用户名: 密码: 验证码:
烟粉虱Q型替代B型的生态学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外来生物入侵危害国家的生物安全、生态安全和经济安全。烟粉虱是一种由多种生物型组成的世界性重要农业害虫,其中的B型和Q型是两种危害最大、入侵性最强的生物型。B型烟粉虱自20世纪90年代中期入侵我国,给我国农业生产、国民经济造成了巨大损失;Q型烟粉虱则于2003年首先在云南发现,并随后在我国华东、华北地区迅速扩散;同时,由烟粉虱传播的番茄黄化曲叶病毒也在各地暴发成灾。本论文通过对我国20多个省市多种作物上的烟粉虱种群的系统监测研究,发现烟粉虱入侵我国十多年后,其主要危害生物型已由B型转变为Q型;生物因子(寄主植物、内共生菌和植物病毒)与非生物因子(杀虫剂)对B型和Q型烟粉虱种群互作特性研究,证实杀虫剂的使用是导致B型烟粉虱被Q型烟粉虱替代的关键生态因子;进一步对B型与Q型烟粉虱获毒及传毒特性研究,发现烟粉虱Q型替代B型是导致TYLCV在我国暴发流行的机制。相关研究结果对入侵烟粉虱及其传播病毒的可持续控制具有重要指导意义。
     主要研究内容和结论如下:
     一、B型烟粉虱和Q型烟粉虱在我国的入侵分布动态
     利用特异分子标记并结合mtCO1基因序列分析,分别于2009年和2011年对采自我国的19个省市和27个省市的烟粉虱种群的生物型进行了鉴定,结果发现,2009年的61个烟粉虱种群中有44个是Q型烟粉虱种群,17个是B型烟粉虱种群,Q型烟粉虱主要分布在长江流域及东部沿海地区;2011年的98个烟粉虱种群中有60个Q型烟粉虱种群,9个B型烟粉虱种群,29个混合种群中有20个种群Q型烟粉虱占有较高的比例(>50%),除了东南省份,Q型烟粉虱都占据主导优势。监测结果发现,烟粉虱入侵我国十多年后,其主要危害生物型已由早期入侵B型转变为Q型。
     二、寄主植物对B型和Q型烟粉虱种群竞争取代的影响
     将B型和Q型烟粉虱按各占50%的比例分别接种到一品红、辣椒、番茄和甘蓝四种寄主植物上,一定时间后随机采集寄主植物上一定数量的烟粉虱个体并鉴定其生物型,明确寄主植物对两种生物型烟粉虱种群间互作的影响。结果发现在一品红和辣椒植株上,分别经过8代和2代,Q型烟粉虱替代了B型烟粉虱;而在番茄和甘蓝植株上则刚好相反,分别经过5代和4代,B型烟粉虱替代了Q型烟粉虱。不同寄主植物对B型和Q型烟粉虱种群间的互作表现了不同的特性,导致了不同的替代方向和速度。
     三、杀虫剂对B型和Q型烟粉虱种群竞争取代的影响
     同样将B型和Q型烟粉虱按各占50%比例分别接种到棉花和黄瓜植物上,并分别设置一定浓度的杀虫剂处理和未处理的重复,一定时间后随机采集寄主植物上一定数量的烟粉虱个体并鉴定其生物型,明确杀虫药剂对两种生物型烟粉虱种群间互作的影响。结果发现,在未经杀虫剂处理的棉花植株上,经过6代Q型烟粉虱替代了B型烟粉虱,而在经一定剂量的噻虫嗪处理后的棉花植株上,Q型烟粉虱仅需要4代即替代了B型烟粉虱。在棉花植株上,杀虫剂的使用显著加快了Q型烟粉虱替代B型烟粉虱的速度。
     而在黄瓜植株上,未用杀虫剂处理情况下,经过9代B型烟粉虱替代了Q型烟粉虱;但使用杀虫剂噻虫嗪和螺虫乙酯处理后,B型和Q型烟粉虱间的替代方向发生改变,经过5代后B型烟粉虱被Q型烟粉虱所替代,使用联苯菊酯处理时,仅需4代B型烟粉虱即被Q型烟粉虱替代。在黄瓜植株上,杀虫剂的使用完全改变了寄主植物对B型和Q型烟粉虱种群间的互作特性与替代方向,杀虫剂的使用导致了Q型烟粉虱替代B型烟粉虱。
     显然,在Q型烟粉虱适宜的寄主植物上,杀虫剂的使用加速了Q型烟粉虱对B型烟粉虱的替代;在B型烟粉虱适宜的寄主植物上,杀虫剂的使用则逆转了B型烟粉虱对Q型烟粉虱的替代方向。毫无疑问,杀虫剂的使用在田间Q型烟粉虱替代B型烟粉虱的过程中起着关键性的作用。
     四、烟粉虱体内共生菌的多样性与其对B型和Q型烟粉虱种群互作特性的影响
     共生菌影响宿主昆虫的生长、发育与繁殖特性。本论文对2009年采集的61个烟粉虱田间种群(17个B型和44个Q型)和5种不同寄主植物饲养5年的B型烟粉虱实验室种群体内的原生共生菌Portiera和6种次生共生菌Hamiltonella、Arsenophonus、Cardinium、Wolbachia、Rickettsia和Fritschea进行了检测。结果表明,不同烟粉虱种群其体内共生菌的多样性与感染率呈现多样性特点,寄主植物种类、采集地点、烟粉虱生物型和性别这四个因子均显著影响其体内次生共生菌的多样性和感染率。田间B型和Q型烟粉虱共生菌的多样性和感染率与Q型烟粉虱替代B型烟粉虱没有明显的相关性。
     进一步对3种不同寄主饲养6年的B型烟粉虱和噻虫嗪敏感和抗性B型烟粉虱体内共生菌密度研究后发现,寄主植物和杀虫剂是影响烟粉虱体内共生菌密度的重要因子。
     五、番茄黄化曲叶病毒对B型和Q型烟粉虱竞争取代的影响
     将携带和未携带TYLCV的B型和Q型烟粉虱分别接种在棉花植株上(TYLCV的非宿主植物),研究TYLCV对B型和Q型烟粉虱生长发育的直接作用。结果发现,携带TYLCV的B型烟粉虱较未携带TYLCV的B型烟粉虱在棉花上的存活率、产卵量均显著下降,雌成虫和雄成虫的体长明显变短,TYLCV对B型烟粉虱的生长发育呈现不利作用;而携带和未携带TYLCV的Q型烟粉虱在棉花上的生物学特性基本无差异,TYLCV对Q型烟粉虱的生长发育呈中性作用。
     另外,将不带毒的B型和Q型烟粉虱分别接种在健康和感染TYLCV的番茄植株上,研究TYLCV对B型和Q型烟粉虱生长发育的间接作用。结果发现,在感染TYLCV的番茄植株上较健康的番茄植株上,Q型烟粉虱的发育历期缩短、寿命延长、存活率和产卵量提高及雌成虫体长变长,TYLCV显著促进了Q型烟粉虱的生长发育;而对B型烟粉虱,其作用刚好相反,在感染TYLCV的番茄植株上较健康的番茄植株上,B型烟粉虱的发育历期延长、寿命缩短、存活率和产卵量下降及雌成虫体长变短,TYLCV不利于B型烟粉虱的生长发育。
     进一步将B型和Q型烟粉虱按各占50%比例分别接种到健康和感染TYLCV的番茄植株上,一定时间后随机采集寄主植物上一定数量的烟粉虱个体并鉴定其生物型,明确TYLCV对两种生物型烟粉虱种群间互作的影响。结果发现,未感染TYLCV的番茄上,B型烟粉虱经过5代替代了Q型烟粉虱,在感染TYLCV的番茄上,B型烟粉虱经过6代替代了Q型烟粉虱,TYLCV的感染不能逆转番茄植株上B型烟粉虱替代Q型烟粉虱的方向,但明显的减缓了B型烟粉虱替代Q型烟粉虱的速度,烟粉虱与TYLCV的互作一定意义上有助于田间Q型烟粉虱替代B型烟粉虱。
     六、烟粉虱Q型替代B型促进中国TYLCV的暴发流行
     对2009年采自我国18个省,55个烟粉虱种群(12个B型和43个Q型)的2750个烟粉虱个体进行TYLCV检测,结果发现,B型烟粉虱的带毒率为4.2%、Q型烟粉虱带毒率为24.4%,Q型烟粉虱的带毒率显著高于B型。
     B型和Q型烟粉虱获取TYLCV的能力研究发现,相同时间内Q型烟粉虱获取病毒的量要显著的高于B型烟粉虱,B型烟粉虱需要48小时体内的病毒量才能达到饱和,而Q型烟粉虱仅需12小时体内的病毒量就能达到饱。
     进一步的传毒特性研究发现,B型和Q型烟粉虱均不能垂直传播TYLCV,两者均仅能垂直传播TYLCV到卵和1龄若虫,而不能垂直传播到伪蛹和成虫。但两者均能水平传播TYLCV,Q型烟粉虱水平传播TYLCV的平均效率为52.2%,B型烟粉虱为10.5%,Q型烟粉虱水平传播TYLCV的能力显著高于B型烟粉虱。TYLCV在田间的暴发流行与Q型烟粉虱对B型烟粉虱的替代以及Q型烟粉虱水平传播TYLCV能力显著强于B型烟粉虱密切相关。
     总之,本论文密切结合生产实际,针对重大外来入侵害虫—B型和Q型烟粉虱及其传播的TYLCV,通过系统监测,首次阐明了烟粉虱入侵我国十年来,田间危害优势生物型的变化动态;率先揭示了Q型烟粉虱替代B型烟粉虱的生态学机制和近年来TYLCV在我国暴发流行的机制。
Biological invasions endanger national security, ecological security, and economic security.Bemisia tabaci, which has been regarded as a species complex consisting of many biotypes, is aninvasive and destructive pest of numerous protected and field crops worldwide. Among the B.tabaci biotypes, the B biotype and Q biotype are two damaging and invasive crop pests. In themid-1990s, the B biotype was introduced into China and caused tremendous losses to agriculturalproduction and the national economy. After the Q biotype was first detected in Yunnan Provincein2003, it spread quickly into East China and North China. The invasion and spread of the Qbiotype was accompanied by outbreaks of a B. tabaci-transmitted virus called Tomato yellow leafcurl virus (TYLCV). In this dissertation, a systematic monitoring of B. tabaci on many crops inmore than20provinces in China was conducted. The results indicated that over the last10yearsthe Q biotype has been displacing the previously well-established B biotype as the predominantbiotype in China. Studies on the influence of biotic factors (host plant, plant virus, and symbioticbacteria) and an abiotic factor (insecticide application) on the interactions between B and Qbiotypes showed that insecticide application is the key ecological factor contributing to thedisplacement of the B biotype by the Q biotype. Controlled laboratory experiments wereconducted to compare the virus acquisition capability of the two biotypes and to investigate themode of viral transmission (horizontal and vertical). The results showed that the displacement ofthe B biotype by the Q biotype contributed to TYLCV epidemics in China. The research resultswill help guide the sustainable control of B. tabaci and TYLCV.
     The main research contents and conclusions are as follows:
     1. The distribution and population dynamics of B and Q biotypes in China
     PCR primers specific for mtCO1of biotypes B and Q and gene sequencing were used in anextensive survey (covering19provinces in2009and27provinces in2011) to determine thebiotype status of B. tabaci in China. The results in2009showed that the Q biotype was dominantin44locations while B biotype was dominant in17locations and that the Q biotype was mainlydistributed in the Yangtze River and the eastern coastal areas. Among98populations examined in2011,57were pure Q biotype,12were pure B biotype, and29were mixtures of B and Q biotypes(with the Q biotype representing>50%of the individuals in20of the29); the Q biotype waspredominant across China except in southeast provinces. Overall, the results showed that over thelast10years, the main damaging biotype of B. tabaci in China has changed from the B biotype tothe Q biotype.
     2. The impact of host plant on the competitive displacement between B and Q biotypes
     To explore the impact of host plant on the competitive displacement between B and Qbiotypes, equal numbers of B and Q biotypes were added to the same poinsettia, pepper, tomato,and cabbage plants, and the biotypes of individuals in the developing populations wereperiodically determined. The results showed that the Q biotype could displace the B biotype on poinsettia and pepper after8and2successive generations, respectively. In contrast, the B biotypecould displace the Q biotype on tomato and cabbage after5and4successive generations,respectively. Different host plants had different effects on the interactions between B and Qbiotypes, resulting in the differences in the speed and direction of displacement of one biotype bythe other.
     3. The impact of insecticide on the competitive displacement between B and Q biotypes
     To explore the impact of insecticide on the competitive displacement between B and Qbiotypes, equal numbers of both B and Q biotypes were added to the same cotton and cucumberplants. The plants were either treated or not treated with an insecticide, and the biotypes ofindividuals in the developing populations were periodically determined. The results showed thatthe Q biotype displaced the B biotype on cotton after6successive generations without insecticidebut after only4successive generations with insecticide (Thiamethoxam). On cotton, the use ofinsecticide significantly increased the rate at which the Q biotype displaced the B biotype.
     Although the B biotype displaced the Q biotype on cucumber after9successive generationswithout insecticide, the Q biotype replaced the B biotype when cucumber was treated withinsecticide. The Q biotype replaced the B biotype after5successive generations with theinsecticide Movento or Thiamethoxam, and after4successive generations with the insecticideBifenthrin. On cucumber, application of insecticide reversed the impact of host plant on theinteractions between B and Q biotypes, resulting in the displacement of the B biotype by the Qbiotype.
     Overall, the use of insecticide enhanced displacement of the B biotype by the Q biotype inone of two ways depending on the host: if the untreated host plant was more suitable to the Qbiotype (as is cotton), an insecticide increased the rate at which the Q biotype displaced the Bbiotype; if the untreated host plant was more suitable to the B biotype (as is cucumber), aninsecticide reversed the direction of displacement. These results demonstrate that insecticideapplication plays a key role in the displacement of the B biotype by the Q biotype in the field.
     4. Diversity of symbionts in Bemisia tabaci and its impact on the interactions between Band Q biotypes
     Symbiotic bacteria can influence the growth, development, and reproduction of insect hosts.In this study, gene-specific PCR was used to screen for the presence of the primary symbiontPortiera and the six secondary symbionts (Hamiltonella, Arsenophonus, Cardinium, Wolbachia,Rickettsia, and Fritschea) in61field populations (17B and44Q biotypes) collected fromdifferent plant species and locations in China and in5laboratory populations that had similargenetic background but that were cultured on5different host plant species for5years. The resultsindicated that the diversity and infection frequency of secondary symbionts in B. tabaci wasinfluenced by B. tabaci biotype, B. tabaci sex, host plant, and geographical location. Nocorrelation was detected between the diversity and infection frequency of symbionts in B. tabaci and the displacement of the B biotype by the Q biotype.
     An additional experiment was conducted to investigate the infection densities of symbionts in3laboratory populations that had similar genetic background but that were cultured on3differenthost plant species for6years of the B biotype and of a Thiamethoxam-resistant and-susceptible Bbiotype population. Overall, the results revealed that host plant and insecticide affected theinfection densities of symbionts in B. tabaci.
     5. The impact of TYLCV on the competitive displacement between B and Q biotypes
     The direct effect of TYLCV on the growth and development of B. tabaci was investigated bycomparing the performance of viruliferous and non-viruliferous B and Q biotypeson cotton (anon-host for TYLCV). The results showed that TYLCV significantly decreased the survival,fecundity, and adult body size of viruliferous individuals of the B biotype but not of the Q biotypefeeding on cotton.
     The indirect effect of TYLCV on the growth and development of B. tabaci was investigatedby comparing the performance of non-viruliferous B and Q biotypes on healthy andTYLCV-infected tomato plants. The results showed that TYLCV-infected tomato plants improvedthe performance of the Q biotype but decreased the performance of the B biotype with respect tothe fecundity, survival rate, development time, and female body size.
     The impact of TYLCV on the competitive displacement between B and Q biotypes wasfurther examined by adding equal numbers of both B and Q biotypes to the same healthy andTYLCV-infected tomato plants, respectively and periodically determining the biotypes ofindividuals in the developing populations. The results showed that the B biotype displaced the Qbiotype after5successive generations on healthy tomato plants but after6successive generationson TYLCV-infected tomato plants. Although TYLCV infection did not prevent the displacementof the Q biotype by the B biotype, it significantly delayed the rate of displacement. The overallresults indicate that the mutualistic relationship between TYLCV and the Q biotype contributes tothe displacement of the B biotype by the Q biotype in China.
     6. The displacement of B biotype by Q biotype contribute to the epidemics of TYLCV inChina
     A nation-wide field survey of18provinces that included55B. tabaci populations (12B and43Q biotypes) and2750individuals was conducted in2009to investigate the infection frequencyof TYLCV. The results showed that the percentage of TYLCV-infected individuals wassignificantly lower among B biotype (4.2%) than Q biotype (24.4%) individuals.
     Virus acquisition experiments indicated that the relative viral gene expression was greater inthe Q biotype than in the B biotype after each of five acquisition access periods (AAPs) and thatthe B and Q biotypes required AAPs of48and12h, respectively, to reach their maximum viralloads.
     Transmission experiments demonstrated that TYLCV was not transmitted vertically, i.e., was not transmitted to the next generation by the B and Q biotypes. TYLCV was detected in eggs andcrawlers but was not detected in the pupa or adult progeny from viruliferous B or Q whiteflies.TYLCV could be transmitted horizontally by both B and Q biotypes, and the overall percentage ofviruliferous individuals that transmitted TYLCV was52.2%for the Q biotype but only10.5%forthe B biotype, indicating that horizontal transmission of TYLCV was greater with the Q biotype.The epidemics of TYLCV are related to the displacement the B biotype by the Q biotype and thegreater horizontal transmission of TYLCV by the Q biotype than the B biotype.
     In summary, in this dissertation, we found that the predominant biotype of B. tabaci haschanged during the past decade, the ecological mechanisms of displacement of B biotype by Qbiotype and the outbreaks of TYLCV in China were fist revealed.
引文
1.罗晨,姚远,王戎疆,阎凤鸣,胡敦孝,张芝利.利用mtDNA CO1基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45:759~763.
    2.孙作文,杨进绪,张美珍,李向东.山东省番茄黄化曲叶病毒病的发生及其防治.中国蔬菜,2009,21:5~6.
    3.周尧.中国粉虱名录.中国昆虫学,1949,3:1~18.
    4.陈连根.烟粉虱在园林植物上为害及其形态变异.上海农学院学报,1997,15:186~189.
    5.周雪平,崔晓峰,陶小荣.双生病毒一类值得重视的植物病毒.植物病理学报.2003,33:457~492.
    6.臧连生,刘树生,刘银泉,阮永明,万方浩. B型烟粉虱与浙江非B型烟粉虱的竞争.生物多样性,2005,13:181~187.
    7.张芝利.关于烟粉虱大发生的思考.北京农业科学,2000,18:1~3.
    8.张爱红,张书敏,刘帅,邸垫平,苗洪芹.2009年河北省番茄黄化曲叶病毒病发生危害和分布.植物保护,2010,36:127~129.
    9.季英华,熊如意,程兆榜,周彤,赵统敏,余文贵,范永坚,周益菌.江苏省番茄黄化曲叶病的病原分子诊断.园艺学报,2008,35:1815~1818.
    10.周涛,师迎春,陈笑瑜,范在丰.北京地区番茄黄化曲叶病毒的鉴定及防治对策.植物保护,2010,36:116~118.
    11.徐婧.浙江省外来烟粉虱入侵过程及不同生物型烟粉虱生物学特性的比较研究.[浙江大学博士论文].浙江杭州:浙江大学,2009.
    12.潘慧鹏,戈大庆,王少丽,吴青君,徐宝云,谢文,张友军.在北京和河北局部地区Q型烟粉虱取代了B型烟粉虱.植物保护,2010,36:40~44.
    13. Ahmed MZ, Ren SX, Xue X, Li XX, Jin GH, Qiu BL. Prevalence ofendosymbionts in Bemisia tabaci populations and their in vivo sensitivity toantibiotics. Current Microbiology2010,61:322~328.
    14. Ahmed MZ, Shatters RG, Ren SX, Jin GH, Mandour NS, Qiu BL. Geneticdistinctions among the Mediterranean and Chinese populations of Bemisia tabaciQ biotype and their endosymbiont Wolbachia populations. Journal of AppliedEntomology2009,133:733~741.
    15. Anbutsu H, Goto S, Fukatsu T. High and low temperatures differently affectinfection density and vertical transmission of male-killing Spiroplasma symbiontsin Drosophila hosts. Applied and Environmental Microbiology2008,74:6053~6059.
    16. Arthofer W, Riegler M, Avtzis DN, Stauffer C. Evidence for low-titre infectionsin insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus(Coleoptera, Scolytinae). Environmental Microbiology2009,11:1923~1933.
    17. Baumann P. Biology bacteriocyte-associated endosymbionts of plant sap-suckinginsects. Annual Review of Microbiology2005,59:155~189.
    18. Belliure B, Janssen A, Maris PC, Peters D, Sabelis MW. Herbivore arthropodsbenefit from vectoring plant viruses. Ecology Letters2005,8:70~79.
    19. Bosco D, Mason G, Accotto GP. TYLCSV DNA, but not infectivity, can betransovarially inherited by the progeny of the whitefly vector Bemisia tabaci(Gennadius). Virology2004,323:276~283.
    20. Boulton M. Geminiviruses: major threats to world agriculture. Annals of AppliedBiology2003,142:143~144.
    21. Brown JK. Phylogenetic biology of the Bemisia tabaci sibling species group.Chapter2Pages31-67in: Bionomics and Management of a Global Pest. PAStansly and SE Naranjo (eds.), Springer, Amsterdam.2010,350pp.
    22. Brown JK, Czosnek H. Whitefly transmission of plant viruses. Advances inBotanical Research2002,36:65~76.
    23. Brown JK, Frohlich DR, Rosell RC. The sweetpotato or silverleaf whiteflies:biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology1995,40:511~534.
    24. Brown JK. Molecular markers for the identification and global tracking ofwhitefly vector-begomovirus complexes. Virus Research2000,71:233~260.
    25. Brown JK. The Bemisia tabaci species complex: Genetic and phenotypicvariation and relevance to TYLCV-vector interactions. Chapter3Pages25-55in:Tomato Yellow Leaf Curl Virus Disease. H Czosnek (ed.), Springer, New Yorkand Tokyo.2007,447pp.
    26. Brown JK. The status of Bemisia tabaci (Genn.) as a pest and vector in worldagroecosystems. FAO Plant Protection Bulletin1994,42:3~32.
    27. Brumin M, Kontsedalov S, Ghanim M. Rickettsia influences thermotolerance inthe whitefly Bemisia tabaci B biotype. Insect Science2011,18:57~66.
    28. Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N,Hurst GDD. The joint evolutionary histories of Wolbachia and mitochondria inHypolimnas bolina. BMC Evolutionary Biology2009,9:64.
    29. Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, GhanimM: Biotype-dependent secondary symbiont communities in sympatric populationsof Bemisia tabaci. Bulletin of Entomological Research2007,97:407~413.
    30. Chu D, Gao CS, De Barro P, Zhang YJ, Wan FH, Khan IA. Further insights intothe strange role of bacterial endosymbionts in whitefly, Bemisia tabaci:Comparison of secondary symbionts from biotypes B and Q in China. Bulletin ofEntomological Research2011,101:477~486.
    31. Chu D, Jiang T, Liu GX, Jiang DF, Tao YL, Fan ZX, Zhou HX, Bi YP. Biotypestatus and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in ShandongProvince of China based on mitochondrial DNA markers. EnvironmentalEntomology2007,36:1290~1295.
    32. Chu D, Wan FH, Zhang YJ, Brown JK. Change in the biotype composition ofBemisia tabaci in Shandong Province of China from2005to2008.Environmental Entomology2010a,39:1028~1036.
    33. Chu D, Zhang YJ, Brown JK, Cong B, Xu BY, Wu QJ, Zhu GR. The introductionof the exotic biotype Q of Bemisia tabaci from the Mediterranean region intoChina on ornamental crops. Florida Entomologist2006,89:168~174.
    34. Chu D, Zhang YJ, Cong B, Xu BY, Wu QJ, Zhu GR. Sequences analysis ofmtDNA CO1gene and molecular phylogeny of different geographicalpopulations of Bemisia tabaci (Gennadius). Agricultural Sciences in China2005,4:533~541.
    35. Chu D, Zhang YJ, Wan FH. Cryptic invasion of the exotic Bemisia tabaci biotypeQ occurred widespread in Shandong Province of China. Florida Entomologist2010b,93:203~207.
    36. Cohen S, Harpaz I. Periodic, rather than continual acquisition of a new tomatovirus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). EntomologiaExperimentalis et Applicata1964,7:155~166.
    37. Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN, Gibson G,Seal SE, Muniyappa V. Host‐plant viral infection effects on arthropod‐vectorpopulation growth, development and behaviour: management andepidemiological implications. Advances in Virus Research2006,67:419~452.
    38. Costa HS, Brown JK, Byrne DN. Life history traits of the whitefly, Bemisiatabaci (Homoptera: Aleyrodidae) on six virus-infected or healthy plant species.Environmental Entomology1991,20:1102~1107.
    39. Costa HS, Brown JK, Sivasupramaniam S, Bird J. Regional distribution,insecticide resistance, and reciprocal crosses between the ‘A’ and ‘B’ biotypes ofBemisia tabaci. International Journal of Tropical Insect Science,1993,14:127~138.
    40. Crowder DW, Horowitz AR, De Barro PJ, Liu SS, Showalter AW, Kontsedalov S,Khasdan V, Shargal A, Liu J, Carrie`re Y. Mating behaviour, life history andadaptation to insecticides determine species exclusion between whiteflies. Journalof Animal Ecology2010a,79:563~570.
    41. Crowder DW, Sitvarin MI, Carrie`re Y. Plasticity in mating behaviour drivesasymmetric reproductive interference in whiteflies. Animal Behavior2010b,79:579~587.
    42. Czosnek H, Ghanim M. Bemisia tabaci-Tomato yellow leaf curl virus interactioncausing worldwide epidemics. Chapter3Pages51-67in: The Whitefly, Bemisiatabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected HostPlants. WMO Thompson (ed.), Springer, Amsterdam.2011,396pp.
    43. Czosnek H. Tomato yellow leaf curl virus disease: management, molecular biology,breeding for resistance. Springer, Dordrecht.2007,448pp.
    44. De Barro PJ, Bourne A. Ovipositional host choice by an invader acceleratesdisplacement of its indigenous competitor. Biological Invasionsions2010,12:3013-3023.
    45. De Barro PJ, Driver F. Use of RAPD PCR to distinguish the B biotype from otherbiotypes of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae). AustralianJournal of Entomology1997,36:149~152.
    46. De Barro PJ, Liu SS, Bourne A. Age-based differential host acceptability andhuman mediated disturbance prevent establishment of an invasive species anddisplacement of a native competitor. Biological Invasions2010,12:3429~3438.
    47. De Barro PJ, Liu SS, Boykin LM, Dinsdale A. Bemisia tabaci: a statement ofspecies status. Annual Review of Entomology2011,56:1~19.
    48. Díaz-Pendón JA, Cazares M, Moriones E, Bejarano E, Czosnek H,Navas-Castillo J. Tomato yellow leaf curl viruses: ménage à trois between thevirus complex, the plant and the whitefly vector. Molecular Plant Pathology2010,11:441~450.
    49. Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro PJ. Refined globalanalysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea:Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level geneticboundaries. Annials of Entomological Society of America2010,103:196~208.
    50. Elbaz M, Lahav N, Morin S. Evidence for pre-zygotic reproductive barrierbetween the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae).Bulletin of Entomological Research2010,100:581~590.
    51. Elbert A, Nauen R. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) toinsecticides in southern Spain with special reference to neonicotinoids. PestManagement Science2000,56:60~64.
    52. Everett KD, Thao M, Horn M, Dyszynski GE, Baumann P. Novel chlamydiae inwhiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strainFalk and 'Candidatus Fritschea eriococci' strain Elm. International Journal ofSystematic and Evolutionary Microbiology2005,55:1581~1587.
    53. Fauquet CM, Stanley J. Geminivirus classification and nomenclature: progressand problems. Annals of Applied Biology,2003,142:165~189.
    54. Feng YT, Wu QJ, Xu BY, Wang SL, Chang XL, Xie W, Zhang YJ. Fitness costsand morphological change of laboratory-selected thiamethoxam resistance in theB-type Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Applied Entomology2009,133:466~472.
    55. Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE. Linking the bacterialcommunity in pea aphids with host-plant use and natural enemy resistance.Ecological Entomology2004,29:60~65.
    56. Frohlich DR, Torres-Jerez I, Bedford D, Markham PG, Brown JK. Aphylogeographical analysis of the Bemisia tabaci species complex based onmitochondrial DNA markers. Molecular Ecology1999,8:1683~1691.
    57. Ghanim M, Czosnek H. Tomato yellow leaf curl geminivirus (TYLCV-Is) istransmitted among whiteflies (Bemisia tabaci) in a sex-related manner. Journal ofVirology2000,74:4738~4745.
    58. Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype ofBemisia tabaci is correlated with bacterial symbiont densities. Pest ManagementScience2009,65:939~942.
    59. Ghanim M, Morin S, Zeidan M, Czosnek H. Evidence for transovarialtransmission of tomato yellow leaf curl virus by its vector, the whitefly Bemisiatabaci. Virology1998,240:295~303.
    60. Ghanim M, Sobol I, Ghanim M, Czosnek H. Horizontal transmission ofbegomoviruses between Bemisia tabaci biotypes. Arthropod-Plant Interactions2007,1:195~204.
    61. Gill R, Brown JK. Systematics of Bemisia and Bemisia Relatives: Can moleculartechniques solve the Bemisia tabaci complex conundrum--a Taxonomist’sviewpoint. Chapter1Pages5-29in: Bionomics and Management of a Global Pest.PA Stansly and SE Naranjo (eds.), Springer, Amsterdam.2010,350pp.
    62. Goto S, Anbutsu H, Fukatsu T. Asymmetrical interactions between Wolbachia andSpiroplasma endosymbionts coexisting in the same insect host. Applied andEnvironmental Microbiology2006,72:4805~4810.
    63. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G,Horowitz AR, Belasov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S,Katzir N, Zchori-Fein E. Identification and localization of a Rickettsia sp. inBemisia tabaci (Homoptera: Aleyrodidae). Applied and EnvironmentalMicrobiology2006,72:3646~3652.
    64. Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F,Zchori-Fein E. Inherited intracellular ecosystem: symbiotic bacteria sharebacteriocytes in whiteflies. The FASEB Journal2008,22:2591~2599.
    65. Gueguen G, Vavre F, Gnankine O, Peterschmit M, Charif D, Chiel E, Gottlieb Y,Ghanim M, Zchori-Fein E, Fleury F. Endosymbiont metacommunities, mtDNAdiversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae)species complex. Molecular Ecology2010,19:4365~4376.
    66. Guirao P, Beitia F, Cenis JL. Biotype determination of Spanish populations ofBemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research1997,87:587~593.
    67. Harrison BD, Barker H, Bock KR, Guthrie EJ, Meredith G, Atkinson M. Plantviruses with circular single-stranded DNA. Nature1977,270:760~762.
    68. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE,Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS. Rapid spreadof a bacterial symbiont in an invasive whitefly is driven by fitness benefits andfemale bias. Science2011,332:254~256.
    69. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. Insect vectorinteractions with persistently transmitted viruses. Annual Review ofPhytopathology2008,46:327~359.
    70. Honda K. Distribution and elimination of tomato yellow leaf curl virus diseaseand Bemisia tabaci Q-biotype. Kongetsu no Nogyo2008,52:17~22.
    71. Horowitz AR, Denholm I, Gorman K, Cenis JL, Kontsedalov S, Ishaaya I.Biotype Q of Bemisia tabaci identified in Israel. Phytoparasitica2003,31:94~98.
    72. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. Biotypes B and Q of Bemisiatabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archivesof Insect Biochemistry and Physiology2005,58:216~225.
    73. Hu J, De Barro P, Zhao H, Wang J, Nardi F, Liu SS. An extensive field surveycombined with a phylogenetic analysis reveals rapid and widespread invasion oftwo alien whiteflies in China. PLoS ONE2011,6: e16061.
    74. Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetesinduces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella.Proceedings of the Royal Society of London Series B-Biological Sciences2003,270:2185~2190.
    75. Iida H, Kitamura T, Honda HI. Comparison of egg-hatching rate, survival rateand development time of the immature stage between B-and Q-biotypes ofBemisia tabaci (Gennadius)(Homoptera: Aleyrodidae) on various agriculturalcrops. Applied Entomology and Zoology2009,44:267~273.
    76. Inbar M, Gerling D. Plant-mediated interactions between whiteflies, herbivores,and natural enemies. Annual Review of Entomology2008,53:431~448.
    77. Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan FH, Liu SS. Vector-virusmutualism accelerates population increase of an invasive whitefly. PLoS ONE2007,2: e182.
    78. Jones DR. Plant viruses transmitted by whiteflies. European Journal of PlantPathology2003,109:195~219.
    79. Khasdan V, Levin I, Rosner A, Morin S, Kontsedalov S, Maslenin L, HorowitzAR. DNA markers for identifying biotypes B and Q of Bemisia tabaci(Hemiptera: Aleyrodidae) and studying population dynamics. Bulletin ofEntomological Research2005,95:605~613.
    80. Koga R, Tsuchida T, Fukatsu T. Changing partners in an obligate symbiosis: afacultative endosymbiont can compensate for loss of the essential endosymbiontBuchnera in an aphid. Proceedings of the Royal Society of London SeriesB-Biological Sciences2003,270:2543~2550.
    81. Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M. Thepresence of Rickettsia is associated with increased susceptibility of Bemisiatabaci (Homoptera: Aleyrodidae) to insecticides. Pest Management Science2008,64:789~792.
    82. Lapidot M, Friedmann M, Pilowsky M, Ben-Joseph R, Cohen S. Effect of hostplant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisitionand transmission by its whitefly vector. Phytopathology2001,91:1209~1213.
    83. Lee MH, Kang SY, Lee SY, Lee HS, Choi JY, Lee GS, Kim WY, Lee SW, KimSG, Uhm KB. Occurrence of the B-and Q-biotype of Bemisia tabaci in Korea.Korean Journal of Applied Entomology2005,44:169~175.
    84. Leonardo TE, Muiru GT. Facultative symbionts are associated with host plantspecialization in pea aphid populations. Proceedings of the Royal Society ofLondon Series B-Biological Sciences2003,270: S209~S212.
    85. Li M, Liu J, Liu SS. Tomato yellow leaf curl virus infection of tomato does notaffect the performance of the Q and ZHJ2biotypes of the viral vector Bemisiatabaci. Insect Science2011,18:40~49.
    86. Liu J, Li M, Li JM, Huang CJ, Zhou XP, Xu FC, Liu SS. Viral infection oftobacco plants improves the performance of Bemisia tabaci but more so for aninvasive than for an indigenous biotype of the whitefly. Journals of ZhejiangUniversity-Science B2010,11:30~40.
    87. Liu J, Zhao H, Jiang K, Zhou XP, Liu SS. Differential indirect effects of two plantviruses on an invasive and an indigenous whitefly vector: implications forcompetitive displacement. Annals of Applied Biology2009,155:439~448.
    88. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH. Asymmetricmating interactions drive widespread invasion and displacement in a whitefly.Science2007,318:1769~1772.
    89. Livak KJ, Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the2-ΔΔCTmethod. Methods2001,25:402~408.
    90. Luan JB, Li JM, Varela N, Wang YL, Li FF, Bao YY, Zhang CX, Liu SS, WangXW. Global analysis of the transcriptional response of whitefly to Tomato yellowleaf curl China virus reveals their relationship of coevolved adaptations. Journalof Virology2011,85:3330~3340.
    91. Luan JB, Xu J, Lin KK, Myron PZ, Liu SS. Species exclusion between aninvasive and an indigenous whitefly on host plant with differential levels ofsuitability. Journal of Integrative Agriculture2012,11:215~224.
    92. Luo C, Jones CM, Devine G, Zhang F, Denholm I, Gorman K: Insecticideresistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China.Crop Protection2010,29:429~434.
    93. Majerus TMO, Majerus MEN. Intergenomic arms races: detection of a nuclearrescue gene of male-killing in a ladybird. PLoS Pathogens2010,6: e1000987.
    94. Mann RS, Sidhu JS, Butter NS, Sohi AS, Sekhon PS. Performance of Bemisiatabaci (Hemiptera: Aleyrodidae) on healthy and cotton leaf curl virus infectedcotton. Florida Entomologist2008,91:249~255.
    95. Mann RS, Sidhu JS, Butter NS. Settling preference of the whitefly Bemisia tabaci(Hemiptera: Aleyrodidae) on healthy versus cotton leaf virus-infected cottonplants. International Journal of Tropical Insect Science2009,29:57~61.
    96. Maris PC, Joosten NN, Goldbach RW, Peters P. Tomato spotted wilt virusimproves host suitability for its vector Frankliniella occidentalis.Phytopathology2004,94:706~711.
    97. Matsuura S, Hoshino S. Effect of tomato yellow leaf curl disease on reproductionof Bemisia tabaci Q biotype (Hemiptera: Aleyrodidae) on tomato plants. AppliedEntomology and Zoology2009,44:143~148.
    98. Mayer RT, Inbar M, McKenzie CL, Shatters R, Borowicz V, Albrecht U, PowellCA, Doostdar H. Multitrophic interactions of the silverleaf whitefly, host plants,competing herbivores, and phytopathogens. Archives of Insect Biochemistry andPhysiology2002,51:151~169.
    99. McKenzie CL. Effect of tomato mottle virus (ToMoV) on Bemisia tabaci biotypeB (Homoptera: Aleyrodidae) oviposition and adult survivorship on healthytomato. Florida Entomologist2002,85:367~368.
    100. Moffat AS. Geminiviruses emerge as serious crop threat. Science1999,286:
    1835.
    101. Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbiontsbenefit pea aphids Acyrthosiphon pisum under heat stress. EcologicalEntomology2002,27:189~195.
    102. Morin S, Ghanim M, Sobol I, Czosnek H. The GroEL protein of the whiteflyBemisia tabaci interacts with the coat protein of transmissible andnontransmissible begomoviruses in the yeast two-hybrid system. Virology2000,276:404~416.
    103. Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JFJM.A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaciis implicated in the circulative transmission of Tomato yellow leaf curl virus.Virology1999,256:75~84.
    104. Mugiira RB, Liu SS, Zhou XP. Tomato yellow leaf curl virus and Tomato leafcurl Taiwan virus invade south-east coast of China. Journal of Phytopathology2008,156:217~221.
    105. Muniz M, Nombela G. Differential variation in development of the B-andQ-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on pepper at constanttemperatures. Environmental Entomology2001,30:720~727.
    106. Muniz M. Host suitability of two biotypes of Bemisia tabaci on some commonweeds. Entomologia Experimentalis et Applicata2000,95:63~70.
    107. Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies onneonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Management Science2002,58:868~875.
    108. Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S. Emerging virus diseasestransmitted by whiteflies. Annual Review of Phytopathology2011,49:219~248.
    109. Nawaz-ul-Rehman MS, Fauquet CM. Evolution of geminiviruses and theirsatellites. FEBS Letters2009,583:1825~1832.
    110. Ng JCK, Falk BW. Virus-vector interactions mediating nonpersistent andsemipersistent transmission of plant viruses. Annual Review of Phytopathology2006,44:183~212.
    111. Nombela G, Beitia F, Muniz M. A differential interaction study of Bemisia tabaciQ biotype on commercial tomato varieties with or without the Mi resistance geneand comparative host responses with the B-biotype. Entomologia Experimentaliset Applicata2001,98:339~344.
    112. Ohto K. Occurrence of the sweetpotato whitefly, Bemisia tabaci Gennadius, onthe poinsettia. Plant Protection1990,44:264~266.
    113. Oliveira MRV, Henneberry TJ, Anderson P. History, current status, andcollaborative research projects for Bemisia tabaci. Crop Protection2001,120:709~723.
    114. Oliver KM, Moran NA, Hunter MS. Costs and benefits of a superinfection offacultative symbionts in aphids. Proceedings of the Royal Society of LondonSeries B-Biological Sciences2006,273:1273~1280.
    115. Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism inaphids is due to symbionts not host genotype. Proceedings of the NationalAcademy of Sciences of the United States of America2005,102:12795~12800.
    116. Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbiontsin aphids confer resistance to parasitic wasps. Proceedings of the NationalAcademy of Sciences of the United States of America2003,100:1803~1807.
    117. Osaka R, Nomura M, Watada M, Kagaeyama D. Negative effects of lowtemperatures on the vertical transmission and infection density of a Spiroplasmaendosymbiont in Drosophila hydei. Current Microbiology2008,57:335~339.
    118. Pan HP, Chu D, Ge DQ, Wang SL, Wu QJ, Xie W, Jiao XG, Liu BM, Yang X,Yang NN, Su Q, Xu BY, Zhang YJ. Further spread of and domination by Bemisiatabaci biotype Q on field crops in China. Journal of Economic Entomology2011,104:978~985.
    119. Pan HP, Li XC, Ge DQ, Wang SL, Wu QJ, Xie W, Jiao XG, Chu D, Liu BM, XuBY, Zhang YJ. Factors affecting population dynamics of maternally transmittedendosymbionts in Bemisia tabaci. PLoS ONE2012,7: e30760.
    120. Park J, Jahan SMH, Song WG, Lee H, Lee YS, Choi HS, Lee KS, Kim CS, LeeS. Identification of biotypes and secondary endosymbionts of Bemisia tabaci inKorea and relationships with the occurrence of TYLCV disease. Journal ofAsia-Pacific Entomology2011,15:186~191.
    121. Pascual S, Callejas C. Intra-and interspecific competition between biotypes Band Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin ofEntomological Research2004,94:369~375.
    122. Perring TM.The Bemisia tabaci species complex. Crop Protection2001,20:725~737.
    123. Qiu BL, Coats SA, Ren SX, Idris AM, Xu CX, Brown JK. Phylogeneticrelationships of native and introduced Bemisia tabaci (Homoptera: Aleyrodidae)from China and India based on mtCO1sequencing and host plant comparisons.Progress in Natural Science2007,17:645~654.
    124. Rao Q, Luo C, Zhang H, Guo X, Devine GJ. Distribution and dynamics ofBemisia tabaci invasive biotypes in central China. Bulletin of EntomologyResearch2011,101:81~88.
    125. Rauch N, Nauen R. Identification of biochemical markers linked toneonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae).Archives of Insect Biochemistry and Physiology2003,54:165~176.
    126. Reitz SR, Trumble JT. Competitive displacement among insects and arachnids.Annual Review of Entomology2002,47:435~465.
    127. Roditakis E, Grispou M, Morou E, Kristoffersen JB, Roditakis N, Nauen R,Vontas J, Tsagkarakou A. Current status of insecticide resistance in Q biotypeBemisia tabaci populations from Crete. Pest Management Science2008,65:313~322.
    128. Rubinstein G, Czosnke. Long-term association of tomato yellow leaf curl viruswith its whitefly vector Bemisia tabaci: effect on the insect transmission capacity,longevity and fecundity. Journal of General Virology1997,78:2683~2689.
    129. Sandstr m JP, Moran NA. Amino acid budgets in three aphid species using thesame host plant. Physiological Entomology2001,26:202~211.
    130. Seal SE, VandenBosch F, Jeger MJ. Factors influencing begomovirus evolutionand their increasing global significance: implications for sustainable control.Critical Reviews in Plant Sciences2006,25:23~46.
    131. Shatters Jr. RG, Powell CA, Boykin LM, Liansheng H, McKenzie CL. ImprovedDNA barcoding method for Bemisia tabaci and related Aleyrodidae:development of universal and Bemisia tabaci biotype-specific mitochondrialcytochrome c oxidase I polymerase chain reaction primers. Journal of EconomicEntomology2009,102:750~758.
    132. Sidhu JS, Mann RS, Butter NS. Deleterious effects of cotton leaf curl virus onlongevity and fecundity of whitefly, Bemisia tabaci (Gennadius). Journal ofEconomic Entomology2009,6:62~66.
    133. Simon JC, Carre S, Boutin M, Prunier-Leterme N, Sabater-Mun B, Latorre A,Bournoville R. Host-based divergence in populations of the pea aphid: insightsfrom nuclear markers and the prevalence of facultative symbionts. Proceedingsof the Royal Society of London Series B-Biological Sciences2003,270:1703~1712.
    134. Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection andlocalization of secondary symbionts in two whitefly species. BMC Microbiology2010,10:142.
    135. Stout MJ, Thaler JS, Thomma BPHJ. Plant-mediated interactions betweenpathogenic microorganisms and herbivorous arthropods. Annual Review ofEntomology2006,51:663~689.
    136. Stumpf CF, Kennedy GG. Effects of Tomato spotted wilt virus isolates, hostplants, and temperature on survival, size, and development time of Frankliniellaoccidentalis. Entomologia Experimentalis et Applicata2007,123:139~147.
    137. Teng X, Wan FH, Chu D. Bemisia tabaci biotype Q dominates other biotypesacross China. Florida Entomologist2010,93:363~368.
    138. Thao ML, Baumann P. Evidence for multiple acquisition of Arsenophonus bywhitefly species (Sternorrhyncha: Aleyrodidae). Current Microbiology2004,48:140~144.
    139. Thao ML, Baumann P. Evolutionary relationships of primary prokaryoticendosymbionts of whiteflies and their hosts. Applied and EnvironmentalMicrobiology2004,70:3401~3406.
    140. Toju H, Fukatsu T. Diversity and infection prevalence of endosymbionts innatural populations of the chestnut weevil: relevance of local climate and hostplants. Molecular Ecology2011,20:853~868.
    141. Tsuchida T, Koga R, Fukatsu T. Host plant specialization governed by facultativesymbiont. Science2004,303:1989.
    142. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity andgeographic distribution of secondary endosymbiotic bacteria in naturalpopulations of the pea aphid, Acyrthosiphon pisum. Molecular Ecology2002,11:2123~2135.
    143. Tsueda H, Tsuchida K. Reproductive differences between Q and B whiteflies,Bemisia tabaci, on three host plants and negative interactions in mixed cohorts.Entomologia Experimentalis et Applicata2011,141:197~207.
    144. Varma A, Malathi VG. Emerging geminivirus problems: A serious threat to cropproduction. Annals of Applied Biology2003,142:145~164.
    145. Vautrin E, Vavre F. Interactions between vertically transmitted symbionts:cooperation or conflict? Trends in Microbiology2009,17:95~99.
    146. Wan FH, Zhang GF, Liu SS, Luo C, Chu D, Zhang YJ, Zang LS, Jiu M, Lv ZC,Cui XH, Zhang LP, Zhang F, Zhang QW, Liu WX, Liang P, Lei ZR, Zhang YJ.Invasive mechanism and management strategy of Bemisia tabaci (Gennadius)biotype B: progress report of973Program on invasive alien species in China.Science in China Series C: Life Sciences2009,52:88~95.
    147. Wang J, Zhao H, Liu J, Jiu M, Qian YJ, Liu SS. Low frequency of horizontal andvertical transmission of two begomoviruses through whiteflies exhibits littlerelevance to the vector infectivity. Annals of Applied Biology2010,157:125~133.
    148. Wang P, Sun DB, Qiu BL, Liu SS. The presence of six cryptic species of thewhitefly Bemisia tabaci complex in China as revealed by crossing experiments.Insect Science2011,18:67~77.
    149. Wang XW, Luan JB, Li JM, Su YL, Xia J, Liu SS. Transcriptome analysis andcomparison reveal divergence between two invasive whitefly cryptic species.BMC Genomics2011,12:458.
    150. Wang ZY, Yan HF, Yang YH, Wu YD. Biotype and insecticide resistance statusof the whitefly Bemisia tabaci from China. Pest Management Science2010,66:1360~1366.
    151. Weeks AR, Velten R, Stouthamer R. Incidence of a new sex-ratio-distortingendosymbiotic bacterium among arthropods. Proceedings of the Royal Society ofLondon Series B-Biological Sciences2003,270:1857~1865.
    152. Wernegreen JJ. Endosymbiosis: Lessons in conflict resolution. PLoS Biology2004,2: e68.
    153. White JA, Kelly SE, Perlman SJ, Hunter MS. Cytoplasmic incompatibility in theparasitic wasp Encarsia inaron: disentangling the roles of Cardinium andWolbachia symbionts. Heredity2009,102:483~489.
    154. Wilkinson TL, Adams D, Minto LB, Douglas AE. The impact of host plant onthe abundance and function of symbiotic bacteria in an aphid. Journal ofExperimental Biology2001,204:3027~3038.
    155. Wu JB, Dai FM, Zhou XP. First report of Tomato yellow leaf curl virus in China.Annals of Applied Biology2006,155:439~448.
    156. Wu XX, Li ZX, Hu DX, Shen ZR. Identification of Chinese populations ofBemisia tabaci (Gennadius) by analysing ribosomal ITS1sequence. Progress inNatural Science2003,13:276~281.
    157. Xie Y, Zhou XP, Zhang ZK, Qi YJ. Tobacco curly shoot virus isolated inYunnan is a distinct species of Begomovirus. Chinese Science Bulletin2002,47:197~200.
    158. Xu J, De Barro PJ, Liu SS. Reproductive incompatibility among genetic groupsof Bemisia tabaci supports the proposition that the whitefly is a cryptic speciescomplex. Bulletin of Entomological Research2010,100:359~366.
    159. Xu J, Lin KK, Liu SS. Performance on different host plants of an alien and anindigenous Bemisia tabaci from China. Journal of Applied Entomology2011,135:771~779.
    160. Zchori-Fein E, Brown JK. Diversity of prokaryotes associated with Bemisiatabaci (Gennadius)(Hemiptera: Aleyrodidae). Annals of the EntomologicalSociety of America2002,95:711~718.
    161. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D. Analysis of geneticdiversity among different geographical populations and determination ofbiotypes of Bemisia tabaci in China. Journal of Applied Entomology2005,129:121~128.
    162. Zhang PJ, Zhu XY, Huang F, Liu Y, Zhang JM, Lu YB, Ruan YM. Suppressionof jasmonic acid-dependent defense in cotton plant by the mealbug Phenacoccussolenopsis. PLoS ONE2011,6: e22378.
    163. Zhang T, Luan JB, Qi JF, Huang CJ, Li M, Zhou XP, Liu SS.Begomovirus-whitefly mutualism is achieved through repression of plantdefences by a virus pathogenicity factor. Molecular Ecology2012,21:1294~1304.
    164. Zhou W, Rousset F, O'Neill S. Phylogeny and PCR-based classification ofWolbachia strains using wsp gene sequences. Proceedings of the Royal Societyof London Series B-Biological Sciences1998,265:509~515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700