temperature ionic liquid with and without trace amounts of water:The role of C-H…O and C-H…F interactions in 1-n-buty1-3-methylimidazolium tetrafluoroborate. Angew. Chem. Int. Ed.2003,42 (36),4364-4366.
    95. Gutel T, Santini C C, Padua A A H, Fenet B, Chauvin Y, Lopes J N C, Bayard F, Gomes M F C, Pensado A S. Interaction between the pi-System of Toluene and the Imidazolium Ring of Ionic Liquids:A Combined NMR and Molecular Simulation Study. J. Phys. Chem. B 2009,113 (1),170-177.
    96. Dupont J, Suarez P A Z, De Souza R F, Burrow R A, Kintzinger J P, C-H-pi interactions in 1-n-buty1-3-methylimidazolium tetraphenylborate molten salt: Solid and solution structures. Chem-Eur. J.2000,6 (13),2377-2381.
    97. Nama D, Kumar P G A, Pregosin P S, Geldbach T J, Dyson P J, H1, F19-HOESY and PGSE diffusion studies on ionic liquids:The effect of co-solvent on structure. Inorg. Chim. Acta 2006,359 (6),1907-1911.
    98. Rizvi S A A, Shi L, Lundberg D, Menger F A. Unusual aqueous-phase behavior of cationic amphiphiles with hydrogen-bonding headgroups. Langmuir 2008,24 (3),673-677.
    99. Thornazeau C, Olivier-Bourbigou H, Magna L, Luts S, Gilbert B. Determination of an Acidic Scale in Room Temperature Ionic Liquids. J. Am. Chem. Soc.2003, 125,5264.
    100. Stoesser R, Herrmann W, Zehl A, Strehmel V, Laschewsky A. ESR spin probes in ionic liquids. Chem. Phys. Chem.2006,7 (5),1106-1111.
    101. Evans R G, Wain A J, Hardacre C, Compton R G. An electrochemical and ESR spectroscopic study on the molecular dynamics of TEMPO in room temperature ionic liquid solvents. Chem. Phys. Chem.2005,6 (6),1035-1039.
    102. Barrosse-Antlle L E, Hardacre C, Compton R G. SO2 Saturation of the Room Temperature Ionic Liquid [C2mim][NTf2] Much Reduces the Activation Energy for Diffusion.J. Phys. Chem. B 2009,113,1007.
    103.陈正隆.徐为人.汤立达.分子模拟的理论与实践.化学工业出版社.第一版,2007.
    104. Meng Z, Dolle A, Carper W R. Gas phase model of an ionic liquid: semi-empirical and ab initio bonding and molecular structure J. Mol. Struct. (Theochem) 2002,585,119.
    105. Turner E A, Pye C C, Singer R D. Use of ab initio calculations toward the rational design of room temperature ionic liquids J. Phys. Chem. A 2003,107, 2277.
    106. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M. Magnitude and directionality of interaction in ion pairs of ionic liquids:Relationship with ionic conductivity. J. Phys. Chem. B 2005,109,16474.
    107. a) Hunt P A, Gould I R. Structural characterization of the 1-buty1-3-methylimidazolium chloride ion pair using ab initio methods J. Phys. Chem. A 2006,110,2269; b) Hunt P A, Kirchner B, Welton T. Characterising the electronic structure of ionic liquids:An examination of the 1-buty1-3-methylimidazolium chloride ion pair. Chem. Eur. J.2006,12,6762.
    108. Dong K, Zhang S, Wang D, Yao X. Hydrogen bonds in imidazolium ionic liquids J. Phys. Chem. A 2006,110,9775.
    109.王鹏,王大喜,高金森,董坤,徐春明,刘靖疆“三氯化铝烷基氯化咪唑盐 结构和红外光谱的模拟计算”高等学校化学学报,2006,8,1505。
    110.蒲敏,刘坤辉,李会英,陈标华“DFT法研究离子液中EMIM+催化丁烯双键异构反应机理”物理化学学报,2004,8,826。
    111.王勇.离子液体中的相互作用研究:[博士学位论文].杭州:浙江大学.2007
    112. a)Wang Y, Li H, Wu T, Wang C, Han S. Reaction mechanism study for the synthesis of alkylimidazolium based halide ionic liquids. Acta Phys.-Chim. Sin. 2005,21,517; b) Wang Y, Li H, Han S. Structure and conformation properties of 1-alky1-3-methylimidazolium halide ionic liquids:A density-functional theory study. J. Chem. Phys.2005,123,174501; c) Wang Y, Li H, Han S. The chemical nature of the (?)C-H…Xˉ(X=Cl or Br) interaction in imidazolium halide ionic liquids. J. Chem. Phys.2006,124,044504.
    113. Wang Y, Li H, Han S. A theoretical investigation of the interaction between water molecules and ionic liquids. J. Phys. Chem. B,110,24626.
    114.Wang Y, Wang C, Zhang L, Li H. Difference for SO2 and CO2 in TGML ionic liquids:a theoretical investigation, Phys. Chem. Chem. Phys.,2008,10,5976.
    115.Gao Y, Zhang L, Wang Y, Li H. Probing Electron Density of H-bonding between Cation-Anion of Imidazolium-Based Ionic Liquids with Different Anions by Vibrational Spectroscopy. J. Phys. Chem. B 114,2828-2833.
    116. a)Lynden-Bell R M, Atamas N A, Vasilyuk A, Hanke C G. Chemical potentials of water and organic solutes in imidazolium ionic liquids:a simulation study. Mol. Phys.2002,100,3225; b) Hanke C G, Atamas N A, Lynden-Bell R M. Solvation of small molecules in imidazolium ionic liquids:a simulation study. Green Chem.2002,4,107.
    117.Andrade J De, Boes E S, Stassen H. Computational study of room temperature molten salts composed by 1-alky-3-methylimidazolium cations-force-field proposal and validation. J. Phys. Chem. B,2002,106,13344-13351.
    118.Morrow T I, Maginn E J. Molecular Dynamics study of the ionic liquid 1-n-buty1-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B,2002, 106,12807.
    119. a)Liu Z, Huang S, Wang W. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B,2004,108,12978; b)Wu X, Liu Z, Huang S, Wang W, Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys.2005,7,2771; c)吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度.物理化学学报.2005,21,1138.d)Liu Z, Wu X, Wang W. A novel united-atom force field for imidazoium-based ionic liquids. Phys. Chem. Chem. Phys.2006,8,1096.
    120. Liu X, Zhang S, Zhou G,Wu G, Yuan X, Yao X. New force field for molecular simulation of guanidinium-based ionic liquids. J. Phys. Chem. B,2006,110, 12062.
    121.Wang J, Tian Y, Zhao Y, Zhuo K. A volumetric and viscosity study for the mixtures of 1-n-buty1-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane,2-butanone and N, N-dimethylformamide. Green Chem.2003,5,618-622.
    122.Widegren J A, Saurer E M, Marsh K N, Magee J W. Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J. Chem. Thermodyn.,2005,37 (6),569-575.
    123. Brown R A, Pollet P, McKoon E, Eckert C A, Liotta C L, Jessop P G. Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide. J. Am. Chem. Soc.2001,123 (6),1254-1255.
    124. Najdanovic-Visak V, EsperanMa J M S S, Rebelo L P N, da Ponte M N, Guedas H J R, Seddon K R, de Souza H C, Szydlowski J. J. Phys. Chem. B 2003,107,12797.
    125. Rivera-Rubero S, Baldelli S. Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc.2004,126 (38),11788-11789.
    126. Rivera-Rubero S, Baldelli S. Influence of Water on the Surface of the Water-Miscible Ionic Liquid 1-Buty1-3-methylimidazolium Tetrafluoroborate:A Sum Frequency Generation Analysis. J. Phys. Chem. B 2006,110,15499.
    127. Baldelli S. Influence of water on the orientation of cations at the surface of a room-temperature ionic liquid:A sum frequency generation vibrational spectroscopic study. J. Phys. Chem. B 2003,107 (25),6148-6152.
    128.Katayanagi H, Nishikawa K, Shimozaki Miki H K, Westh P, Koga Y. Mixing Schemes in Ionic Liquid-H2O Systems:A Thermodynamic Study. J. Phys. Chem. B.2004,108,19451.
    129. Miki K, Westh P, Nishikawa K, Koga Y. Effect of an "ionic liquid" cation, 1-buty1-3-methylimidazolium, on the molecular organization of H2O. J. Phys. Chem. B 2005,109 (18),9014-9019.
    130. Li W J, Zhang Z F, Han B X, Hu S Q, Xie Y, Yang G Y. Effect of water and organic solvents on the ionic dissociation of ionic liquids. J. Phys. Chem. B 2007, 111 (23),6452-6456.
    131. Triolo A, Russina O, Arrighi V, Juranyi F, Janssen S, Gordon C M. Quasielastic neutron scattering characterization of the relaxation processes in a room temperature ionic liquid. J. Chem. Phys.2003,119,8549-8557.
    132.Canongia Lopes J N A, Padua A A H. Nanostructural Organization in Ionic Liquids. J. Phys. Chem. B 2006,110,3330.
    133.Consorti C S, Suarez P A Z, de Souza R F, Burrow R A, Farrar D H, Lough A J, Loh W, da Silva L H M. Dupont J. Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J. Phys. Chem. B 2005,109 (10), 4341-4349.
    134. Scroder U, Wadhawan J D, Compton R G, Marken F, Suarez P A Z, Consorti C S, de Souza R F, Dupont J. Water-induced accelerated ion diffusion: voltammetric studies in 1-methy1-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-buty1-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids New J. Chem.2000,24,1009-1016.
    135. Hanke C G, Lynden-Bell R M. A simulation study of water-dialkylimidazolium ionic liquid mixtures. J. Phys. Chem. B 2003,107 (39),10873-10878.
    136. Jiang W, Wang Y T, Voth G A, Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J. Phys. Chem. B 2007,111 (18), 4812-4818.
    137.a)Noda I, Dowrey A E, Marcott C, Story G M, Ozaki Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc.2000,54, 236A-248A; b) Noda I, Liu Y, Ozaki Y. Two-dimensional correlation spectroscopy study of temperature-dependent spectral variations of N-methylacetamide in the pure liquid state.2. Two-dimensional Raman and infrared-Raman heterospectral analysis J. Phys. Chem.1996,100,8674-8680; c) Noda I, Liu Y, Ozaki Y, Miroslaw C. A.2-dimensional fourier-transform near-infrared correlation spectroscopy studies of temperature-dependent spectral vibrations of olieyl alcohol. J. Phys. Chem.1995,99,3068-3073.
    138.Lopez-Pastor M, Ayora-Canada M J, Valcarcel M, Lendl B. Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J. Phys. Chem. B 2006,110(22),10896-10902.
    139. Sun B J, Jin Q, Tan L S, Wu P Y, Yan F. Trace of the Interesting "V"-Shaped Dynamic Mechanism of Interactions between Water and Ionic Liquids. J. Phys. Chem. B 2008,112 (45),14251-14259.
    140.李汝雄.绿色溶剂-离子液体的合成与应用.化学工业出版社.第一版,2004.
    141.Yu Z W, Chen L, Sun S Q, Noda I. Determination of Selective Molecular Interactions Using Two-Dimensional Correlation FT-IR Spectroscopy. J. Phys. Chem. A.2002,106,6683-6687.
    142. Gaussian 03, Revision B.01, Frisch M J, Trucks G. W, Schlegel H B, Scuseria G. E, Robb M A, Cheeseman J. R, Zakrzewski V G, Montgomery J A, Jr, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G. A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M. A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian. Inc., Pittsburgh PA,2003.
    143. Lee K M, Chang H C, Jiang J C, Lu L C, Hsiao C J, Lee Y T, Lin S H, Lin I J B. Probing C-H…X hydrogen bonds in amide-functionalized imidazolium salts under high pressure. J. Chem. Phys.2004,120,8645-8650.
    144. Bader R F. Atoms in Molecules-A Quantm Theory. Clarendon:Oxford,1990.
    145. Biegler-Konig F. AIM2000, Version 2.0; University of Applied Sciences: Bielefeld, Germany,2002.
    146.Gutowski K E, Holbrey J D, Rogers R D, Dixon D A. Prediction of the Formation and Stabilities of Energetic Salts and Ionic Liquids Based on ab Initio Electronic Structure Calculations J. Phys. Chem. B 2005,109,23196-23208.
    147. Koddermann T, Schulte F, Huelsekopf M, Ludwig R. Formation of water clusters in a hydrophobic solvent. Angew. Chem. Int. Ed.2003,42 (40), 4904-4908.
    148. Noda I. Recent advancement in the field of two-dimensional correlation spectroscopy. J. Mol. Struct.2008,883-884,2-26.
    149. Tandler P J, Harrington P D, Richardson, Effects of static spectrum removal and noise on 2D-correlation spectra of kinetic data. Anal. Chim. Acta 1998,368, 45-47.
    150. Sasic S, Ozaki Y, Moving Window Two-Dimensional Correlation Spectroscopy and Determination of Signal-to-Noise Threshold in Correlation Spectra. Appl. Spectrosc.2003,57,996-1006.
    151.Czarnecki M A. Interpretation of Two-Dimensional Correlation Spectra:Science or Art? Appl. Spectrosc.1998,52,1583-1590.
    152.Czarnik-Matusewicz B, Murayama K, Tsenkova R, Ozaki Y. Analysis of Near-Infrared Spectra of Complicated Biologica Fluids by Two-Dimensional Correlation Spectroscopy:Protein and Fat Concentration-Dependent Spectral Changes of Milk Appl. Spectrosc.1999,53,1582-1594.
    153. Berry R J, Ozaki Y. Comparison of Wavelets and Smoothing for Denoising Spectra for Two-Dimensional Correlation Spectroscopy Appl. Spectrosc.2002, 56,1462-1469.
    154.Greaves T L, Drummond C J. Protic ionic liquids:Properties and applications. Chemical Reviews 2008,108 (1),206-237.
    155. Weng J, Wang C, Li H, Wang Y. Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction Green Chem. 2006,8,96.
    156. Wang C, Guo L, Wang Y, Weng J, Wu L. Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes.Green Chem.2006,8,603.
    157. Jiang H, Wang C, Li H, Wang Y. Preparation of dialkoxypropanes in simple ammonium ionic liquids. Green Chem.2006,8,1076.
    158. Xu X, Wang C, Li H, Wang Y, Sun W, Shen Z. Effects of imidazolium salts as cocatalysts on the copolymerization of CO2 with epoxides catalyzed by (Salen) CrCl complex Polymer,2007,48,3921.
    159. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J. Desulfurization of flue gas:SO2 absorption by an ionic liquid. Angew. Chem. Int. Ed.2004,43,2415.
    160. Huang J, Riisager A, Wasserscheid P, Fehrmann R. Reversible physical absorption of SO2 by ionic liquids. Chem. Commun.2006,38,4027.
    161. Bates E D, Mayton R D, Ntai I, Davis J H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc.2002,124,926.
    162.1chikawa T, Yoshio M, Hamasaki A, Mukai T, Ohno H, Kato T, Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases:Formation of nano-ion channel networks. J. Am. Chem. Soc.2007,129 (35),10662.
    163.Tokuda H, Hayamizu K, Ishii K, Abu Bin Hasan Susan M, Watanabe M, Physicochemical properties and structures of room temperature ionic liquids.1. Variation of anionic species. J. Phys. Chem. B 2004,108 (42),16593-16600.
    164.王军.杨许召.吴诗德.李刚森.离子液体的性能及应用.中国纺织出版社.第一版,2007.
    165.Greaves T L, Weerawardena A, Krodkiewska I, Drummond C J, Protic ionic liquids:Physicochemical properties and behavior as amphiphile self-assembly solvents. J. Phys. Chem. B 2008,112 (3),896-905.
    166.Kohler F, Atrops H, Kalali H, Liebermann E, Wilhelm E, Ratkovics F, Salamon T, Molecular-interactions in mixtures of carboxylic-acids with amines.1. melting curves and viscosities. J. Phys. Chem.1981,85 (17),2520-2524.
    167.Kohler F, Gopal R, Gotze G, Atrops H, Demiriz M A, Liebermann E, Wilhelm E, Ratkovics F, Palagyi B, Molecular-interactions in mixtures of carboxylic-acids with amines:2. volumetric, conductimetric, and NMR properties. J. Phys. Chem. 1981,85 (17),2524-2529.
    168.Kohler F, Miksch G, Kainz C, Lieberma E. Thermodynamics of acetic acid triethylamine system. J. Phys. Chem.1972,76 (19),2764-&.
    169.Kazuhide U, Hiroyuki T, Masayoshi W. Ionicity in ionic liquids:correlation with ionic structure and physicochemical properties.Phys. Chem. Chem. Phys.,2010, 12,1649-1658.
    170.Walden P. Organic solutions-and ionisation means. III. Chapter:Internal friction and its connection with conductivity. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre 1906,55 (2),207-249.
    171. Yoshizawa M, Xu W, Angell C A. Ionic Liquids by Proton Transfer:Vapor Pressure, Conductivity, and the Relevance of ApKa from Aqueous Solutions. J. Am. Chem. Soc.2003,125,15411.
    172.Belieres J P, Angell C A. Protic Ionic Liquids:Preparation, Characterization, and Proton Free Energy Level Representation. J. Phys. Chem. B 2007,111,4926.
    173.MacFarlane D R, Pringle J M, Johansson K M, Forsyth S A, Forsyth M. Lewis base ionic liquids Chem. Commum.2006,1905-1917.
    174.MacFarlane D R, Seddon K R. Ionic liquids-Progress on the fundamental issues Aust. J. Chem.2007,60,3-5.
    175. Noda A, Susan M A B H, Kudo K, Mitsushima S, Hayamizu K, Watanabe M. Br?nsted Acid-Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes. J. Phys. Chem. B 2003,107,4024.
    176.Nuthakki B, Greaves T L, Krodkiewska I, Weerawardena A, Burgar M I, Mulder R J, Drummond C J. Protic ionic liquids and ionicity. Aust. J. Chem.2007,60, 21.
    177..Glazunov V P, Mashkovsky A A, Odinokov S E. Infrared Spectroscopic Study of Interionic Hydrogen Bonds in Triethylammonium Salts. J. Chem. Soc., Faraday Trans.2 1979,629-635.
    178. Mashkovsky A A, Nabiullin A A, Odinokov S E. Infrared Spectroscopic Studies of Hydrogen Bonding in Triethylammonium Salts. Part 2.-Association of Triethylammonium Salts with Bases. J. Chem. Soc., Faraday Trans.2 1983,7, 951-960.
    179.Odinokov S E, Glazunov V P, Nabiullin A A. Infrared Spectroscopic Studies of Hydrogen Bonding in Triethylammonium Salts. Part 3.-Strong Hydrogen Bonding. J. Chem. Soc., Faraday Trans.2 1984,8,899-908.
    180.Mashkovsky A A, Nabiullin A A, Odinokov S E. Infrared Spectroscopic Studies of Hydrogen Bonding in Triethylammonium Salts. Part 4.-Rearrangement of Hydrogen-bonded Ion Pairs of Triethylammonium Salts Caused by Interaction with Tetrabutylammonium Salts in Solution. J. Chem. Soc., Faraday Trans.1 1987,6,1879-1883.
    181.Angell C A, Byrne N, Belieres J P. Parallel developments in aprotic and protic ionic liquids:Physical chemistry and applications. Accounts of Chemical Research 2007,40 (11),1228-1236.
    182.Gillespie R J, Popelier P L A. Chemical bonding and molecular geometry. Oxford University Press:New York,2001.
    183.Popelier P. Atoms in molecules:An introduction. Pearson Education:Harlow, 2000.
    184.Arnold W D, Oldfield E. The chemical nature of hydrogen bonding in proteins via NMR:J-couplings, chemical shifts, and AIM theory. J. Am. Chem. Soc.2000, 122,12835-12841.
    185.Dunitz J D, Gavezzotti A. Molecular recognition in organic crystals:Directed intermolecular bonds or nonlocalized bonding? Angew. Chem. Int. Ed.2005,44, 1766-1787.
    186. a) Muller-Dethlefs K, Hobza P. Noncovalent interactions:A challenge for experiment and theory. Chemical Reviews 2000,100 (1),143-167. b) Spirko V, Hobza P. Theoretical investigations into the blue-shifting hydrogen bond in benzene complexes. Chem. Phys. Chem.2006,7 (3),640-643.
    187. Joseph J, Jemmis E D. Red-, blue-, or no-shift in hydrogen bonds:A unified explanation. J. Am. Chem. Soc.2007,129 (15),4620-4632.
    188. a) Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth H D, Brutschy, B. Anti-hydrogen bond between chloroform and fluorobenzene. Chemical Physics Letters 1999,299 (2),180-186; b) Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, Hobza P. Improper, blue-shifting hydrogen bond between fluorobenzene and fluorobenzene. J. Phys. Chem. A 2001,105 (23), 5560-5566.; c) van der Veken B J, Herrebout W A, Szostak R, Shchepkin D N, Havlas Z, Hobza P. The nature of improper, blue-shifting hydrogen bonding verified experimentally. J. Am. Chem. Soc.2001,123 (49),12290-12293 d) Hobza P, Havlas Z.The fluoroform…ethylene oxide complex exhibits a C-H center dot center dot center dot O anti-hydrogen bond. Chemical Physics Letters 1999,303 (3-4),447-452. e)Hobza P, Havlas Z. Improper, blue-shifting hydrogen bond. Theor. Chem. Acc.2002,108 (6),325-334.
    189.Kryachko E S, Zeegers-Huyskens T. Theoretical study of the CH…O interaction in fluoromethanes…H2O and chloromethanes…H2O complexes. J. Phys. Chem. A 2001,105(29),7118-7125.
    190. a)Gu Y L, Kar T, Scheiner S. Fundamental Properties of the CH…O Interaction:Is It a True Hydrogen Bond? J. Am. Chem. Soc.1999,121,9411; b) Scheiner S, Kar T. Red-versus Blue-Shifting Hydrogen Bonds:Are There Fundamental Distinctions? J. Phys. Chem. A 2002,106,1784.
    191. Li X, Liu L, Schlegel H B. On the Physical Origin of Blue-Shifted Hydrogen Bonds. J. Am. Chem. Soc.2002,124,9639.
    192.Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic Basis of Improper Hydrogen Bonding:A Subtle Balance of Hyperconjugation and Rehybridization. J. Am. Chem. Soc.2003,125,5973.
    193. Pejov L, Hermansson K. On the nature of blueshifting hydrogen bonds:Ab initio and density functional studies of several fluoroform complexes. J. Chem. Phys.2003,119(1),313-324.
    194.Masunov A, Dannenberg J J, Contreras R H. C-H bond-shortening upon hydrogen bond formation:Influence of an electric field. J. Phys. Chem. A 2001, 105 (19),4737-4740.
    195. Hermansson K. Blue-shifting hydrogen bonds. J. Phys. Chem. A 2002,106 (18), 4695-4702.
    196.Qian W L, Krimm S. Vibrational Spectroscopy of hydrogen bonding:Origin of the different behavior of the C-H center dot center dot center dot O hydrogen bond. J. Phys. Chem. A 2002,106 (28),6628-6636.
    197. Karpfen A. The interaction of fluoramines, fluorophosphines and fluoroarsines with hydrogen fluoride clusters (HF)(n):Model studies on blue-shifted hydrogen bonds. J. Mol. Struct. (THEOCHEM) 2005,757,203.
    198. a) Karpfen A, Kryachko E S. Blue-shifted hydrogen-bonded complexes CF3H-(HF)(1≤ n≤3). J. Phys. Chem. A 2003,107 (45),9724-9729.; b) Karpfen A, Kryachko E S. Strongly blue-shifted C-H stretches:Interaction of formaldehyde with hydrogen fluoride clusters. J. Phys. Chem. A 2005,109 (39), 8930-8937.
    199. a) Monat J E, Toczylowski R R, Cybulski S M. Ab Initio Study of the CH3F…H2O Complex. J. Phys. Chem. A 2001,105,9004; b) Pejov L, Hermansson K. On the nature of blueshifting hydrogen bonds:Ab initio and density functional studies of several fluoroform complexes. J. Chem. Phys.2003, 119(1),313-324.
    200.a) Katsumoto Y, Komatsu H, Ohno K. Origin of the Blue Shift of the CH Stretching Band for 2-Butoxyethanol in Water. J. Am. Chem. Soc.,2006,128, 9278; b) Jarmelo S, Maiti N, Anderson V, Carey P R, Fausto R. Ca-H Bond-Stretching Frequency in Alcohols as a Probe of Hydrogen-Bonding Strength:A Combined Vibrational Spectroscopic and Theoretical Study of n-[l-D] Propanol. J. Phys. Chem. A 2005,109,2069; c) Xu Z, Li H R, Wang C M, Pan H H, Han S J. The Methyl C-H Blue Shift in DMF-Water Mixtures Porbed by Two-Dimentional FT-IR Spectroscopy. J. Chem. Phys.2006,124, 244502; d) Xu Z, Li H R, Wang C M, Wu T, Han S J. Is the Blue Shift of C-H Vibration in DMF-Water Mixtures Mainly Caused by C-H…O Interaction? Chem. Phys. Lett.2004,394,405; e) Xu Z, Li H R, Wang C M. Can the Blue Shift of C-H Stretching Modes of Unactivated C Groups be the Indicator of Weak C-H…O Hydrogen Bond? Chem. Phys. Chem..2006,7,2460; f) Chandra A K, Parveen S, Zeegers-Huyskens T. Anomeric Effects in the Symmetrical and Asymmetrical Structures of Triethylamine. Blue-Shifts of the C-H Stretching Vibrations in Complexed and Protonated Triethylamine J. Phys. Chem. A 2007, 111,8884.
    201. a) Binnemans K. Chem. Rev. Ionic Liquid Crystals.2005,105,4148; b) Parvulescu V I, Hardacre C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615; c) van Rantwijk F, Sheldon R A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007,107,2757.
    202.Mizuno K, Imafuji S, Ochi T, Ohta T, Maeda S. Hydration of the CH groups in dimethyl sulfoxide probed by NMR and IR. J. Phys. Chem. B 2000,104 (47), 11001-11005.
    203.Mrazkova E, Hobza P. Hydration of sulfo and methyl groups in dimethyl sulfoxide is accompanied by the formation of red-shifted hydrogen bonds and improper blue-shifted hydrogen bonds:An ab initio quantum chemical study. J. Phys. Chem. A 2003,107 (7),1032-1039.
    204.Chang H C, Jiang J C, Feng C M, Yang Y C, Su C C, Chang P J, Lin S H. High-pressure spectroscopic probe of hydrophobic hydration of the methyl groups in dimethyl sulfoxide. Journal of Chemical Physics 2003,118 (4), 1802-1807.
    205. Lei Y, Li H R, Han S J. An all-atom simulation study on intermolecular interaction of DMSO-water system Chem. Phys. Lett.2003,380,542-548.
    206. Li Q Z, An X L, Gong B A, Chengf J B. Cooperativity between OH…O and CH …O hydrogen bonds involving dimethyl sulfoxide-H2O complex. J. Phys. Chem. A 2007,111 (40),10166-10169.
    207. Li Q Z, An X L, Gong B A, Chengf J B. Spectroscopic and theoretical evidence for the cooperativity between red-shift hydrogen bond and blue-shift hydrogen bond in DMSO aqueous solutions. Spectrochim. Acta Part a-Mole. Biom. Spectrosc.2008,69 (1),211-215.
    208. Li Q Z, An X L, Gong B A, Chengf J B.Comparison of contribution of O-H center dot center dot center dot O=S hydrogen bond and C-H center dot center dot center dot O-w interaction to the methyl blueshift in hydration of dimethyl sulfoxide. Vib. Spectrosc.2008,46 (1),28-33.
    209. Clark T, Chandrasekhar J, Spitznagel G W, Schleyer P von R. Efficient diffuse function-augmented basis-sets for anion calculations.3. the 3-21+G basis set for lst-row elements, Li-F. J. Comput. Chem.1983,4,294.
    210.Hehre W J, Ditchfield R, Pople J A. Self-consisitent molecular-orbital methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys.1972,56,2257-2261.
    211. a) Horrocks W D, Cotton F A. Infrared and raman spectra and normal co-ordinate analysis of dimethyl sulfoxide and dimethyl sulfoxide-d6. Spectrochim. Acta 1961,17,134-147; b) Forel M T, Tranquille M. Vibration spectra of dimethylsulfoxide and of dimethylsulfoxide-d6. Spectrochim. Acta 1970,26A,1023-1034.
    212.a) Amyes T L, Diver S T, Richard J P, Rivas F M, Toth K. Formation and stability of N-heterocyclic carbenes in water:The carbon acid pK(a) of imidazollum cations in aqueous solution. J. Am. Chem. Soc.2004,126 (13), 4366-4374. b) Chu Y, Deng H, Cheng J P. An acidity scale of 1,3-dialkylimidazolium salts in dimethyl sulfoxide solution. Journal of Organic Chemistry 2007,72,7790-7793.
    213. Daniel D C, McHale J L. Hydrogen Bonding in CHCl3/DMSO-d6 and CDCl3/DMSO-h6 Mixtures J. Phys. Chem. A 1997,101,3070.
    214.Remsing R C, Liu Z W, Sergeyev I, Moyna G. Solvation and aggregation of N,N '-dialkylimidazolium ionic liquids:A multinuclear NMR spectroscopy and molecular dynamics simulation study. J. Phys. Chem. B 2008,112 (25), 7363-7369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700