用户名: 密码: 验证码:
复杂应力路径下饱和软粘土静动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东南沿海地区广泛分布着深厚饱和软粘土,软粘土地基上已建和在建大量高速公路、铁路、机场跑道等重大工程。路堤静荷载和交通动荷载长期循环往复作用引起地基土应变累积、强度降低,导致重大工程过大变形和失稳等灾变,造成巨大经济损失,甚至威胁生命安全。因此,高速交通重大工程长期服役性能亟需提升,迫切需要发展有效的软粘土地基灾变控制技术。开展复杂应力路径的饱和软粘土静动力特性研究,则是解决这一问题的关键所在。
     本研究采用薄壁切土法获得了高质量的温州原状软粘土试样,通过GDS动三轴仪和空心圆柱系统对其开展了一系列复杂应力路径下的动静力特性试验研究,主要完成了以下工作:
     1.针对路堤静荷载下天然软粘土地基真实应力状态,开展各向同性固结试样的不排水剪切试验及Ko固结试样的应力路径三轴试验和不同大主应力方向角下的剪切试验研究了原状饱和软粘土的结构性、应力路径依赖性及各向异性。研究了结构性的存在对软粘土试样剪切强度、应力-应变关系及有效应力路径发展的影响;建立了p-q平面上不同应力路径下K0固结软粘土试样的孔压计算公式,验证了正常固结粘土p-q-e的唯一性关系;分析了不同大主应力方向角下K0固结软粘土试样的应力-应变关系和孔压发展规律,得到了τZθ-(σZ-σθ)/2平面上破坏强度包络线,揭示了大主应力增量和大主应变增量之间的不共轴现象。
     2.针对交通荷载作用的长期性特征,开展了不同围压和不同循环应力比下次数达50000次的单向激振三轴试验。研究了饱和软粘土在长期循环加载下的孔压发展、应力-应变滞回曲线演化、模量软化及应变累积特性。基于有效路径峰值点到临界状态线(CSL)的距离与轴向总应变的关系建立了长期循环荷载作用下孔压-应变模型;建立了长期循环荷载作用下饱和软粘土试样回弹模量经验方程,为数值分析中模量的选取提供了指导;建立了长期循环荷载作用下累积应变经验方程,给出了方程中两个参数εp,1000和λ的物理意义和确定方法,进一步通过对不同循环应力比下的方程参数进行回归分析,得到了饱和软粘土的长期累积应变预测模型。
     3.通过对不同围压和不同循环应力比下经50000次循环后的稳定回弹模量和累积应变进行分析,发现当循环应力比CSR<0.32时,稳定回弹模量随循环应力比的增加逐渐降低,此时累积应变随循环应力比增长相对缓慢,近似呈线性;而当CSR>0.32时,稳定回弹模量随循环应力比保持不变(Mr,50000/p'0=90),达到“渐近线强度”,此时累积应变随循环次数增加开始迅速增长,线性关系不再存在,随循环应力比的增大,累积应变呈指数增长。表明对温州原状饱和软粘土而言,CSR=0.32是一个动应力水平的临界值,可称之为“容许循环应力比”,当循环应力比小于该值时,饱和软粘土试样的长期累积应变可控制在2%以下。容许循环应力比提出,克服了在软粘土地区路基设计时采用门槛循环应力比过于保守,而采用临界循环应力比又难以控制过大沉降的难题。
     4.针对长期交通荷载作用的振动特性、软粘土结构性及地基排水条件,开展了各向同性固结温州原状饱和软粘土试样在不同影响因素下的常围压循环三轴试验。分析了结构性、振动频率、排水条件和间歇循环加载对饱和软粘土孔压和应变发展、应力-应变滞回曲线演化、模量软化及应变累积特性的影响并解释其原因,得到的一些结论对于深入了解真实工程条件下土体的动力特性提供了丰富的数据支持。
     5.针对交通荷载下竖向动应力与水平动应力祸合的特征,利用GDS双向振动三轴仪对Ko固结试样进行了不同循环应力比下循环围压和循环偏应力耦合的循环三轴试验。基于Yasuhara提出的孔压公式及Skempton理论得出了变围压循环三轴试验条件下的总孔压(弹性孔压、残余孔压和传递孔压)计算公式。研究了围压的循环变化对饱和软粘土的动应变、动孔压和有效应力路径的影响。结果表明,在分析交通荷载作用下饱和软粘土的动力特性时,水平应力循环变化的影响是不可忽略的。
     6.针对交通荷载作用下饱和软粘土地基上大主应力的大小和方向同时变化的特点,利用GDS空心圆柱系统对K0固结试样进行了循环扭剪(CTS)和循环三轴(CT)应力下的对比试验研究。采用自定义波形控制循环竖向应力和循环扭剪应力实现了2τZθ-(σz-σθ)平面中交通荷载心脏形应力路径的模拟,加载过程中动偏应力发生改变的同时大主应力方向角也由-90°变为90°。研究发现相同竖向动应力水平下,CTS试验中由于主应力轴的循环旋转加速了饱和软粘土试样的孔压累积和软化,进而加速了回弹和累积应变的产生。随着循环应力比的增加,CTS与CT试验之间的区别也越来越大。通过在长期循环三轴试验下建立的累积应变预测模型基础上,通过修正循环应力比引入考虑主应力轴旋转的η参数,建立了考虑主应力轴循环旋转的累积应变计算模型。
Thick soft clay layers are widely distributed in the southeast of China. A lot of important projects, such as motorways, high-speed railways, airport runways, have been or will be constructed on the soft clay subgrade. Strain accumulation and strength degradation of the subgrade clays are induced by the static load of embankment and the cyclic load of traffic loading, leading to large deformation and unstability. These types of catastrophe cause great economic loss and even threat to the safety of humans. Hence, long-term service performance of important high-speed traffic engineering is urgently needed to be improved and it is necessary to develop effective catastrophe control technology for the soft clay subgrade. The key to solve this problem is to study the static and cyclic behavior of saturated soft clay under complex stress paths.
     In this study, high quality samples of natural Wenzhou soft clay are firstly obtained by thin-walled tube cutting method. A series of experimental studies are then conducted on them through GDS triaxial apparatus and hollow cylinder system. The detailed research contents are as follows:
     1. According to the actual stress conditions of natural soft clay subgrade induced by the static load of embankment, undrained shear tests on isotropic consolidated specimens and stress paths triaxial tests or shear tests under different major principal stress angles on K0consolidated specimens have been conducted. In this section, the characteristics of soil structure, dependency of stress path, and anisotropy of soft clay are researched. The influence of soil structure on the shear strength, stress-strain relationship and development of effective stress path is investigated. A formula for pore pressure of K0consolidated soft clay specimens under different stress paths in p-q plane is established. The uniqueness relationships of p-q-e are verified. The stress-strain relationship and pore water pressure evolution of K0consolidated soft clay specimens under different major principal stress angles are analyzed. The failure envelop in the τzθ-(σz-σθ)/2plane is obtained. The non-coaxial phenomenon between the increment of major principal stress and major principal strain is unveiled.
     2. One-way cyclic triaxial tests with number of50000under different confining pressures and cyclic stress ratios have been conducted to study the long-term cyclic behavior of soft clay induced by traffic loading. The pore pressure evolution, stress-strain hysteresis loops, resilient modulus degradation and permanent strain under large number of cycles are investigated. The long-term pore pressure-strain model is established based on the relationship between the distance of peak point in effective stress path to the CSL and the axial strain. An empirical equation for long-term resilient modulus of saturated soft clay is established, providing guidance for the chosen of the value of modulus in numerical analysis. Besides, an empirical equation for long-term permanent strain is established. The physical meanings and the determination methods of the two parameters, εp,1000and λ, in this equation are given. The long-term permanent strain prediction model is obtained by further regression analysis on the equation parameters.
     3. The steady resilient modulus and permanent strain after50000under different confining pressure and cyclic stress ratio have been researched. Results show that for CSR<0.32, the values of steady resilient modulus decrease with the increase of CSR. At the same time, the values of permanent strain increase slowly and almost linearly with the increase of CSR. While for CSR>0.32, the values of steady resilient modulus almost remain unchanged (Mr,50000/P0=90) and reach the "asymptote strength". At the same time, the values of permanent strain begin increasing rapidly. The linear relationship no longer exists and the values of permanent strain increase exponentially. Thus CSR=0.32is a critical value for Wenzhou saturated soft clay, which can be called "allowable cyclic stress ratio". When CSR is below this value, the long-term permanent strain of saturated soft clay specimens can be controlled below2%. The proposed allowable cyclic stress ratio can solve the problem that the threshold cyclic stress ratio is too conservative while the critical cyclic stress ratio may lead to large settlement when they are used in pavement engineering.
     4. According to the vibration performance of traffic loading, soil structure of soft clay and drained condition of subgrade, cyclic triaxial tests with constant confining pressure under different influence factors on isotropic consolidated natural Wenzhou soft clay have been conducted. The influence of soil structure, cyclic frequency, drained condition and intermittent cyclic loading on the pore pressure and strain evolution, stress-strain hysteresis loop development, modulus degradation and strain accumulation are investigated. The conclusions provide a lot of data for deeply understanding the cyclic behavior of soft clay under actual engineering conditions.
     5. Cyclic triaxial tests with the coupling of cyclic confining pressure and cyclic deviator stress have been conducted through GDS dynamic triaxial apparatus to simulate the characteristic of coupling cyclic deviator stress and cyclic horizontal stress in traffic loading. A computational formula for the total pore pressure (elastic pore pressue, residual pore pressure and transmit pore pressure) in VCP tests is obtained based on the pore pressure formula proposed by Yasuhara and Skempton theory. The influence of cyclic confining pressure on the cyclic strain, pore pressure and effective stress path are researched. Results show that the influence of cyclic horizontal stress can not be ignored when the cyclic behavior of saturated soft clay are investigated under traffic loading.
     6. Comparative experimental researches between cyclic torsional shear tests (CST) and cyclic triaxial tests (CT) have been conducted by GDS hollow cylinder system to simulate the characteristic of variation for both amplitude and direction of major principal stress in subgrade soft clay under traffic loading. The cardioid stress path in the2τzθ-(σz-σθ) plane induced by traffic loading is simulated by user-defined waveforms of cyclic vertical stresses and cyclic torsional stresses. Under a single cycle, the major principal stress angle is changed form-90°to90°. Results show that under the same vertical stress level, the cyclic rotation of principal stress axle in CTS test can accelerate the pore pressure accumulation and the specimen degradation. Furthermore, the generation of resilient and permanent strain is accelerated. With the increase of CSR, the differences between CTS and CT are widened. A permanent strain equation considering principle stress rotation is established by introducing the parameter of η to modify the CSR based on the permanent strain prediction model obtained by the long-term cyclic triaxial tests.
引文
Allen JJ and Thompson MR. Resilient response of granular materials subjected to time-dependent lateral stresses. Transportation Researth Record,1974,510:1-13.
    Anderson K.H, Pool JH, Brown SF, Rosenbrand WF. Cyclic and static laboratory tests on Drammen Clay. Journal of the Geotechnical Engineering Division, ASCE 1980; 106(GT5):499-529.
    Arthur JRF, Chua KS, Dunstan T, et al. Principal stress rotation:a missing parameter. Journal of the Geotechnical Engineering Division,1980,106(4):419-433.
    Arthur JRF, Menzies BK. Inherent anisotropy in a sand[J]. Geotechnique,1972,22(1): 115-128
    Atilla MA, Afer E. Undrained behavior of clay under cyclic shear stresses[J]. Journal of Geotechnical Engineering,1989,115(7):968-983.
    Bardet JP. Hypoplastic model for sands[J]. Journal of Engineering Mechanics,1990, 116(9):1973-1994.
    Bjerrum SR. Hardness law for inelastic deformation[J]. International Journal of Engineering Science,1978,16(3):221-230.
    Brown SF. Soil mechanics in pavement engineering[J]. Geotechnique,1996,46(3): 383-426.
    Brown SF, Hyde AFL. Significance of cyclic confining stress in repeated load triaxial testing of granular material[J], Transportation Research Record,537, Transportation Research Board, Washington, D.C.1975:49-58.
    Broms BB and Casbarian AO. Effects of rotation of the principal stress axes and of the intermediate principal stress on shear strength[C]. Proc.6th Int. Conf. on SMFE, Montreal, Canada,1965,1:179-183.
    Brown SF, Lashine AKF, Hyde AFL. Repeated load triaxial testing of a silty clay[J]. Geotechnique,1975,25(1):95-114.
    Burland JB. On the compressibility and shear strength of natural clays[J]. Geotechnique,1990,40(3):329-378.
    Callisto L, Calabresi G. Mechanical behavior of a natural soft clay [J]. Geotechnique, 1998,48(4):495-513.
    Cai YQ, Gu C, Wang J, Juang CH, Xu CJ, and Hu XQ. One-way cyclic triaxial behavior of saturated clay:comparison between constant and variable confining pressure. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2013,139(5):797-809.
    Chai JC, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002,128 (11):907-916.
    Chazallon C, Hornych P, Mouhoubi S. Elastoplastic model for the long-term behavior modeling of unbound granular materials in flexible pavements [J]. International Journal of Geomechanics, ASCE,2006,6(4):279-289.
    Cheng SRL, Lee IK. Response of granular soil along constant stress increment ratio path [J]. Journal of Geotechnical Engineering, ASCE,1990,116(GT3):355-376.
    Cho W, and Finno RJ. Stress-Strain Responses of Block Samples of Compressible Chicago Glacial Clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):178-188.
    Collins K and Mcgown A. The form and function of microfabric features in a variety of natural soils[J]. Geotechnique,1974,24(2):223-254.
    Cotecchia F, Chandler RJ. A general framework for the mechanical behavior of clays[J]. Geotechnique,2000,50(4):431-447.
    Dafalias YF and Herrmann LR. Bounding surface formulation of soil plasticity[B]. Soil mechanics transient and cyclic loads, Wiley, Bognor Regis, UK, Chapter 10, 253-282.
    Finno RJ, and Cho W. Recent Stress-History Effects on Compressible Chicago Glacial Clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011,137(3):197-207.
    Gu C, Wang J, Cai YQ, Yang ZX, Gao YF. Undrained cyclic triaxial behavior of saturated clays under variable confining pressure[J]. Soil Dynamics and Earthquake Engineering,2012,40:118-128.
    Guo L, Wang J, Cai YQ, Liu HL, Gao YF, Sun HL. Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering,2013,50:28-37.
    Grabe PJ and Clayton CRI. Effects of principal stress rotation on permanent deformation in rail track foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(4):555-565.
    Hansen JB, Gibson RE. Undrained shear strength of anisotropically consolidated clays[J]. Geotechnique,1949,1(3):189-204.
    Hashiguchi K and Chen ZP. Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening[J]. International Journal for Numerical and Analytical Methods in Geomechanics.1998,22(3):197-227.
    Hight DW, Gens A, Symes MJ. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Geotechnique, 1983,33(4):355-383.
    Hong WP and Lade PV. Elasto-plastic behavior of KO-consolidated clay in torsion shear tests[J]. Soils and Foundations,1989,29(2):127-140.
    Hsu CC, Vucetic M. Threshold shear strains for cyclic pore-water pressure in cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(10):1325-1335.
    Hyodo M, Murata H, Yasufuku K, Ito H and Konauasji T. field test and analysis for evaluating stresses in low embankment and base ground subujectd to traffic, Tsuchi-to-Kido,1989,33-38.
    Hyodo M, Yamamoto Y, Sugiyama M. Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress[J]. Soils and Foundations, 1994,34(4),1-11.
    Hyodo M, Yasuhara Y, and Hirao K. Predication of clay behavior in undrained and partially drained cyclic triaxial tests[J]. Soils and Foundations,1992,32(4): 117-127.
    Idriss IM, Dobry R, Doyle EH and Singh RD. Behavior of soft clays during earthquake loading conditions[J]. Proceedings of the Offshore Technology Conference, Houston, Texas, OTC 2671, Vol.3.
    Idriss IM, Dobry R and Singh RD. Nonlinear behavior of soft clays during cyclic loading conditions[J]. Journal of the Geotechnical Engineering, ASCE,1978, 104:1427-1447.
    Ishihara K, Okada S. Effect of stress history on cyclic behavior of sand[J]. Soils and Foundations,1978,18(4):29-45.
    Ishikawa T, Sekine E, Miura S. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal,2011,48(5):691-703.
    Jung YH, Cho W and Finno RJ. Defining yield from bender element measurements in triaxial stress probe experiments[J].Jouranl of Geotechnical and Geoenvironmental Engineering,2007,133(7):841-849.
    Khedr S. Deformation characteristics of granular base course in flexible pavement[J]. Transportation Research Record,1043:131-138.
    Kirkgard MM and Lave PV. Anisotropic three-dimensional behavior of a normally consolidated clay[J]. Canadian Geotechnical Journal,1993,30(5):848-858.
    Ladd CC and Varallyay J. The influence of stress system on the behavior of saturated clays during undrained shear[J]. Research Report No. R65-11, MIT, Cambridge, Mass,1965.
    Lade PV, Duncan JM. Stress-path dependent behavior of cohesionless soil [J], Journal of the Geotechnical Engineering Division, ASCE,1976,102(GT1):42-48.
    Lade PV and Inel S. Rotational kinematic hardening model for Sand. I:Concept of rotating yield and plastic potential surfaces[J]. Computer and Geotechnics,1997, 21(3):183-216.
    Lade PV and Kirkgard MM. Effects of stress rotation and changes of b-values on cross-anisotropic behavior of natural, KO-consolidated soft clay[J]. Soils and Foundations,2000,40(6):93-105.
    Lade PV and Musante HM. Three-dimensional behavior of remolded clay[J]. Journal of Geotechnical and Engineering Division, ASCE,1978,104(2):193-209.
    Lambe TW. Stress path method [J], Journal of the Soil Mechanics and Foundation Division, ASCE,1967,93(SM6):309-331.
    Larew HG, Leonards GA. A repeated load strength criterion[C]. Proceedings of Highway Research Board,1962,41:529-556.
    Lekarp F, Isacsson U, Dawson A. State of the art. I:Resilient response of unbound aggregates[J]. Journal of Transportation Engineering, ASCE,2000,126(1):66-75.
    Leonards GA. Discussion of "Shallow foundations"[C]. Proc., ASCE Spec. Conf. On Perf. of Earth and Earth-Supported Struct., ASCE, New York,1972,3:169-173.
    Leroueil S. Compressibility of clays:fundamental and practical aspects[J]. Journal of Gentechnical Engineering, ASCE,1995,122(7):534-543.
    Leroueil S. Critical state soil mechanics and the behavior of real soils[C]. Proc. Intl Symp. Recent Developments in Soil and Pavement Mechanics,1997,41-80.
    Leroueil S, Vaughan PR. The general and congruent effects of structure in natural soils and weak rocks[J]. Geotechnique,1990,40(3):467-488.
    Li C, Wang JH, Shi ML. Experimental study on cyclic mechanics characteristic of saturated soft clay strata[J]. Transactions of Tianjin University,2006,12(2): 137-141.
    Li DQ, Selig ET. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, ASCE,1996,122 (12):1006-1013.
    Li LL, Dan HB, Wang LZ. Undrained behavior of natural marine clay under cyclic loading. Ocean Engineering 2011; 38:1792-1805.
    Lin H and Penumadu D. Experimental investigation on principal stress rotation in Kaolin clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(5):633-642.
    Malanraki V, Toll DG. Triaxial tests on weakly bonded soil with changes in stress path [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(3): 282-291.
    Matasovic N and Vucetic M. Generalized cyclic-degradation-pore-pressure generation model for clays[J]. Journal of Geotechnical Engineering, ASCE,1995,121(1): 33-42.
    Matasovic N and Vucetic M. A pore pressure model for cyclic straining of clay[J]. Soils and Foundations,1992,32(3):156-173.
    Matsui T, Ohara H, Ito T. Cyclic stress-strain history and shear characteristics of clay[J]. Journal of Geotechnical Engineering Divison, ASCE,1980,106(10): 1101-1120.
    Monismith CL, Ogawa N, and Freeme CR. Permanent deformation characteristics of subsoil due to repeated loading[J]. Trans. Res. Rec,1975,537:1-17.
    Moses GG, Rao SN, Rao PN. Undrained strength behavior of a cemented marine clay under monotonic and cyclic loading. Ocean Engineering 2003; 30:1765-1789.
    Mroz Z and Pietruszczak S. A constitutive model for sand with anisotropic hardening rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics.1983,7(3):19-38.
    Nagaraj TS. Analysis of compressibility of sensitive soils[J]. Journal of Geotechnical Engineering, ASCE,1990,116(1):105-118.
    Nagaraj TS, Sridharan A. Incremental loading device for stress path and strength testing of soils [J]. Geotechnical Testing Journal,1981,4(2):35-46.
    Nakata K, Hyodo M, Murata H, Yasufuku N. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations,1998,38(2):115-128.
    Nataatmadja A, Parkin AK. Characterization of granular materials for pavements[J]. Canadian Geotechnical Journal,1989,26:725-730.
    Ohara S, Matsuda H. Study on the settlement of saturated clay layer induced by cyclic shear[J]. Soils and Foundations,1988,28(3):103-113.
    Paute JL, Hornych P and Benaben JP. Repeated load triaxial testing of granular materials in the French network of Laboratories. Flexible Pavements, Proc., Eur. Symp. Euro flex 1996
    Powrie W, Yang LA, Clayton, CRI. Stress changes in the ground below ballasted railway track during train passage[C]. Proceedings of Institution of Mechanical Engineering, Part F:Journal of Rail and Rapid Transit March 1,2007,221(2): 247-262.
    Rondon HA, Wichtmann T, Triantafyllidis T, Lizcano A. Comparison of cyclic triaxial behavior of unbound granular material under constant and variable confining pressure[J]. Journal of Transportation Engineering, ASCE,2009,135(7): 467-478.
    Saada AS and Baah AK. Deformation and failure of a cross anisotropic clay under combined stresses[C]. Proc.3rd Panamerical Conf. on SMFE, Caracas, Venezuela,1967,1:67-88.
    Saada AS, Bianchini GF and Liang L. Cracks, bifurcation and shear bands propagation in saturated clays[J]. Geotechnique,1994,44(1):35-64.
    Saada AS and Bianchini GF. Strength of one dimensionally consolidated clays[J]. Journal of the Geotechnical and Engineering Division, ASCE,1975,101(GT11): 1151-1164.
    Saada AS and Ou CD. Stress-strain relations and failure of anisotropic clays[J]. Journal of Soil Mechanics and Foundations Division, ASCE,1973,99(SM12): 1091-1111.
    Saada AS and Townsend FC. State-of-the-art:Laboratory strength testing of soils[J]. ASTM, Philadelphia, Pennsylvania,1981,7-77.
    Sakai A, Samang L and Miura N. Partially-drained cyclic behavior and its application to the settlement of a low embankment road on silty-clay[J]. Soils and Foundations.2003,43(1):33-46.
    Sangrey DA, et al. Cyclic loading of sands, silts and clays[C]. Proceeding Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, Calif: 1978.
    Scoott RF et al.. Stress-deformation and strength characteristics[J]. Proceedings of the 7th International Conference of Soil Mechanics and Foundation Engineering, 1969,1-49.
    Seed HB and Booker JR. Stabilisation of potentially liquefiable sand deposits using gravel drain systems. Earthquakt Research Centre, Report No. EERC 76-10, University of California, Berkeley,1976.
    Seed HB, Chan CK, Monismith CL. Effects of repeated loading on the strength and deformation of compacted clay[J]. Highway Research Board Proceedings,1955, 34:541-558.
    Seed HB and McNeil RL. Soil deformation in normal compression and repeated loading test[J]. Highway Research Board Bulletin,1956,141:44-53.
    Simonsen E, Isacsson U. Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests. Canadian Geotechnical Journal, 2001,38:863-875.
    Skempton AW. The pore pressure coefficients A and B[J]. Geotechnique,1954,4: 143-149.
    Soga, Kenichi, Mitchell, James K. Rate-dependent deformation of structured natural clays[C]. Geotechnical Measuring and Modeling Time Dependent Soil Behavior. Special Publication,1996,61:243-257.
    Sweere GTH. Unbound granular bases for roads[D]. PhD thesis, University of Delft, Delft, The Netherlands,1990.
    Symes MJ, Gens A, Hight DW. Undrained anisotropy and principal stress rotation in saturated sand[J]. Geotechnique,1984,34(1):11-27.
    Symes MJ, Gens A, Hight DW. Drained principal stress rotation in saturated sand[J]. Geotechnique,1984,38(1):59-81.
    Terzaghi K, Peck RB, Mesri G. Soil mechanics in engineering practice (third edition)[M].1996, New York:Wiley-IEEE.
    Tong ZX, Zhang JM, Yu YL, Zhang G. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J]. Journal of Geotecnnical and Geoenvironmental Engineering,2010,136(11):1509-1518.
    Towhata I and Ishihara K. Undrained strength of sand undergoing cyclic rotation of principal stress axes[J]. Soils and Foundations,1985,25(2):135-147.
    Vaid YP, Sayao A, Hou EH, Negussey D. Generalized stress-path-dependent soil behavior with a new hollow cylinder torsional apparatus[J]. Canadian Geotechnical Journal,1990,27(5):601-616.
    Vucetic M. Cyclic threshold shear strains in soils[J]. Journal of Geotechnical Engineering,1994,120:2208-2228.
    Vucetic M and Dobry R. Degradation of marine clays under cyclic loading. Journal of Geotechnical Engineering, ASCE,1988,114(2):133-149.
    Whichtmann T, Niemunis A, Triantafyllidis TH. On the influence of the polarization and the shape of the strain loop on strain accumulation in sand under high-cyclic loading[J]. Soil Dynamics and Earthquake Engineering,2007,27(1):14-28.
    Wong RKS and Arthur JRF. Sand sheared by stresses with cyclic variations in direction[J]. Geotechnique,1986,36(2):215-226.
    Wood D. Explorations of principal stress with Kaolin in a true triaxial apparatus [J]. Geotechnique,1975,25(4):783-797.
    Yamanouchi T, Aoto H. Deformation of soils under repeated loading[R].24th Annual Metting, JSCE,1969, (3):99-102.
    Yang ZX, Li XS, Yang J. Undrained anisotropy and rotational shear in granular soil[J]. Geotechnique,2007,57(4):371-384.
    Yasuhara K. Cyclic strength and deformation of normally consolidated clay[J]. Soils and Foundations,1982,22(3):77-91
    Yasuhara K, Hirao K, Hyde AFL. Effects of cyclic loading on undrained strength and compressibility of clay[J]. Soils and Foundations,1992,32(1):100-116.
    Yasuhara K, Murakami S, Song BW, Yohokawa S, Hyde AFL. Postcyclic degradation of strength and stiffness for low plasticity silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(8),756-769.
    Yildirim H, Ersan H. Settlemetns under consecutive series of cyclic loading[J]. Soil Dynamics and Earthquake Engineering,2007,27:577-585.
    Zaman M, Chen D, Laguros J. Resilient moduli of granular materials[J]. Journal of Transportation Engineering, ASCE,1994,120(6):967-988.
    Zhou J, Gong XN. Strain degradation of saturated clay under cyclic loading. Canadian Geotechnical Journal 2001; 38(1):208-212.
    白冰,章光,刘祖德.冲击荷载作用下饱和软黏土的一些性状[J].岩石力学与工程学报,2002,21(3):423-428.
    边学成,胡婷,陈云敏.列车交通荷载作用下地基土单元体的应力路径[J].土木工程学报,2004,41(11):86-92.
    陈存礼,谢定义.偏应力往返作用下饱和砂土变形特性的试验研究[Jl.岩石力学与工程学报,2005,24(4):669-675.
    陈存礼,谢定义,高鹏.球应力往返作用下饱和砂土变形特性的试验研究[J].岩石力学与工程学报,2005,24(3):513-520.
    陈颖平.循环荷载作用下结构性软粘土特性的试验研究[D].杭州:浙江大学,2007.
    陈颖平,黄博,陈云敏.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5):764-768.
    高广运,顾中华,杨宏明.循环荷载下饱和软粘土不排水强度计算方法[J].岩土力学,25(增刊2):379-382.
    龚晓南,熊传祥,项可祥.黏土结构性对其力学性质的影响及其形成原因分析[J]水利学报,2000,44(10):43-47.
    郭林,蔡袁强,王军,谷川.长期循环荷载作用下温州结构性软黏土的应变特性研究.岩土工程学报,2012,34(12):2249-2254.
    郭莹,栾茂田,许成顺等.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670.
    管林波,周建,张勋,谢新宇.中主应力系数和主应力方向对原状黏土各向异性的影响研究[J].岩石力学与工程学报,2010,29(增2):3871-3877.
    洪振舜,刘松玉,于小军.关于结构土屈服破坏的探讨[J].岩土力学,2004,25(5):684-687.
    黄博,丁浩,陈云敏.高速列车荷载作用的动三轴试验模拟[J].岩土工程学报,2011,33(2):195-202.
    黄茂松,李进军,李兴照.饱和软黏土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    蒋军.循环荷载作用下粘土应变速率试验研究[J].岩土工程学报,2002,24(4):528-531.
    李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析[J].中国公路学报,2006,19(1):1-5.
    李又云,李哲,谢永利.一维固结理论中固结系数的试验分析[J]建筑科学与工程学报,2008,25(3).
    刘功勋,栾茂田,郭莹,王忠涛,贺林,张俊峰.复杂应力条件下长江口原状饱和软粘土门槛循环应力比试验研究[J].岩土力学,2010,31(4):1123-1129
    刘宏泉.海相软粘土的成土作用及其对土组构的影响[J].苏盐科技,1995,2:11-12.
    潘林有,王军.振动频率对饱和软粘土相关性能的影响[J].自然灾害学报,2007,16(6):204-208.
    沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996,(1):27-33.
    沈扬.考虑主应力方向变化的原状软粘土试验研究[D].杭州:浙江大学,2007.
    沈扬,周建,龚晓南,刘汉龙.考虑主应力方向变化的原状软黏土应力应变性状试验研究[J].岩土力学,2009,30(12):3720-3726.
    沈扬,周建,张金良,龚晓南.主应力轴循环旋转下原状软黏土临界性状研究[J].浙江大学学报(工学版).2008,42(1):77-82.
    沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    沈珠江.软粘土工程特性和软粘土地基设计[J].岩土工程学报,1998,20(1):108-110.
    唐益群,张曦,周念清,黄雨.地铁振动荷载作用下饱和软粘土性状微观研究[J].同济大学学报(自然科学版),2005,33(5):626-630.
    王军.单、双向激振循环荷载作用下饱和软粘土动力特性研究[D].杭州:浙江大学,2007.
    王军,蔡袁强.循环荷载作用下饱和软黏土应变累积模型研究[J].岩石力学与工程学报,2008,27(2):331-338.
    王军,蔡袁强,丁光亚,潘晓东.双向激振下饱和软粘土动模量和阻尼变化规律试验研究[J].岩石力学与工程学报,2010,29(2):423-432.
    王军,蔡袁强,潘林有.双向激振下饱和软粘土应变软化现象试验研究[J].岩石力学与工程学报,2009,31(2):178-185.
    王立忠,丁利,陈云敏,李玲玲.结构性软土压缩特性研究[J].土木工程学报,2004,37(4):46-53.
    王立忠,李玲玲,丁利.温州煤场软土结构性试验研究[J].土木工程学报,2002,35(1):88-92.
    王淑云,鲁晓兵,赵京.粉质黏土周期荷载后的不排水强度衰化特性[J].岩土力学,2009,30(10):2991-2995.
    温晓贵,郑鸿镔,周建,张勋.主应力轴旋转下(b=0.5)原状软黏土孔压特性[J]. 岩石力学与工程学报,2010,29(12):2558-2565.
    吴国溪.真三轴仪的研制和试验及其参数在地基基础和上部结构共同作用中的应用[D].上海:同济大学,2000.
    严佳佳,李伯安,陈利明,周建,管林波.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增刊):155-159.
    杨雪强,朱志政,韩高升.不同应力路径下土体的变形特征与破坏特性[J].岩土力学,2006,27(12):2181-2185.
    要明伦,聂栓林.饱和软粘土动变形计算的一种模式[J].水利学报,1994(7):51-55.
    姚兆明,黄茂松.考虑主应力轴偏转角影响的饱和软黏土不排水循环累积变形[J].岩石力学与工程学报,2011,30(2):391-399.
    殷宗泽,徐志伟.土体的各向异性及其近似模拟[J].岩土工程学报,2002,24(5):547-551.
    袁聚云.软土各向异性性状的试验研究及其在工程中的应用[D].上海:同济大学,1995.
    张诚厚.两种结构性土的土工特性[J].水利水运科学研究,1983,(4):65-71.
    曾玲玲,陈晓平.软土在不同应力路径下的力学特性分析[J].岩土力学,2009,30(5):1264-1270.
    张建民,谢定义.饱和砂土振动孔隙水压力理论与应用研究进展[J].力学进展,1993,23(2):165-180.
    张茹,涂扬举,费文平,赵忠虎.振动频率对饱和粘性土动力特性的影响[J].岩土力学,2006,27(5):699-704
    张勇,孔令伟,郭爱国,李雄威.循环荷载下饱和软黏土的累积塑性应变试验研究[J].岩土力学,2009,30(6):1542-1548.
    周建,龚晓南,李剑强.循环荷载作用下饱和软粘土特性试验研究[J].工业建筑,2000,30(11):43-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700