用户名: 密码: 验证码:
小秦岭金矿地球化学特征及矿床成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小秦岭金矿田是我国著名的金成矿区带,大地构造位属华北地台南缘。矿田处于太古宙绿岩带内,南北分别以小河断裂和太要断裂为界。本文选择研究区几个典型金矿区、主要岩体及外围地层作为研究对象,在大量野外工作基础上,综合运用岩石学、矿物学、矿床学、地球化学、同位素地质学等多学科的理论和方法,对小秦岭金矿田的地球化学特征做了系统研究,探讨了小秦岭金矿床的成因。
     本区杨砦峪组黑云斜长片麻岩属中偏酸性火山岩,观音堂组黑云变粒岩与中国中酸性火山岩平均成分相当,斜长角闪岩受到了区域变质和混合岩化作用—的影响。片麻岩类、变粒岩类稀土总量较高、变化范围大,轻稀土明显富集、铕亏损不明显。斜长角闪岩稀土总量较低,轻稀元素略富集,铕亏损不明显。三个岩体稀土配分图趋势一致,为向右缓倾平坦型,无明显铕的异常。从斜长角闪岩—黑云斜长片麻岩—黑云浅粒岩—变粒岩,岩石中微量元素Cr、Co、Ni、V、Cu、Zn、Ti等均显示由高到低的演化趋势;Pb、Mo则显示由低到高的趋势;Ni/Co值均大于1,且斜长角闪岩明显高于后者。
     不同矿区的含金石英脉均具有基本相同的氢、氧同位素组成,成矿流体具有共同的来源和演化历史,即其成矿热液是岩浆水、大气降水的多源混合热液。本区δ~(34)S平均值多数集中在-2.1‰—5.7‰,总体变化不大,以富重硫为特征,均一化程度较高。矿石、花岗岩和地层的硫同位素来源一致,并以深源硫为主。铅同位素分布集中,相对稳定,金矿床与太华群和文峪花岗岩的铅同位素组成基本一致,铅同位素演化模式与地幔及下地壳来源铅的演化模式相近。部分矿床碳酸盐矿物的δ~(13)C值变化范围不大,具有深源碳同位素组成特征。
     小秦岭金矿成矿物质金、硫、铅、碳等主要来自已成地壳的以幔源物质为主的太华群及其以下地壳,成矿流体是岩浆水、大气降水的多源混合热液。金矿床在成因上应属于中低温重熔岩浆期后热液型金矿,金矿的形成与太华群地层长期变质、变形关系密切。晚燕山期花岗岩的侵入,为金的进一步活化、迁移提供了热动力和负压容矿构造条件,最终导致金的富集成矿。
Xiao Qinling gold field is the famous gold mineralization belt in China, it locates in the south of north China platform. Ore field lies in the greenstone belt of Archean, and it has the Xiao He fracture of south and Tai Yao fracture of north as its boundary. In this essay, several typical gold field, some main rock masses and the surrounding strata are considered as its subject, on the basis of abundant work in the field, synthetically using multidisciplinary theory and method, such as petrology, mineralogy, ore deposit geology, geochemistry, isotope geology and so on to do systemically research on the geochemical characters on Xiao Qinling gold field, and explore the genesis of Xiao Qinling gold deposit.
     In this area, the biotite plagioclase gneiss of Yang Zhaiyu formation belongs to intermediate-acid volcanic rocks, while the biotite granulites of Guan Yin tang formation equivalents with the average composition of intermediate-acid volcanic rocks of our country, and plagioclase amphibolite undergoes the affect of regional metamorphism and migmatization. Rare earth elements are rich in gneiss and granulites, with a large variable ranges and rich light rare earth elements, Eu negative anomaly is not obvious. The rare earth’distribution diagrams of the three rock bodies trend uniformly, according to the flat pattern with right deviation gradually, without obvious Eu anomaly. From plagioclase amphibolite,biotite plagioclase gneiss, biotite granulites to granulites, trace elements in them such as Cr、Co、Ni、V、Cu、Zn、Ti and so on, revealing an evolutionary trend from high to low; but for Pb and Mo, just an opposite trend; the ration of Ni and Co is more than one, which is obvious higher in plagioclase amphibolite than that of others.
     Gold bearing quartz veins of different mine are have almost the same components of H and O isotope, ore-forming fluid shows the same source and evolutionary history, that is, has the multi-source mixed fluid of magmatic water and meteoric water. The average contents ofδ~(13)C are mostly concentrated between -2.1‰and 5.7‰, rich in heavy sulfur and a high homogeneity. The sulfur isotope sources of ores, granite and strata are identical, and rich in deep source sulfur. Pb isotopes distribute concentrated, and are very stable, whose components in gold deposit mines and Wen Yu granite of Tai Hua group are basically the same, and it has the similar evolutionary model with the mental and the lower crust. In some deposit mine,δ~(13)C of carbonate minerals vary not greatly, and it is charactered as the deep source C isotopes.
     The metallogenic materials of Xiao Qinling gold mine such as Au , S, Pb, C and so on mainly come from Tai Hua group with mental substance and the crust below it. Ore-forming fluid is multi-source mixed fluid of magmatic water and meteoric water. This gold deposit mine belongs to middle-low temperature remelting post magmatic hydrothermal type gold mine, the formation of the gold mine has close relationship with the long period of metamorphism and deformation of Tai Hua group strata. The intrusion of granite in late Yan Shan period provides thermal dynamic and ore-hosting structure for the further activation and migration of gold, eventually contributes to concentration in gold ore-formation.
引文
[1].肖荣阁,刘敬党,费红彩,等.岩石矿床地球化学[M].北京:地震出版社,2007.
    [2].赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004:411.
    [3].陈毓川,王登红,朱裕生,等.中国成矿体系与区域成矿评价[M].北京:地质出版社,2007:1005.
    [4].陈毓川,李兆鼐,母瑞身,等.中国金矿床及成矿规律[M].北京:地质出版社,2001:465.
    [5].黎世美,瞿伦全,苏振邦,等.小秦岭金矿地质和成矿预测[M].北京:地质出版社,1996.
    [6].银剑钊.我国金矿床成矿理论研究现状[J].地质科技情报,1994,13{2}:58-62.
    [7].肖荣阁,张宗恒,陈卉泉,等.地质流体自然类型与成矿流体类型[J].地学前缘,2001,8(4):245-252.
    [8].肖荣阁,原振雷,费红彩,等.区域成矿流体形成与演化[J].地学前缘,1999,6(2):243-250.
    [9].肖荣阁,龚羽飞,翟裕生,等.变质岩区金矿成矿系统[J].地学前缘,2001,8(4):245-252.
    [10].翟裕生,苗成来,向运川,等.华北克拉通绿岩带型金矿成矿系统初析[J].地球科学,2002,27(5):522-529.
    [11].王登红,应立娟,王成辉,等.中国贵金属矿床的基本成矿规律与找矿方向[J].地学前缘,2007,14(5):71-81.
    [12].应汉龙,王登红,刘和林.云南墨江金厂镍-金矿床镍矿化地质特征及形成时间[J].矿床地质,2005,24(1) :44-51.
    [13].邵军.中国石英脉型金矿床地质特征[J].贵金属地质,1998,7(3) :172-179.
    [14].范永香.金矿床主要类型及其地质特征[M].北京:中国地质大学出版社,1989:178.
    [15].沈保丰,毛德宝,李俊建.中国绿岩带型金矿床类型和地质特征[J].前寒武纪研究进展,1997,20(4):1-12.
    [16].杨蔚华,刘友梅.中国沉积岩型金矿床地球化学及找矿方向[J] .地球化学,1997,26(1):13-23.
    [17].李景春,庞庆邦,李文亢,等.中国金矿床工业类型[J].贵金属地质,1998,7(2):114-120.
    [18].陈毓川,王登红,林文蔚.中国岩金矿床成矿系列[J].矿床地质,1998,17(增刊) :87-92.
    [19].王义文.金矿床定年方法进展及中国金矿成矿时代[J].矿物岩石地球化学通报,1994,6(1):30-32.
    [19].李俊建.中国金矿床成矿时代的讨论[J].地球学报,1998,19(2):215-220.
    [20].李景春,庞庆邦,李文亢,等.中国金矿床工业类型[J].贵金属地质,1998,7(2):114-120.
    [21].祁进平,赖勇,任康绪,等.小秦岭金矿田成因的锶同位素约束[J].岩石学报,2006,22(10):2543-2550.
    [22].徐九华,谢玉玲,刘建明,等.小秦岭文峪—东闯金矿床流体包裹体的微量元素及成因意义[J].地质与勘探,2004,40(4):1-6.
    [23].徐九华,何知礼,谢玉玲.绿岩型金矿床成矿流体的地球化学[M].北京:地质出版社,1996.
    [24].王世称,陈永良.中国大型金矿床空间分布规律及找矿方向[J].地球科学,1999,24(5):455-458.
    [25].胡正国,钱壮志,闫广民,等.小秦岭拆离断-变质核杂岩构造与金矿.西安:陕西科学技术出版社,1994a.
    [26].栾世伟等.小秦岭金矿床地球化学[J].矿物岩石(金矿床地球专辑),1985(2).
    [27].栾世伟,陈尚迪.小秦岭金矿主要控矿因素即成矿模式[J].地质找矿论丛,1990,5(4总20):1-14.
    [28].张国伟,孟庆仁,于在平,等.秦岭造山带过程及其动力学特征.中国科学(D辑),1996,26(3):193~200.
    [29].冯守忠.中国伴生金矿床的时空分布规律[J].地质找矿论丛,2004,19(2):71-75.
    [30].李厚民,叶会寿,毛景文,等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J].矿床地质,2007,26(4):417-724.
    [31].徐九华,何知礼,申世亮,等.小秦岭文峪—东闯金矿床稳定同位素地球化学及矿液矿质来源[J].地质找矿论丛,1993,8(2):87-100.
    [32].王祖伟.小秦岭金矿带稀土元素地球化学特征初步研究[J].矿产与地质, 1996, 10(3):155-158.
    [33].黎彤,倪守斌.地球和地壳的化学元素丰度[M],北京:地质出版社,1990.
    [34].王义天.小秦岭变质核杂岩中生代金的成矿作用和成矿动力学背景研究:[博士后论文].北京,中国地质科学院,2002b.
    [35].王一天,毛景文,卢欣祥,等.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J].科学通报,2002,47(8):1427-1431.
    [36].关连绪,王科强,黄辉,等.秦岭大陆碰撞成矿机制与金矿带时空定位[J].地质论评,2006,52(4):467-476.
    [37].陈莉.小秦岭大湖金矿床成矿流体特征及矿床成因探讨:[硕士学位论文].北京:中国地质大学(北京),2006.
    [38].董树义.山东沂南金矿床成因与成矿规律和成矿预测:[博士学位论文].北京:中国地质大学(北京),2008.
    [39].栾世伟,陈尚迪,曹殿春,等.小秦岭地区深部金矿化特征及评价[M].成都:成都科技大学出版社,1991:100-124.
    [40].卢新祥,尉向东,董有,等.小秦岭—熊耳山地区金矿特征与地幔流体[M].北京:地质社,2004:82-101.
    [41].张理刚.稳定同位素在地质科学中的应用-金属活化热液成矿作用与找矿.1985.
    [30].张理刚.中国东部岩石圈铅同位素化学结构与动力学研究[J].矿物岩石地球化学通讯,1992,3总43:133-137.
    [42].晁援,卫旭辰.陕西小秦岭金矿控矿条件及脉体评价标志.见:沈阳地质矿产研究所编,中国金矿主要类型区域成矿条件文集-3豫陕小秦岭地区.北京:地质出版社,1989,87~139.
    [43].范宏瑞,谢亦汉,赵瑞,等.小秦岭含金石英脉复式成因的流体包裹体证据[J].科学通报,45(5):537~542.
    [44].毛景文,李晓峰,李厚民,等.中国造山带内生金属矿床类型、特点和成矿过程探讨[J].地质学报, 2005,79(3):342~372.
    [45].卢欣祥,尉向东,于在平,等.小秦岭—熊耳山地区金矿的成矿流体特征[J].矿床地质,2003,22(4):377-385.
    [46].张进江,郑亚东,刘树文.小秦岭金矿田中生代构造演化与矿床形成[J].地质科学,2003,38(1):74-84.
    [47]. Pan Y M and Dong P. The lower Changjiang (Yangtzi River) metallogenic belt, east central China: intrusion and wall rock-related Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999,15: 177-242.
    [48]. Lothar R, Hacker B R, Calvert A. Tectonics of the Qinling (Central China): tectono stratigraphy, geochronology and deformation history[J]. Tectonophysics, 2003, 366 (1-2): 1-53.
    [49]. Loucks R R, Mavroqenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions [J]. Science, 1999,284(25): 2 159-2 163.
    [50]. Phillips G N. Link between gold provinces[J]. Economic Geology, 1993, 88:1084-1098.
    [51]. Mikucki E J, Ridleg J R. The hydrothermal fluid of Archxan lode-gold deposits at different metamorphic grades: Compositional constraints from ore and wallrock alteration assemblages[J]. Mineral Deposits, 1993, 28: 469-481.
    [52]. Hass J L. Physical properties of the coexisting phases and the thermo chemical properties of the H2O component in boiling NaCl solutions. U S Geol Surv Bull,1976 1421A: 1-73.
    [53]. Hu Zhengguo, Qian Zhuangzhi, Wang Yitian. A regional pattern of extensional active zone in the south margin(Yu-Shan area)along continental nucleus of the North China.30th IGC Abstracts, Beijing, 1996, Vol.2: 290.
    [54]. Jiang Neng, Zhou Yongfeng. Geology and genesis of orgenic gold deposits, Xiao Qinling district, Southeastern China[J]. International Geology Review, 1999, 41: 816-826.
    [55]. Jiang Neng et al. Fluid inclusion characteristics of mesothermal gold deposits in the Xiao Qinling district, Shanxi and Henan Provinces, People’s Republic of China[J]. Mineralize Deposits, 1999, 34: 150-162.
    [56]. Stuart F M, Turner G.. Abundance and isotopic composition of the noble gases in fluid inclusions. Chem Geol. 1992, 101:97~111.
    [57]. Suart F M,Burnard P G, Taylor R P et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim Cosmo Chim Acta, 1995, 59: 4663-4673.
    [58]. Suart F M, Turner G, Duckworth R C et al. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology, 1994, 22:823-826.
    [59]. Taylor B.E. and O'Neil J.R. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, as good Mountains, Nevada. Contributions to mineralogy and petrology, 1977, 63: 1-49.
    [60]. Taylor H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol, 1974. 69: 843-883.
    [61]. Taylor S R, McLennan S M. The continental crust: Its composition and evolution. Oxford: Blackwell, 1985, 1-312.
    [62]. Baker E M, Andrew A S. Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Austraslia. Economic Geology, 1991, 86: 810-830.
    [63]. Baker T, Lang J R. Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone Tungsten magmatic belt, Yukon Territory, Canada. Mineralium Deposita, 2001,36: 563-582.
    [64]. Baker T. Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Economic Geology, 2002, 97:1111-1117.
    [65]. Boullier A and Robert F. Paleoseismic events recorded in Archean gold-quartz vein networks, Vald’Or, Abitibi, Quebec, Canada[J]. Jour. Struct. Geol, 1992, 14:161-179.
    [66]. NengJiang. Hydrothermal fluid evolution associated with gold mineralization at the Wenyu Mine,Xiaoqinling district [J]. China Resource Geology, 2000, 50(2): 103-112.
    [67]. Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons, U-Pb zircon dating of coesite-bearing eclogites [J]. Geology,1993,21:339-342.
    [68]. Kerrich R. Perspective on genetic models for gold deposits[J]. Mineral Deposits, 1993, 28: 362-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700