用户名: 密码: 验证码:
仿刺参(Apostichopus japonicus)转录组分析与遗传图谱构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1仿刺参的基因组大小测定
     本实验以栉孔扇贝Chlamys farreri为内标,用流式细胞仪测定了仿刺参Apostichopus japonicus (Selenka,1867)的不同组织(体壁、肌肉、肠道、呼吸树)的基因组大小(C值),结果发现用不同组织测出的仿刺参基因组大小均比较接近,最终得出仿刺参的基因组大小为0.878±0.02pg,即859Mb(以1pg DNA=978Mb计算)。仿刺参基因组大小的测定将有助于该物种基因组方面的研究。
     2仿刺参的转录组测序和分析
     为系统了解仿刺参转录组的特征,我们选取了不同发育时期的仿刺参,以及成体仿刺参的不同组织为材料,共构建了8个cDNA测序文库,进行了454GS FLX测序及生物信息学分析。测序共得到1,061,078条平均长度为344bp的序列。经过小片段去除和质量筛查后,共获得92%的高质量序列。这些高质量的序列经过拼接得到33,835条Contigs,以及199,011条Singletons。Contigs进一步拼接成29,666条Isotigs,这些Isotigs聚类成21,071个Isogroups。通过与公共蛋白数据库(Swiss-Prot和nr)及核酸数据库(nt)比对,47%的Isogroups获得了注释信息。对于被注释的基因序列,我们进一步根据基因功能作了分类。Gene Ontology(GO)注释和Kyoto Encyclopedia of Genes and Genomes(KEGG)代谢通路分析结果表明,这些基因参与了多种生物学过程。此外,通过比较分别以夏眠前和夏眠中仿刺参的多个组织构建的两个cDNA文库,还获得了一些与夏眠相关的候选基因。随机选取了12个表达有明显差异的基因进行Q-PCR验证,结果发现在测序中有明显表达差异的基因经Q-PCR验证也有明显差异,说明测序结果比较真实地反应了文库中基因的表达信息。通过比较仿刺参与紫海胆Strongylocentrotus purpuratus的转录组发现,两个物种的GO分布非常相似,同时获得4,882个同源性较高的基因,其中,有202个基因在非棘皮动物未被发现。此外,通过生物信息学预测,共获得了730个SSR和54,185个SNP。仿刺参转录组的获得,将有助于仿刺参遗传学和基因组学研究工作的开展。
     3仿刺参的遗传图谱构建
     应用2b-RAD技术,以仿刺参90个F1子代为作图群体,以拟测交理论为作图策略,构建了仿刺参的遗传连锁图谱。研究中,共得到2,010个可以被分型的SNPs,其中符合孟德尔分离比(P≥0.05)的标记有1,484个。构建的图谱包含917个标记,分布于22个连锁群上。每个连锁群标记数目为16-98不等,平均标记数为42,连锁群长度在13.5cM-113.8cM之间,相邻标记的平均间隔为1.64cM。图谱的总长度为1,467cM,覆盖率为94.89%。该图谱为首张基于SNP标记的仿刺参遗传连锁图谱,将为今后仿刺参的遗传学研究如功能基因定位、分子标记辅助育种等提供方便。
1. Determination of genome size of Apostichopus japonicus
     The C-values of four different tissues (body wall, muscle, intestines and respiratorytrees) of A. japonicus were measured in a flow cytometer using Chlamys farreri as aninternal standard. It was noted that the C-values of different tissues were closebetween one another. The results indicate that the C-value of A. japonicus is0.878±0.02pg with the genome size of859Mb. The results of this study will be helpful infuture genomic study of the sea cucumber.
     2. Transcriptome sequencing and characterization for the sea cucumber A.japonicus
     We performed the large-scale transcriptome profiling and characterization bypyrosequencing diverse cDNA libraries from A. japonicus. In total,1,061,078readswith an average length of344bp were obtained by454sequencing of eight cDNAlibraries representing different developmental stages and adult tissues of A. japonicus.Of all these reads,92%(974,004reads) passed through our quality filters andrepresented high-quality (HQ) reads. The HQ reads were assembled into33,835contigs and199,011singletons. Contigs were then assembled into29,666isotigs,which were further clustered into21,071isogroups. About47%of the isogroupsshowed significant matches to known proteins or nucleotide based on sequencesimilarity. As determined by Gene ontology (GO) annotation and Kyoto Encyclopediaof Genes and Genomes (KEGG) pathway mapping, functional annotation of theunigenes recovered diverse biological functions and processes. Candidate genes that were potentially involved in aestivation were identified. Twelve candidate DGEs wererandomly selected for Q-PCR validation. Q-PCR results verified the differentialexpression of these genes between the active and aestivating sea cucumbers.Transcriptome comparison with the sea urchin Strongylocentrotus purpuratusrevealed similar patterns of GO term representation. In addition,4,882putativeorthologous genes were identified, of which202were not present in thenon-echinoderm organisms. More than700simple sequence repeats (SSRs) and54,000single nucleotide polymorphisms (SNPs) were detected in the A. japonicustranscriptome.This transcriptome resource would lay an important foundation forfuture genetic or genomic studies on this species.
     3. Construction of SNP-based linkage map for A. japonicus
     Linkage mapping was performed using an F1family of90A. japonicus individuals,and a genetic linkage map was constructed using a2b-RAD method. Two thousandsand ten SNP markers were genotyped and1,484markers that conformed to theexpected Mendelian ratios (P≥0.05) were included in the linkage analysis. The geneticlinkage map contained917markers ordered on22linkage groups and spanned1,467cM, with an average intermarker spacing of1.64cM and94.89%of genome coverage.The size of the linkage groups ranged from13.5cM to113.8cM, and the number ofmarkers per linkage group varied from16to98, with an average number of42. Thisis the first SNP-based linkage map of A. japonicus and will be useful for furthergenetic analyses such as gene mapping and molecular marker-assisted selection(MAS).
引文
[1] Bottjer DJ, Davidson EH, Peterson KJ, et al. Paleogenomics of echinoderms. Science,2006,314:956~960.
    [2]廖玉麟.中国动物志棘皮动物门海参纲.北京:科学出版社,1997.
    [3]张春云,王印庚,荣小军,等.国内外海参自然资源、养殖状况及存在问题.海洋水产研究,2004,25:89~97.
    [4] Kanno M, Li Q, Kijima A. Isolation and characterization of twenty microsatellite loci inJapanese sea cucumber (Stichopus japonicus). Mar Biotechnol,2005,7:179~183.
    [5]刘石林,杨红生,周毅,等.刺参对筏式养殖海区生物沉积物清除作用的模拟研究.海洋科学,2006,30:21~24.
    [6] Liu YH, Li FX, Song BX, et al. Study on aestivating habit of sea cucumber Apostichopusjaponicus Selenka: I. ecological characteristic of aestivation. J Fish Sci China,1996,3:41~48.
    [7] Li FX, Liu YH, Song BX, et al. Study on aestivating habit of sea cucumber Apostichopusjaponicus Selenka: II. ecological characteristic of aestivation. J Fish Sci China,1996,3:49~57.
    [8] Mitsukuri K. Notes on the habits and life history of Stichopus japonicus Selenka. Annot ZoolJapan,1903,5:1~21.
    [9] Sloan NA. Echinoderm fisheries of the world: a review. In: Keegan BF, O' Connor BDS. eds.,Echinodermata, Rotterdam: Balkema AA Publishers,1984.
    [10]李馥馨,刘永宏,宋本祥,等.海参(Apostichopus japonicus Selenka)夏眠习性研究Ⅱ——夏眠致因的探讨.中国水产科学,1996,3:49~57.
    [11]刘永宏,李馥馨,宋本祥,等.1996.海参(Apostichopus japonicus Selenka)夏眠习性研究I——夏眠生态特点的研究.中国水产科学,1996,3:41~48.
    [12]Choe S, Ohshima Y. On the morphological and ecological differences between twocommercial forms.“Green” and “Red”, of the Japanese common sea cucumber, Stichopusjaponicus Selenka. Bull Jpn Soc Sci Fish,1961,27:97~106.
    [13]Zheng FX, Sun XQ, Fang BH, et al. Comparative analysis of genes expressed inregenerating intestine and non-eviscerated intestine of Apostichopus japonicus Selenka(Aspidochirotida: Stichopodidae) and cloning of ependymin gene. Hydrobiologia,2006,571:109~122.
    [14]Igor YD, Talia TG. Post-autotomy regeneration of respiratory trees in the holothurianApostichopus japonicus (Holothuroidea, Aspidochirotida). Cell Tissue Res,2009,336:41~58.
    [15]Sun LN, Chen M, Yang HS, et al. Large scale gene expression profiling during intestine andbody wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem PhysiolPart D Genomics Proteomics,2011,6:195~205.
    [16]Shukaluk AI, Dolmatov IY. Regeneration of the digestive tract in holothurian Apostichopusjaponicus after evisceration. Russ J Mar Biol,2001,27:202~206.
    [17]Marushkina NB, Gracheva ND. Autography study of proliferating activity in the intestinalepithelium of the sea cucumber of Stichopus japonicus under normal conditions and afterautotomy. Cytology,1978,20:426~431.
    [18]赵学敏.本草纲目拾遗.北京:中国中医药出版社,2007.
    [19]肖枫,曾名勇,董士远,等.海参胶原蛋白的研究进展.水产科学,2005,24:39~41.
    [20]李惟敏,王述恒,粱袖勤,等.刺参酸性薪多糖对机体免疫功能的影响.肿瘤临床,1985,12:118~127.
    [21]吴萍茹,陈粤,方金瑞等.二色桌片参的化学成分的研究(V)二色桌片参糖蛋白的分离性质及抗肿瘤活性的研究.中国海洋药物,2000,5:4~7.
    [22]樊绘曾.海参:海中人参关于海参及其成分保健医疗功能的研究与开发.中国海洋药物,2001,4:37~44.
    [23]廖玉麟.我国的海参.生物学通报,2001,35:1~3.
    [24]常亚青.海参、海胆生物学研究与养殖.北京:海洋出版社,2004.
    [25]于东祥.海参健康养殖技术.北京:海洋出版社,2005.
    [26]刘进,张晓军,苏琳,等.仿刺参基因组大小的测定.水产学报,36:686~695.
    [27]许伟定,隋锡林,胡庆明,等.仿刺参染色体的初步研究分析.水产科学,1997,16:9~11.
    [28]Sei-Ichi O, Kazuma K, Mizuho S, et al. Chromosome number and telomere sequencemapping of the Japanese sea cucumber Apostichopus japonicus. Fish Sci,2009,75:249~251.
    [29]Colombera D. Chromosome evolution in the phylum Echinodermata. Z Zool Syst EvolForsch,1974,12:299~308.
    [30]Colombera D, Venier G, Vitturi R. Chromosome and DNA in the evolution of Echinoderms.Biol Zbl,1977,96:43~49.
    [31]谭杰,孙慧玲,高菲,等.刺参染色体制备的初步研究.海洋科学,2011,35:8~11.
    [32]常亚青,相建海.仿刺参(Apostichopus japonicus)多倍体诱导的初步研究.大连水产学院学报,2002,17:1~7.
    [33]聂鸿涛,李琪,于瑞海.刺参雌核发育二倍体的诱导及其早期生长发育.中国海洋大学学报(自然科学版),2011,41:31~35.
    [34]Cambi A, Figdor C. Necrosis: C-type lectins sense cell death. Curr Biol,2009,19:R375~378.
    [35]Thomas AM, Rogers JT, Leedman PJ. Iron regulatory, iron-responsive and ferritin mRNAtranslation. Int J Biochem Cell Biol,1999,31:1139e52.
    [36]杨爱馥,周遵春,孙大鹏,等.仿刺参铁蛋白ferritin基因的序列分析及表达.水产学报,2010,6:710~717.
    [37]鄢荣歆,徐赛涛,丛丽娜,等.海刺参组织蛋白酶L基因的克隆、重组表达及活性鉴定.大连工业大学学报,2009,28:391~396.
    [38]Kang SE, Gottesman MM. The role of cathepsinL in malignant transformation. SeminCancer Biol,1990,1:127~136.
    [39]王艳玲,李东,王秀利.海参免疫相关基因的研究进展.生物技术通报,2011,9:22~26.
    [40]杨西建,丛丽娜,路美玲,等.海参i型溶菌酶基因及其编码产物的结构特点.中国生物化学与分子生物学报,2007,23:542~547.
    [41]张峰,王海峰,官晶,等.仿刺参体腔液补体类似物化学发光免疫检测.核农学报,2007,21:413~416.
    [42]Yang AF, Zhou ZC, Dong Y, et al. Expression of immune-related genes in embryos andlarvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immun,2010,29:839~845.
    [43]郑法新,孙修勤,张进兴.刺参吐脏再生的组织学研究.中国水产科学,2006,13:134~139.
    [44]Yuan Z, Dahms HU, Han LL, et al. Cloning and characterization of a trypsin-like serineprotease gene, a novel regeneration-related gene from Apostichopus japonicus. Gene,2012,502:46~52.
    [45]Yang HS, Zhou Y, Zhang T, et al. Metabolic characteristics of sea cucumber Apostichopusjaponicus (Selenka) during aestivation. J Exp Mar Biol Ecol,2006,330:505~510.
    [46]Yuan XT, Yang HS, Wang LL, et al. Effects of aestivation on the energy budget of seacucumber Apostichopus japonicus (Selenka)(Echinodermata: Holothuroidea). ActaEcologica Sinica,2007,27:3155~3164.
    [47]Dong YW, Ji TT, Meng XL, et al. Difference in thermo tolerance between green and redcolor variants of the Japanese sea cucumber, Apostichopus japonicus Selenka: Hsp70andheat-hardening effect. Biol Bull,2010,218:87~94.
    [48]Ji TT, Dong YW, Dong SL. Growth and physiological responses in the sea cucumber,Apostichopus japonicus Selenka: aestivation and temperature. Aquaculture,2008,283:180~187.
    [49]Wang FY, Yang HS, Wang XY, et al. Antioxidant enzymes in sea cucumber Apostichopusjaponicus (Selenka) during aestivation. J Mar Biol Assoc UK,2011,91:209~214.
    [50]Bao J, Dong SL, Tian XL, et al. Metabolic rates and biochemical compositions ofApostichopus japonicus (Selenka) tissue during periods of inactivity. CJOL,2010,28:218~223.
    [51]吉成龙,孙国华,杨建敏,等.刺参(Apostichopus japonicus)高温胁迫消减cDNA文库的构建与分析.海洋与湖沼,2011,42:60~66.
    [52]Zhao H, Yang HS, Zhao HL, et al. Heat stress-mediated gene expression in the body wall ofthe Japanese sea cucumber Apostichopus japonicus. Aquat Biol,2011,12:23~31.
    [53]王天明,杨红生,苏琳.刺参呼吸树抗氧化防御酶类基因在夏眠期的表达特征.水产学报,2011,35:1172~1181.
    [54]苏琳.夏眠刺参消化道组织学特征及表观修饰基因表达模式:[硕士毕业论文].青岛:中国科学院海洋研究所,2012.
    [55]Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes withRNA-Seq. J Biomed Biotechnol,2010,2010:853916.
    [56]Wang L, Song L, Zhao J, et al. Expressed sequence tags from the zhikong scallop (Chlamysfarreri): discovery and annotation of host-defense genes. Fish Shellfish Immun,2009,26:744~750.
    [57]Duggan DJ, Bittner M, Chen Y, et al. Expression profiling using cDNA microarrays. NatGenet,1999,21:10~14.
    [58]Marshall A, Hodgson J. DNA chips: an array of possibilities. Nat Biotechnol,1998,16:27~31.
    [59]Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science,1995,270:484~487.
    [60]Wang CM, Zhu ZY, Lo LC, et al. A microsatellite linkage map of Barramundi, Latescalcarifer. Genetics,2007,175:907~915.
    [61]Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressedsequence tags and human genome project. Science,1991,252:1651~1656.
    [62]Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricatedhigh-density picolitre reactors. Nature,2005,437:376~380.
    [63]Turcatti G. A new class of cleavable fluorescent nucleotides: synthesis and optimization asreversible terminators for DNA sequencing by synthesis. Nucleic Acids Res,2008,36: e25.
    [64]Michael B, Paul M, Jens S, et al. A report on the2009SIG on short read sequencing andalgorithms (Short-SIG). Bioinformatics,2009,25:2853~2864.
    [65]Ruparel H, Bi L, Li Z, et al. Design and synthesis of a3'-O-allyl photocleavable fluorescentnucleotide as a reversible terminator for DNA sequencing by synthesis. PNAS,2005,102:5932~5937.
    [66]Ju JY, Kim DH, Bi LR, et al. Four-color DNA sequencing by synthesis using cleavablefluorescent nucleotide reversible terminators. PNAS,2006,103:19635~19640.
    [67]Seo TS, Bai XP, Kim DH, et al. Four-color DNA sequencing by synthesis on a chip usingphotocleavable fluorescent nucleotides. PNAS,2005,102:5926~5931.
    [68]Wang S, Zhang L, Meyer E, et al. Construction of a high-resolution genetic linkage map andcomparative genome analysis for the reef-building coral Acropora millepora. Genome Biol,2009,10: R126.
    [69]Lu T, Lu G, Fan D, et al. Function annotation of rice transcriptome at single nucleotideresolution by RNA-seq. Genome Res,2010,20:1238~1249.
    [70]Otto TD, Wilinski D, Assefa S, et al. New insights into the blood-stage transcriptome ofPlasmodium falciparum using RNA-Seq. Mol Microbiol,2010,76:12~24.
    [71]Filichkin SA, Priest HD, Givan SA, et al. Genome-wide mapping of alternative splicing inArabidopsis thaliana. Genome Res,2010,20:45~58.
    [72]Zhang GJ, Guo GW, Hu XD, et al. Deep RNA sequencing at single base-pair resolutionreveals high complexity of the rice transcriptome. Genome Res,2010,20:646~654.
    [73]Zheng W, Wang Z, Collins JE, et al. Comparative transcriptome analyses indicate molecularhomology of zebrafish swimbladder and mammalian lung. PloS One,2011,6: e24019.
    [74]Chen C, Ai H, Ren J, et al. A global view of porcine transcriptome in three tissues from afull-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNAsequencing. BMC Genomics,2011,12:448.
    [75]Frousios K, Iliopoulos CS, Tischler G, et al. Transcriptome map of mouse isochores inembryonic and neonatal cortex. Genomics,2012,101:120~124.
    [76]Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on differentdevelopmental stages of Cordyceps militaris. PloS One,2012,7: e51853.
    [77]Sweetman C, Wong DCJ, Ford CM, et al. Transcriptome analysis at four developmentalstages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated andcoordinated gene expression. BMC Genomics,2012,13:691.
    [78]Mortazavi A, Williams BA, Mccue K, et al. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods,2008,5:621~628.
    [79]Xiang LX, He D, Dong W R, et al. Deep sequencing-based transcriptome profiling analysisof bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genesin marine fish. BMC Genomics,2010,11:472~493.
    [80]Sandmann T, Vogg MC, Owlarn S, et al. The head-regeneration transcriptome of theplanarian Schmidtea mediterranea. Genome Biol,2011,12: R76.
    [81]Hou R, Bao ZM, Wang S, et al. Transcriptome sequencing and de novo analysis for YessoScallop (Patinopecten yessoensis) using454GS FLX. PloS One,2011,6: e21560.
    [82]Huang Q, Sun P, Zhou X, et al. Characterization of head transcriptome and analysis of geneexpression involved in caste differentiation and aggression in Odontotermes formosanus(Shiraki). PloS One,2012,7: e50383.
    [83]Sun L, Wang C, Huang L, et al. Transcriptome analysis of male and female Sebastiscusmarmoratus. PloS One,2012,7: e50676.
    [84]Wang ZL, Liu TT, Huang ZY, et al. Transcriptome analysis of the Asian honey bee Apiscerana. PloS One,2012,7: e47954.
    [85]Dubois A, Carrere S, Raymond O, et al. Transcriptome database resource and geneexpression atlas for the rose. BMC Genomics,2012,13:638.
    [86]邓务国.物种遗传多态性研究方法的发展.生物学通报,1994,29:7~9.
    [87]张蓉,刁其玉.遗传标记的发展及其在家畜遗传育种中的应用.现代畜牧兽医,2009,9:52~55.
    [88]杨宝峰.水稻种子贮藏蛋白的多态性研究:[硕士学位论文].浙江:浙江师范大学,2005.
    [89]Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecularmarkers and their use in animal genetics. Gent Sel Evol,2002,34:275~305.
    [90]Khlestkina EK, Salina EA. SNP markers: methods of analysis, ways of development, andcomparison on an example of common wheat. Genetics,2006,42:585~594.
    [91]Bostein, White RL, Skolnick M, et al. Construction of a genetic linkage map in man usingrestriction fragment length polymorphisms. Am J Hum Genet,1980,32:314~331.
    [92]Zabeau M, Vos P. Selective restriction fragment amplification, a general method for DNAfingerprints. European Patent Application Pub,1993.
    [93]Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. NucleicAcids Res,1995,23:4407~4414.
    [94]Paran I, Mchielmore RW. Development of reliable PCR based markers linked to downymildew resistance genes in lettuce. Theor Appl Genet,1993,85:985~993.
    [95]Chen SL, Li J, Deng SP, et al. Isolation of female-sepcific AFLP markers and molecularidentification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). MarBiotechnol,2007,9:273~280.
    [96]Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP) a new marker systembased on a simple PCR reaction: its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103:455~461.
    [97]李巧燕,林瑞庆,朱兴全. SRAP分子标记及其应用概述.热带医学杂志,2006,6:467~469.
    [98]Edwards A, Civitello A, Hammond HA, et al. DNA typing and genetic mapping withtrimeric and tetrameric tandem repeats. Am J Hum Genet,1991,49:746~756.
    [99]Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176~183.
    [100] Lander ES. The new genomics: global views of biology. Science,1996,274:536~539.
    [101] Halush MK, Fan JB, Bentley K, et al. Patterns of single nucleotide polymorphisms incandidate genes for blood-pressure homeostasis. Nat Genet,1999,22:239~247.
    [102] Brumfield RT, Beerli P, Nickerson DA, et al. The utility of single nucleotidepolymorphisms in inferences of population history. Trends in Ecol Evol,2003,18:249~256.
    [103] Jaccoud D, Peng K, Feinstein D, et al. Diversity arrays: a solid state technology forsequence information independent genotyping. Nucleic Acids Res,2001,29: E25.
    [104] Sun SJ, Gao W, Lin SQ, et al. Analysis of genetic diversity in Ganoderma populationwith a novel molecular marker SRAP. Appl Microbiol Biot,2006,72:537~543.
    [105] Jing R, Vershinin A, Grzebyta J, et al. The genetic diversity and evolution of field pea(Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP)marker analysis. BMC Evol Boil,2010,10:44.
    [106] Leroy G, Verrier E, Meriaux JC, et al. Genetic diversity of dog breeds: within-breeddiversity comparing genealogical and molecular data. Anim Genet,2009,40:323~332.
    [107] Leal AA, Mangolin CA, Do Amaral AT, et al. Efficiency of RAPD versus SSRmarkers for determining genetic diversity among popcorn lines. GMR,2010,9:9~18.
    [108] Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservationgenetics. Nature reviews. Genetics,2010,11:697~709.
    [109]张博,宋文平.微卫星多重PCR在水生动物亲权分析中的研究进展.海洋渔业,2012,34:350-356.
    [110] Wesmajervi MS, Westgaard JI, Delghand M. Evaluation of a novel pentaplexmicrosatellite marker system for paternity studies in Atlantic cod (Gadus morhua L.).Aquaculture,2006,37:1195~1201.
    [111] Estoup A, Gharbi K, SanCristoba M, et al. Parentage assignment using microsatellitesin turbot (Scophthalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatcherypopulations. Can J Fish Aquat Sci,1998,55:715~723.
    [112] Moriya S, Iwanami H, Okada K, et al. A practical method for apple cultivaridentification and parent-offspring using simple sequence repeat markers. Euphytica,2011,177:135~150.
    [113] Dang GS, Yang J, Golino DA, et al. A practical method for almond cultivaridentification and parental analysis using simple sequence repeat markers. Euphytica,2009,168:41~28.
    [114] Pollegioni P, Woeste K, Mugnozza GS, et al. Retrospective identification ofhybridogenic walnut plants by SSR fingerprinting and parentage analysis. Mol Breeding,2009,24:321~335.
    [115] Auton A, Fledel-Alon A, Pfeifer S, et al. A fine-scale chimpanzee genetic map frompopulation sequencing. Science,2012,336:193~198.
    [116] Hyten DL, Choi IY, Song Q, et al. A high density integrated genetic linkage map ofsoybean and the development of a1536universal soy linkage panel for quantitative traitlocus mapping. Crop Sci,2010,50:960~968.
    [117] Graham IA, Besser K, Blumer S, et al. The genetic map of Artemisia annua L.identifies loci affecting yield of the antimalarial drug artemisinin. Science,2010,327:328~331.
    [118] Varshney RK, Bertioli DJ, Moretzsohn MC, et al. The first SSR-based genetic linkagemap for cultivated groundnut (Arachis hypogaea L.). TAG,2009,118:729~739.
    [119] Li Q, Chen L, Kong L. A genetic linkage map of the sea cucumber, Apostichopusjaponicus (Selenka), based on AFLP and microsatellite markers. Anim Genet,2009,40:678~685.
    [120] Yan JJ, Jing J, Mu XY, et al. A genetic linkage map of the sea cucumber, Apostichopusjaponicus, based on microsatellites and SNPs. Aquaculture,2013,404~405:1~7.
    [121] Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative traits intoMendelian factors by using a complete linkage map of restriction fragment lengthpolymorphisms. Nature,1988,335:721~726.
    [122] Moen T, Baranski M, Sonesson AK, et al. Confirmation and fine-mapping of a majorQTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar):population-level associations between markers and trait. BMC Genomics,2009,10:368.
    [123] Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) andmapping of a locus associated with cold tolerance. Aquaculture,2004,238:165~172.
    [124] Baranski M, Loughnan S, Austin CM, et al. A microsatellite linkage map of theblacklip abalone, Haliotis rubra. Anim Genet,2006,37:563~570.
    [125] Sauvage C, Bierne N, Lapegue S, et al. Single nucleotide polymorphisms and theirrelationship to codon usage bias in the Pacific oyster Crassostrea gigas. Gene,2007,406:13~22.
    [126] Tanksley SD, Young ND, Paterson AH, et al. RFLP mapping in plant breeding: newtools for an old science. Biotechnology,1989,7:257~264.
    [127] Lee M. DNA makers in plant breeding programs. Adv Agron,1995,55:265~344.
    [128] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNAby gel electrophoresis as single-strand conformation polymorphisms. PNAS,1989,86:2766~2770.
    [129] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE)and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie VanLeeuwenhoek,1998,73:127~141.
    [130] Fasano T, Bocchi L, Pisciotta L, et al. Denaturing high-performance liquidchromatography in the detection of ABCA1gene mutations in familial HDL deficiency. JLipid Res,2005,46:817~22.
    [131] Ellis LA, Taylor CF, Taylor GR. A comparison of fluorescent SSCP and denaturingHPLC for high throughput mutation scanning. Hum Mutat.2000,15:556~564.
    [132] Gundry CN, Vandersteen JG, Reed GH, et al. Amplicon melting analysis with labeledprimers: a closed-tube method for differentiating homozygotes and heterozygotes. ClimChem,2003,49:396~406.
    [133] Wallace RB, Shaffer J, Murphy RF, et al. Hybridization of syntheticoligodeoxyribonucleotides to ΦX174DNA: the effect of single base pair mismatch. NucleicAcids Res,1979,6:3543~3557.
    [134] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. NatBiotechnol,1996,14:303~308.
    [135] Howell WM, Jobs M, Gyllensten U, et al. Dynamic allele-specific hybridization: a newmethod for scoring single nucleotide polymorphisms. Nat Biotechnol,1999,17:87~88.
    [136] Jobs M, Howell WM, Stromgvist L, et al. DASH-2: flexible, low-cost, andhigh-throughput SNP genotyping by dynamic allele specific hybridization membrane arrays.Genome Res,2003,13:916~924.
    [137] Livak KJ, Flood SJ, Marmaro J, et al. Oligonucleotides with fluorescent dyes atopposite ends provide a quenched probe system useful for detecting PCR product andnucleic acid hybridization. PCR Methods Appl,1995,4:357~362.
    [138] Liu WT, Mirzabekov AD, Stahl DA. Optimization of an oligonucleotide microchip formicrobia1identification studies: a non-equ1ibrium dissociation approach. Environ Micro,2001,3:619~629.
    [139] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique.Science,1988,241:1077~1080.
    [140] Bi W, Stambrook PJ. CCR: a rapid and simple approach for mutation detection.Nucleic Acids Res,1997,25:2949~2951.
    [141] Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rollingcircle amplification for the homogeneous, end-point detection of single nucleotidepolymorphisms. Nucleic Acids Res,2002,30: e60.
    [142] Qi X, Bakht S, Devos KM, et al. L-RCA (ligation-rolling circle amplification): ageneral method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic AcidsRes,2001,29: E116.
    [143] Lyamichev V, Mast AL, Hall JG, et al. Polymorphism identification and quantitativedetection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol,1999,17:292~296.
    [144] Olivier M. The Invader assay for SNP genotyping. Mutat Res,2005,573:103~110.
    [145] Sommer SS, Cassady JD, Sobell JL, et al. A novel method for detecting pointmutations or polymorphisms and its application to population screening for carriers ofphenylketonuria. Mayo Clin Proc,1989,64:1361~1372.
    [146] Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA:The amplification refractory mutation system (ARMS). Nucleic Acids Res,1989,17:2503~2516.
    [147] Liu Q, Thorland EC, Heit JA, et al. Overlapping PCR for bidirectional PCRamplification of specific alleles: a rapid one-tube method for simultaneously differentiatinghomozygotes and heterozygotes. Genome Res,1997,7:389~308.
    [148] Syvanen AC, Aaltosetala K, Harju L, et al. A primer-guided nucleotide incorporationassay in the genotyping of apolipoprotein E. Genomics,1990,8:684~692.
    [149] Pastinen T, Kurg A, Metspalu A, et al. Minisequencing: A specific tool for DNAanalysis and diagnostics on oligonucleotide arrays. Genome Res,1997,7:606~614.
    [150] Nyren P. Enzymatic method for continuous monitoring of DNA polymerase activity.Anal Biochem,1987,167:235~238.
    [151] Davey JW, Hohenlohe PA, Etter PD, et al. Genome-wide genetic marker discovery andgenotyping using next-generation sequencing. Nat Rev Genet,2011,12:499~510.
    [152] Miller MR, Dunham JP, Amores A, et al. Rapid and cost-effective polymorphismidentification and genotyping using restriction site associated DNA (RAD) markers.Genome Res,2007,17:240~248.
    [153] Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mappingusing sequenced RAD markers. PloS One,2008,3: e3376.
    [154] Smith CT, Seeb LW. Number of alleles as a predictor of the relative assignmentaccuracy of short tandem repeat (STR) and single-nucleotide-polymorphism (SNP) baselinesfor chum salmon. T Am Fish Soc,2007,137:751~776.
    [155] Bester AE, Roodt-Wilding R, Whitaker HA. Discovery and evaluation of singlenucleotide polymorphisms (SNPs) for Haliotis midae: a targeted EST approach. Anim Genet,2008,39:321~324.
    [156] Glover KA, Hansen MM, Lien S, et al. A comparison of SNP and STR loci fordelineating population structure and performing individual genetic assignment. BMCGenetics,2010,11:2.
    [157] Morin PA, Martien KK, Taylor BL. Assessing statistical power of SNPs for populationstructure and conservation studies. Mol Ecol Res,2009,9:66~73.
    [158] Chow S, Okamoto H, Uozumi, et al. Genetic stock structure of the swordfish (Xiphiasgladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar Biol,1997,127:359~367.
    [159] Itoi S, Nakaya M, Kaneko G, et al. Rapid identification of eels Anguilla japonica andAnguilla anguilla by polymerase chain reaction with single nucleotide polymorphism-basedspecific probes. Fish Sci,2005,71:1356~1364.
    [160] Smith CT, Seeb JE, Schwenke P. et al. Use of the5′-nuclease reaction for singlenucleotide polymorphism genotyping in Chinook salmon. T Am Fish Soc,2005,134:207~217.
    [161] Syvanen AC. Accessing genetic variation: genotyping single nucleotidepolymorphisms. Nat Rev Genet,2001,2:930~942.
    [162] Lindblad-Toh K, Winchester E, Daly MJ, et al. Large-scale discovery and genotypingof single-nucleotide polymorphisms in the mouse. Nat Genet,2000,24:381~386.
    [163] Hoskins RA, PhanA, Naeemuddin M, et al. Single nucleotide polymorphism markersfor genetic mapping in Drosophila melanogaster. Genome Res,2001,11:1100~1113.
    [164] Cho RJ, Mindrinos M, Richards DR, et al. Genome-wide mapping with biallelicmarkers in Arabidopsis thaliana. Nature,1999,23:203~207.
    [165] Stickney HL, Schmutz J, Woods LG, et al. Rapid mapping of zebrafish mutations withSNPs and oligonucleotide microarrays. Genome Res,2002,12:1929~1934.
    [166] Moen T, Hayes B, Baranski M, et al. A linkage map of the Atlantic salmon (Salmosalar) based on EST-derived SNP markers. BMC Genomics,2008,9:223.
    [167] Kucuktas H, Wang S, Li P, et al. Construction of genetic linkage maps andcomparative genome analysis of catfish using gene-associated markers. Genetics,2009,181:1649~1660.
    [168] Du ZQ, Ciobanu DC, Onteru SK, et al. A gene-based SNP linkage map for pacificwhite shrimp, Litopenaeus vannamei. Anim Genet,2010,41:286~294.
    [169] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacificoyster Crassostrea gigas. Genetics,2004,168:351~362.
    [170] Foley BR, Rose CG, Rundle DE, et al. A gene-based SNP resource and linkage mapfor the copepod Tigriopus californicus. BMC Genomics,2011,12:568.
    [171] Moen T, Delghandi M, Wesmajervi MS, et al. A SNP/microsatellite genetic linkagemap of the Atlantic cod (Gadus morhua). Anim Genet,2009,40:993~996.
    [172] Wang CM, Bai ZY, He XP, et al. A high-resolution linkage map for comparativegenome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics,2011,12:174.
    [173] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlanticsalmon (Salmo salar) reveals extended chromosome homeologies and striking differences insex~specific recombination patterns. BMC Genomics,2011,12:615.
    [174] O'Malley KG, Sakamoto T, Danzmann RG, et al. Quantitative trait loci for spawningdate and body weight in rainbow trout: testing for conserved effects across ancestrallyduplicated chromosomes. J Hered,2003,94:273~284.
    [175] Nichols KM, Wheeler PA, Thorgaard GH. Quantative trait loci analyses for meristictraits in Oncorbyncbus mykiss. Environ Biol Fish,2004,69:317~331.
    [176] Yvan LB, Dechamp N, Krieg F, et al. Detection of QTL with effects onosmoregulation capacities in the rainbow trout (Oncorhynchus mykiss). BMC Genetics,2011,12:46.
    [177] Li YT, Dierens L, Byrne K, et al. QTL deteciton of production traits for the Kurumaprawn Penaeus japonicus (Bate) using AFLP markers. Aquaculture,2006,258:198~210.
    [178] Vasem gi A, Gross R, Palm D, et al. Discovery and application of insertion-deletion(INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon.BMC Genomics,2010,11:156.
    [179] Boulding EG, Culling M, Glebe B, et al. Conservation genomics of Atlantic salmon:SNPs associated with QTLs for adaptive traits in parr from four trans-Atlantic backcrosses.Heredity,2008,101:381~391.
    [180] Houston RD, Davey JW, Bishop SC, et al. Characterisation of QTL-linked andgenome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon.BMC Genomics,2012,13:244.
    [181] Rafalski JA. Novel genetic mapping tools in plants: SNPs and LD-based approaches.Plant Sci,2002,162:329~333.
    [182] Tao WJ, Boulding EG. Associations between single nucleotide polymorphisms incandidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity,2003,91:60~69.
    [183] Rengmark A, Lingaas F. Genomic structure of the Nile tilapia (Oreochromis niloticus)transferring gene and a haplotype associated with saltwater tolerance. Aquaculture,2007,272:146~155.
    [184] Prudence M, Moal J, Boudry P, et al. An analyses gene polymorphism is associatedwith growth differences in the Pacific cupped oyster Crassostrea gigas. Anim Genet,2006,37:348~351.
    [185] He F, Wen HS, Dong SL, et al. Identification of estrogen receptor alpha genepolymorphisms by SSCP and its effect on reproductive traits in Japanese flounder(Paralichthys olivaceus). Comp Biochem Physiol Part B Biochem Mol Biol,2008,150:278~283.
    [186] Li R, Li Q, Kong L. Characterizaiton of expressed sequence tag-derivedsingle-nucleotide polymorphisms in the bay scallop Argopecten irradians. Fish Sci,2009,75:1389~1400.
    [187] Bao YB, Li L, Zhang GF. Polymorphism of the superoxide dismutase gene family inthe bay scallop (Argopecten irradians). Dev Comp Immunol,2010,34:553~561.
    [188] Li H, Zhu D, Gao X, et al. Mining single nucleotide polymorphisms from EST data ofhard clam Meretrix meretrix. Conserv Genet Resour,2010,2:69~72.
    [189]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001:1~105.
    [190]谭远德,万春玲.不同作图群体对显隐性分子标记位点的作图效率.生命科学研究,2000,4:202~210.
    [191] Haanstra JPW, Wye C, Verbake H, et al. An integrated high-density RFLP-AFLP mapof tomato based on two Lycopersicon esculentum x L.pennellii F2populations. Theor ApplGenet,1999,99:254~271.
    [192] Silver LM. Use gentcties: concepts and application. Newyork: OxfordUnivesity Press,1995.
    [193]吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26:129~132.
    [194]李照海,覃红,张洪.遗传学中的统计方法.北京:科学技术出版社,2006.
    [195] Cheema J. Dicks J. Computational approaches and software tools for genetic linkagemap estimation in plants. Brief Bioinform,2009,10:595~608.
    [196]王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版X增刊).2001,9:106~113.
    [197] Kocher TD, Lee WJ, Sobolewska H, et al. A genetic linkage map of a cichlid fish, thetilapia (Oreochromis niloticus). Genetics,1998,148:1225~1232.
    [198] Agresti JJ, Seki S, Cnaan A, et al. Breeding new strains of tilapia: development of anartificial center of origin and linkage map based on AFLP and microsatellite loci.Aquaculture,2000,185:43~56.
    [199] Lee BY, Lee WJ, Streelman JT, et al. A second-generation genetic linkage map oftilapia (Oreochromis spp.). Genetics,2005,170:237~244.
    [200] Shimoda N, Knapik EW, Ziniti J, et al. Zebrafish genetic map with2000microsatellitemarkers. Genomics,1999,58:219~232.
    [201] Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of medaka, Oryziaslatipes: comparative genomics and genome evolution. Genetics,2000,154:1773~1784.
    [202] Sakamoto T, Danzmann RG, Gharbi K, et al. A microsatellite linkage map of rainbowtrout (Oncorhynchus mykiss) characterized by large sex-specific differences inrecombination rates. Genetics,2000,155:1331~1345.
    [203] Guyomard R, Mauger S, Tabet-Canale K, et al. A type I and type II microsatellitelinkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of allchromosome arms. BMC Genomics,2006,7:302.
    [204] Rexroad CE, Coleman RL, Martin AM, et al. Thirty-five polymorphic microsatellitemarkers for rainbow trout (Oncorhynchus mykiss). Anim Genet,2001,32:317~319.
    [205] Palti Y, Genet C, Gao G, et al. A second generation integrated map of the rainbowtrout (Oncorhynchus mykiss) genome: analysis of conserved synteny with model fishgenomes. Mar Biotechnol,2012,14:343~357.
    [206] Palti Y, Genet C, Luo MC, et al. A first generation integrated map of the rainbow troutgenome. BMC Genomics,2011,12:180.
    [207] Guyomard R, Boussaha M, Krieg F, et al. A synthetic rainbow trout linkage mapprovides new insights into the salmonid whole genome duplication and the conservation ofsynteny among teleosts. BMC Genetics,2012,13:15.
    [208] Waldbieser GC, Bosworth BG, Nonneman DJ, et al. A microsatellite-based geneticlinkage map for channel catfish, Ictalurus punctatus. Genetics,2001,158:727~734.
    [209] Liu Z, Karsi A, Li P, et al. An AFLP-based genetic linkage map of channel catfish(Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics,2003,165:687~694.
    [210] Coimbra MRM, Kobayashi K, Koretsugu S, et al. A genetic linkage map of theJapanese flounder, Paralichthys olivaceus. Aquaculture,2003,220:203~218.
    [211] Casta o-Sánchez C, Fuji K, Ozaki A, et al. A second generation genetic linkage mapof Japanese flounder (Paralichthys olivaceus). BMC Genomics,2010,11:554.
    [212] Walter RB, Pains JD, Russell JE, et al. A microsatellite genetic linkage map forXiphophorus. Genetics,2004,168:363~372.
    [213] Kazianis S, Nairn RS, Walter RB, et al. The genetic map of Xiphophorus fishesrepresented by24multipoint linkage groups. Zebrafish,2004,1:287~304.
    [214] Moen T, Hoyheim B, Munck H, et al. A linkage map of Atlantic salmon (Salmo salar)reveals an uncommonly large difference in recombination rate between the sexes. AnimGenet,2004,35:81~92.
    [215] Zhang L, Yang G, Guo S, et al. Construction of a genetic linkage map for silver carp(Hypophthalmichthys molitrix). Anim Genet,2010,41:523~530.
    [216] Cheng L, Liu L, Yu X, et al. A linkage map of common carp (Cyprinus carpio) basedon AFLP and microsatellite markers. Anim Genet,2010,41:191~198.
    [217] Zheng X, Kuang Y, Zhang X, et al. A genetic linkage map and comparative genomeanalysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Moleculargenetics and genomics. MGG,2011,286:261~277.
    [218] Poompuang S, Na-Nakorn U. A preliminary genetic map of walking catfish (Clariasmacrocephalus). Aquaculture,2004,232:195~203.
    [219] Woram RA, McGowan C, Stout JA, et al. A genetic linkage map for Arctic char(Salvelinus alpinus): evidence for higher recombination rates and segregation distortion inhybrid versus pure strain mapping parents. Genome,2004,47:304~315.
    [220] Kai W, Kikuchi K, Tohari S, et al. Integration of the genetic map and genomeassembly of fugu facilitates insights into distinct features of genome evolution in teleostsand mammals. Genome Biol Evol,2011,3:424~442.
    [221] Chistiakov DA, Hellemans B, Haley CS, et al. A microsatellite linkage map of theEuropean sea bass Dicentrarchus labrax L. Genetics,2005,170:1821~1826.
    [222] Chistiakov DA, Tsigenopouos CS, Lagnel J, et al. A combined AFLP andmicrosatellite linkage map and pilot comparative genomic analysis of European sea bassDicentrarchus labrax L. Anim Genet,2008,39:623~634.
    [223] Ohara E, Nishimura T, Nagakura Y, et al. Genetic linkage maps of two yellowtails(Seriola quinqueradiata and Seriola lalandi). Aquaculture,2005,244:41~48.
    [224] Sanetra M, Henning F, Fukamachi S, et al. A microsatellite-based genetic linkage mapof the cichlid fish, Astatotilapia burtoni (Teleostei): a comparison of genomic architecturesamong rapidly speciating cichlids. Genetics,2009,182:387~397.
    [225] Liu S, Rexroad CE3rd, Couch CR, et al. A microsatellite linkage map of striped bass(Morone saxatilis) reveals conserved synteny with the three-spined stickleback(Gasterosteus aculeatus). Mar Biotechnol,2012,14:237~244.
    [226] Shen X, Yang G, Liu Y, et al. Construction of genetic linkage maps of guppy (Poeciliareticulata) based on AFLP and microsatellite DNA markers. Aquaculture,2007,271:178~187.
    [227] Tripathi N, Hoffmann M, Willing EM, et al. Genetic linkage map of the guppy,Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. ProcBiol Sci,2009,276:2195~2208.
    [228] Morishima K, Nakayama I, Arai K. Genetic linkage map of the loach Misgurnusanguillicaudatus (Teleostei: Cobitidae). Genetics,2008,132:227~241.
    [229] Liao X, Ma HY, Xu GB, et al. Construction of a genetic linkage map and mapping of afemale-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). MarBiotechnol,2009,11:699~709.
    [230] Hubert S, Higgins B, Borza T, et al. Development of a SNP resource and a geneticlinkage map for Atlantic cod (Gadus morhua). BMC Genomics,2010,11:191.
    [231] Xia JH, Liu F, Zhu ZY, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics,2010,11:135~150.
    [232] Ma H, Chen S, Yang J, et al. Genetic linkage maps of barfin flounder (Verasper moseri)and spotted halibut (Verasper variegatus) based on AFLP and microsatellite markers. MolBiol Rep,2011,38:4749~4764.
    [233] Portnoy DS, Renshaw MA, Hollenbeck CM, et al. A genetic linkage map of red drum,Sciaenops ocellatus. Anim Genet,2010,41:630~641.
    [234] Nomura K, Ozaki A, Morishima K, et al. A genetic linkage map of the Japanese eel(Anguilla japonica) based on AFLP and microsatellite markers. Aquaculture,2011,310:329~342.
    [235] Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeusmonodon with amplified fragment length polymorphism. Aquaculture,2002,204:297~309.
    [236] Li Y, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeusjaponicus using AFLP markers. Aquaculture,2003,219:143~156.
    [237] Pérez F, Erazo C, Zhinaula M, et al. A sex-specific linkage map of the white shrimpPenaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture,2004,242:105~118.
    [238] Zhang L, Yang C, Zhang Y, et al. A genetic linkage map of Pacific white shrimp(Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates.Genetica,2007,131:37~49.
    [239] Li Z, Li J, Wang Q, et al. AFLP-based genetic linkage map of marine shrimp Penaeus(Fenneropenaeus) chinensis. Aquaculture,2006,261:463~472.
    [240] Tian Y, Kong J, Wang WJ. Construction of AFLP-based genetic linkage maps for theChinese shrimp Fenneropaeneus chinensis. Chinese Sci Bull,2008,53:1205~1216.
    [241] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin.Biol Bull,2003,204:327~338.
    [242] Li L, Guo X. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigasThunberg. Mar Biotechnol,2004,6:26~36.
    [243] Guo X, Li Q, Wang QZ, et al. Genetic mapping and QTL analysis of growth-relatedtraits in the Pacific oyster. Mar Biotechnol,2012,14:218~226.
    [244] Wang L, Song L, Chang Y, et al. A preliminary genetic map of Zhikong scallop(Chlamys farreri Jones et Preston1904). Aquac Res,2005,36:643~653.
    [245] Li L, Xiang J, Liu X, et al. Construction of AFLP-based genetic linkage map forZhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers.Aquaculture,2005,245:63~73.
    [246] Zhan AB, Hu JJ, Hu XL, et al. Construction of microsatellite-based linkage maps andidentification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri).Anim Genet,2009,40:821~831.
    [247] Xu K, Li Q, Kong L, et al. A first-generation genetic map of the Japanese scallopPatinopecten yessoensis-based AFLP and microsatellite markers. Aquac Res,2009,40:35~43.
    [248] Liu WD, Bao XB, Song WT, et al. The construction of a preliminary genetic linkagemap in the Japanese scallop Mizuhopecten yessoensis. Yi Chuan,2009,31:629~637.
    [249] Yuan T, He M, Huang L, et al. Genetic linkage maps of the noble scallop Chlamysnobilis reeve based on AFLP and microsatellite markers. J Shellfish Res,2010,29:55~62.
    [250] Shi Y, Guo X, Gu Z, et al. Genetic linkage map of the pearl oyster, Pinctada martensii(Dunker). Aquac Res,2009,41:35~44.
    [251] Qin Y, Liu X, Zhang H, et al. Genetic mapping of size-related quantitative trait loci(QTL) in the bay scallop (Argopecten irradians) using AFLP and microsatellite markers.Aauqculture,2007,272:281~290.
    [252] Liu XD, Liu X, Guo X, et al. A preliminary genetic linkage map of the Pacific abaloneHaliotis discus hannai Ino. Mar Biotechnol,2006,8:386~397.
    [253] Sekino M, Hara M. Linkage maps for the Pacific Abalone (Genus Haliotis) based onmicrosatellite DNA markers. Genetics,2007,175:945~958.
    [254] Shi YH, Guo XM. Gu ZF, et al. Preliminary genetic linkage map of the abaloneHaliotis diversicolor Reeve. CJOL,2010,28:549~557.
    [255] Zhan X, Fan F, You W, et al. Construction of an integrated map of Haliotisdiversicolor using microsatellite markers. Mar Biotechnol,2012,14:79~86.
    [256]陈丽梅.刺参(Apostichopus japonicus)的遗传学研究:[博士学位论文].青岛:中国海洋大学,2008.
    [257]庞震国.刺参遗传连锁图谱构建及卵母细胞成熟过程研究:[博士学位论文].青岛:中国科学院研究生院海洋研究所,2009.
    [258]卢超.仿刺参AFLP遗传连锁图谱的构建:[硕士学位论文].青岛:中国海洋大学,2010.
    [259]彭薇.仿刺参(Apostichopus japonicus)微卫星标记的开发与应用:[博士学位论文].青岛:中国海洋大学,2011.
    [260] Gregory TR. Genome size evolution in animals. In: The evolution of the genome.Edited by: Gregory TR, Burlington MA. Elsevier Academic Press,2005.
    [261] Gregory TR, Nico JA, Tamm H, et al. Eukaryotic genome size databases. NucleicAcids Res,2007,35:332~338.
    [262] Chen, JX. Overview of sea cucumber farming and sea ranching practices in China.SPC Beche-de-Mer information bulletin,2003,18:18~23.
    [263]程洁,张玲玲,黄晓婷,等.栉孔扇贝Fosmid文库的构建及基因组结构特征分析.中国海洋大学学报,2008,38:78~88.
    [264] Zhang LL, Bao ZM, Cheng J, et al. Fosmid library construction and initial analysis ofend sequences in Zhikong scallop (Chlamys farreri). Mar Biotech,2007,9:606~612.
    [265] Davidson JN, Leslie I, Smellie RM, et al. Chemical changes in the developing chickembryo related to the deoxyribonucleic acid content of the nucleus. Biochem J,1950,2:40.
    [266] Tiersch TR, Simco BA, Davis KB, et al. Stability of genome size among stocks of thechannel catfish. Aquaculture, Amsterdam,1990,87:15~22.
    [267] Finston TL, Hebert PDN, Foottit RB: Genome size variation in aphids. Insect BiochemMolec,1995,25:189~196.
    [268] Ferrari JA, Rai KS. Phenotypic correlates of genome size variation in Aedes albopictus.Evolution,1989,43:895~899.
    [269] Gregory TR, Hebert PDN, Kolasa J. Evolutionary implications of the relationshipbetween genome size and body size in flatworms and copepods. Heredity,2000,84:201~208.
    [270] Ellegren H. The avian genome uncovered. Trends Ecol Evol,2005,20:180~186.
    [271] Vandenbussche RA, Longmire JL, Baker RJ. How bats achieve a small C-value-frequency of repetitive DNA in Macrotus. Mamm Genome,1995,6:521~525.
    [272] Gregory TR. Genome size and developmental complexity. Genetics,2002,115:131~146.
    [273] Mank J E, Avise JC. Cladogenetic correlates of genomic expansions in the recentevolution of actinopterygiian fishes. Proc Biol Sci,2006,273:33~38.
    [274] Colombem D. The male chromosomes of five species of echinoderms together withsome technical hits. Caryologia,1986,39:347~352.
    [275] Okumura SI, Kimura K, Sakai M, et al. Chromosome number and telomere sequencemapping of the Japanese sea cucumber Apostichopus japonicus. Fish Sci,2009,75:249~251.
    [276] Pawson DL. Phylum Echinodermata. Zootaxa,2007,1668:749~764.
    [277] Lange C, Hemmrich G, Klostermeier UC, et al. Defining the origins of the NOD-likereceptor system at the base of animal evolution. Mol Biol Evol,2011,28:1687~1702.
    [278] Kawashima T, Kawashima S, Tanaka C, et al. Domain shuffling and the evolution ofvertebrates. Genome Res,2009,19:1393~1403.
    [279] Smith LC. Diversification of innate immune genes: lessons from the purple sea urchin.Dis Model Mech,2010,3:274~279.
    [280] Buckley KM, Terwilliger DP, Smith LC. Sequence variations in185/333messagesfrom the purple sea urchin Suggest Posttranscriptional modifications to increase immunediversity. J Immunol,2008,181:8585~8594.
    [281] Freeman RM Jr, Wu M, Cordonnier-pratt MM, et al. cDNA sequences for transcriptionfactors and signaling proteins of the Hemichordate Saccoglossus kowalevskii: efficacy of theexpressed sequence tag (EST) approach for evolutionary and developmental studies of a neworganism. Biol Bull,2008,214:284~302.
    [282] Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesisprovides insights into evolution, plasticity and morphogenesis. Development,2009,136:11~21.
    [283] Zhan AB, Bao ZM, Lu W, et al. Development and characterization of45novelmicrosatellite markers for sea cucumber (Apostichopus japonicus). Mol Ecol Notes,2007,7:1345~1348.
    [284] Sun WJ, Li Q, Kong LF. Characterization of thirteen single nucleotide polymorphismmarkers in the sea cucumber (Apostichopus japonicus). Conserv Genet Resour,2010,2:141~144.
    [285] Zhou ZC, Sun DP, Yang AF, et al. Molecular characterization and expression analysisof a complement component3in the sea cucumber (Apostichopus japonicus). Fish ShellfishImmunol,2011,31:540~547.
    [286] Yang AF, Zhou ZC, Dong Y, et al. Expression of immune-related genes in embryosand larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol,2010,29:839~845.
    [287] Zheng FX, Sun XQ, Fang BH, et al. Comparative analysis of genes expressed inregenerating intestine and non-eviscerated intestine of Apostichopus japonicus Selenka(Aspidochirotida: Stichopodidae) and cloning of ependymin gene. Hydrobiologia,2006,571:109~122.
    [288] Yang AF, Zhou ZC, He CB, et al. Analysis of expressed sequence tags from body wall,intestine and respiratory tree of sea cucumber (Apostichopus japonicus). Aquaculture,2009,296:193~199.
    [289] Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterization foranonmodel organism using454pyrosequencing. Mol Ecol,2008,17:1636~1647.
    [290] Meyer E, Aglyamova GV, Wang S, et al. Sequencing and de novo analysis of a corallarval transcriptome using454GSFlx. BMC Genomics,2009,10:219.
    [291] O'Neil ST, Dzurisin JD, Czrmichael RD, et al. Population-level transcriptomesequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMCGenomics,2010,11:310.
    [292] Coppe A, Pujolar JM, Maes GE, et al. Sequencing, de novo annotation and analysis ofthe first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study ofthe critically endangered european eel. BMC Genomics,2010,11:635.
    [293] Milan M, Coppe A, Reinhardt R, et al. Transcriptome sequencing and microarraydevelopment for the Manila clam, Ruditapes philippinarum: genomic tools forenvironmental monitoring. BMC Genomics,2011,12:234.
    [294] Wang FY, Yang HS, Gabr HR, et al. Immune condition of Apostichopus japonicusduring aestivation. Aquaculture,2008,285:238~243.
    [295] Kukekova AV, Johnson JL, Teiling C, et al. Sequence comparison of prefrontalcortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes). BMCGenomics,2011,12:482.
    [296] Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plantgenomics. IJPG,2008,2008:619832.
    [297] Gotz S, Garcia~Gomez JM, Terol J, et al. High-throughput functional annotation anddata mining with the Blast2GO suite. Nucleic Acids Res,2008,36:3420~3435.
    [298] Myhre S, Tveit H, Mollestad T, et al. Additional gene ontology structure for improvedbiological reasoning. Bioinformatics,2006,22:2020~2027.
    [299] Harris MA, Clark J, Ireland A, et al. The Gene Ontology (GO) database andinformatics resource. Nucleic Acids Res,2004,32: D258~261.
    [300] Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation andpathway reconstruction server. Nucleic Acids Res,2007,35: W182~185.
    [301] Romualdi C, Bortoluzzi S, D'alessi F, et al. IDEG6: a web tool for detection ofdifferentially expressed genes in multiple tag sampling experiments. Physiol Genomics,2003,12:159~162.
    [302] Audic S, Claverie JM. The significance of digital gene expression profiles. GenomeRes,1997,7:986~995.
    [303] Storey JD. A direct approach to false discovery rates. J R Stat Soc B,2002,64:479~498.
    [304] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtimequantitative PCR and the2-DDCt method. Methods,2001,25:402~408.
    [305] Kofler R, Schl tterer C, Lelley T. SciRoKo: a new tool for whole genomemicrosatellite search and investigation. Bioinformatics,2007,23:1683~1685.
    [306] Vera JC, Wheat CW, Fescemyer HW, et al. Rapid transcriptome characterization for anonmodel organism using454pyrosequencing. Mol Ecol,2008,17:1636~1647.
    [307] Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, et al. Transcriptome sequencing andannotation of the microalgae Dunaliella tertiolecta: pathway description and gene discoveryfor production of next-generation biofuels. BMC Genomics,2011,12:148.
    [308] Kumar S, Blaxter ML. Comparing de novo assemblers for454transcriptome data.BMC Genomics,2010,11:571.
    [309] Greub G, Kebbi-Beghdadi C, Bertelli C, et al. High throughput sequencing andproteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.PloS One,2009,4: e8423.
    [310] Wilkes TE, Darby AC, Choi JH, et al. The draft genome sequence of Arsenophonusnasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated withvirulence and symbiosis. Insect Mol Biol,2010,19Suppl1:59~73.
    [311] Ewen-Campen B, Shaner N, Panfilio KA, et al. The maternal and early embryonictranscriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics,2011,12:61.
    [312] Nowack EC, Vogel H, Groth M, et al. Endosymbiotic gene transfer and transcriptionalregulation of transferred genes in Paulinella chromatophora. MBE,2011,28:407~422.
    [313] Tyska MJ, Warshaw DM. The myosin power stroke. Cell Motil Cytoskel,2002,51:1~15.
    [314] Buss F, Luzio JP, Kendrick-Jones J, et al. An actin motor for membrane traffic and cellmigration. Traffic,2002,3:851~858.
    [315] Brown J, Bridgman PC. The role of myosinII in axonal outgrowth. J HistochemCytochem,2003,51:421~428.
    [316] Brooks JM, Wessel GM. Selective transport and packaging of the major yolk protein inthe sea urchin. Dev Biol,2003,261:353~370.
    [317] Unuma T, Konishi K, Kiyomoto M, et al. The major yolk protein is synthesized in thedigestive tract and secreted into the body cavities in sea urchin larvae. Mol Reprod Dev.2009,76:142~50.
    [318] Bourc'his D, Voinnet O. A small-RNA perspective on gametogenesis, fertilization, andearly zygotic development. Science,2010,330:617~622.
    [319] Siomi MC, Sato K, Pezic D, et al. PIWI-interacting small RNAs: the vanguard ofgenome defence. Nature reviews. Mol Cell Biol,2011,12:246~258.
    [320] Houwing S, Kamminga LM, Berezikov E, et al. A role for Piwi and piRNAs in germcell maintenance and transposon silencing in Zebrafish. Cell,2007,129:69~82.
    [321] Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs:progress and prospect. Annu Rev Cell Dev Bi,2009,25:355~376.
    [322] Pinder AW, Storey KB, Ultsch GR. Estivation and hibernation. In: Feder ME, BurggrenWW (Eds.), Environmental Biology of the Amphibia. University of Chicago Press, Chicago,pp.1992,250~274.
    [323] Cowan KJ, Storey KB. Tyrosine kinases and phosphatases in the aestivating spadefoottoad. Cell Physiol Biochem,2001,11:161~172.
    [324] Hudson NJ, Harper GS, Allingham PG, et al. Skeletal muscle extracellular matrixremodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata.Comp Biochem Physiol A,2007,146:440~445.
    [325] Storey KB, Storey JM. Metabolic regulation and gene expression during aestivation. In:Aestivation: Molecular and Physiological Aspects. Edited by: Navas CA, Carvalho JE.Molecular and Subcellular Biology Press,2010.
    [326] Storey KB, Storey JM. Facultative metabolic rate depression: molecular regulation andbiochemical adaptation in anaerobiosis, hibernation, and estivation. Q Rev Biol,1990,65:145~174.
    [327] Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in thevessel wall. Arterioscler Thromb Vasc Biolo,2004,24:1367~1373.
    [328] Wassmann S, Wassmann K, Nickenig G. Modulation of oxidant and antioxidantenzyme expression and function in vascular cells. Hypertension,2004,44:381~386.
    [329] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins andmolecular chaperones in the abiotic stress response. Trends Plant Sci,2004,9:244~252.
    [330] Robert J. Evolution of heat shock protein and immunity. DCI,2003,27:449~464.
    [331] Abdelkrim J, Robertson B, Stanton JA, et al. Fast, cost-effective development ofspecies~specific microsatellite markers by genomic sequencing. Bio Techniques,2009,46:185~192.
    [332] Santana Q, Coetzee M, Steenkamp E, et al. Microsatellite discovery by deepsequencing of enriched genomic libraries. BioTechniques,2009,46:217~223.
    [333] Schmid J, Muller-Hagen D, Bekel T, et al. Transcriptome sequencing and comparativetranscriptome analysis of the scleroglucan producer Sclerotium rolfsii. BMC Genomics,2010,11:329.
    [334] Barbazuk WB, Emrich SJ, Chen HD, et al. SNP discovery via454transcriptomesequencing. Plant J,2007,51:910~918.
    [335] Singer T, Fan Y, Chang HS, et al. A high-resolution map of arabidopsis recombinantinbred lines by whole-genome exon array hybridization. PLoS Genetics,2006,2: e144.
    [336] Groenen MA, Wahlberg P, Foglio M, et al. A high-density SNP-based linkage map ofthe chicken genome reveals sequence features correlated with recombination rate. GenomeRes,2009,19:510~519.
    [337] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.Nat Rev Genet,2009,10:57~63.
    [338] Isobe SN, Hisano H, Sato S, et al. Comparative genetic mapping and discovery oflinkage disequilibrium across linkage groups in white clover (Trifolium repens L.). G3,2012,2:607~617.
    [339] Kai W, Kukuchi K, Fujita M, et al. A genetic linkage map for the tiger Pufferfish,Takifugu rubripes. Genetics,2005,171:227~238.
    [340] Ren Y, Zhao H, Kou Q, et al. A high resolution genetic map anchoring scaffolds of thesequenced watermelon genome. PloS One,2012,7: e29453.
    [341] Wang S, Meyer E, Mckay JK, et al.2b-RAD: a simple and flexible method forgenome-wide genotyping. Nat Methods,2012,9:808~810.
    [342] Nielsen R, Paul JS, Albrechtsen A, et al. Genotype and SNP calling fromnext-generation sequencing data. Nature reviews. Genetics,2011,12:443~451.
    [343] Li R, Zhu H, Ruan J, et al. De novo assembly of human genomes with massivelyparallel short read sequencing. Genome Res,2010,20:265~272.
    [344] Dou JZ, Zhao X, Fu XT, et al. Reference-free SNP calling: improved accuracy bypreventing incorrect calls from repetitive genomic regions. Biol Direct,2012,7:17.
    [345] Catchen JM, Amores A, Hohenlohe P, et al. Stacks: building and genotyping Loci denovo from short-read sequences. G3,2011,1:171~182.
    [346] Reyes-Bonilla H, Herrero-Pérezrul MD. Population parameters of an exploitedpopulation of Isostichopus fuscus (Holothuroidea) in the southern gulf of California, Mexico.Fish Res,2003,59:423~430.
    [347]常亚青,隋锡林,李俊.刺参增养殖业现状、存在问题与展望.水产科学,2006,25:198~201.
    [348]许伟定.国外海参渔业及增养殖概况.大连水产学院学报,2009,24:172~174.
    [349] Hohenlohe PA, Bassham S, Etter PD, et al. Population genomics of parallel adaptationin threespine stickleback using sequenced RAD tags. PLoS Genetics,2010,6: e1000862.
    [350] Stam P. Construction of integrated genetic linkage maps by means of a new computerpackage: Joinmap. Plant J,1993,3:739~744.
    [351] Grattapaglia D, Sederof R. Genetic linkage maps of Eucalyptus grandis and Eucalyptuurophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics,1994,137:1121~1137.
    [352] Voorrips RE. MapChart: Software for the graphical presentation of linkage groups andQTLs. J Hered,2002,93:77~78.
    [353] Postlethwait JH, Johnson SL, Midson CN, et al. A genetic linkage map for thezebrafish. Science,1994,264:699~703.
    [354] Chakravarti A, Lasher LK, Reefer JE. A maximum likelihood method for estimatinggenome length using genetic linkage data. Genetics,1991,128:175~182.
    [355] Li H, Ribaut JM, Li ZL, et al. Inclusive composite interval mapping (ICIM) for digenicepistasis of quantitative traits in biparental populations. Theor Appl Genet,2008,116:243~260.
    [356] Jenczewski E, Gherardi M, Bonnin I, et al. Insight on segregation distortion in twointraspecific crosses between species of Medicago (Leguminosae). Theor Appl Genet,1997,94:682~691.
    [357] Ky CL, Barre P, Lorieux M, et al. Interspecific genetic linkage map, segregationdistortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet,2000,101:669~676.
    [358] Dobrowolski MP, Tommerup IC, Blakeman HD, et al. Non-Mendelian inheritancerevealed in a genetic analysis of sexual progeny of Phytophthora cinnamomi withmicrosatellite markers. FGB,2002,35:197~212.
    [359] de Meeus T, Humair P, Grunau C, et al. Non-Mendelian transmissionof alleles atmicrosatellite loci:an example in Ixodes ricinus, the vector of Lyme disease. Int J Parasitol,2004,34:943~950.
    [360] Launey S, Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas.Genetics,2001,159:255~265.
    [361] Hedgecock D, Li G, Hubert S, et al. Widespread null alleles and poor cross-speciesamplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. JShellfish Res,2004,23:379~385.
    [362] Reece KS, Ribeiro WL, Gaffney PM, et al. Microsatellite marker development andanalysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles andnon-Mendelian segregation ratios. J Hered,2004,95:346~352.
    [363]李宏俊.海湾扇贝微卫星标记的开发及遗传连锁图谱的构建:[博士学位论文].青岛:中国科学院研究生院海洋研究所,2009.
    [364] Wang S, Bao ZM, Pan J, et al. AFLP linkage map of an intraspecific cross in Chlamysfarreri. J Shellfish Res,2004,23:491~499.
    [365]战爱斌.博士学位论文栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用:[博士学位论文].青岛:中国海洋大学,2004.
    [366]李莉.长牡蛎的分子标记筛选和遗传图谱构建.[博士学位论文].青岛:中国科学院研究生院海洋研究所,2003.
    [367] Zhan AB, Bao ZM, Hui M, et al. Inheritance pattern of EST-SSRs in self-fertilizedlarvae of the bay scallop Argopecten irradians. Ann Zool Fennici,2007,44:259~268.
    [368] Hurst G, Schilthuizen M. Selfish genetic elements and speciation. Heredity,1998,80:2~8.
    [369] Pardo-Manuel V, Sapienza C. Nonrandom segregation during meiosis: the unfairnessof females. Mamm Genome,1998,12:331~339.
    [370] Tan YD, Wan C, Zhu Y, et al. An amplified fragment length polymorphism map of thesilkworm. Genetics,2001,157:1277~1284.
    [371] Gaffney PM, Stott TM. Genetic heterozygosity and production traits in natural andhatching populations of bivalves. Aquaculture,1984,42:289~302.
    [372] Callen DF, Thompson AD, Shen Y, et al. Incidence and origin of "null" alleles in the(AC)nmicrosatellite markers. Am J Hum Genet,1993,52:922~927.
    [373] Young WP, Wheeler PA, Coryell VH, et al. A detailed linkage map of rainbow troutproduced using doubled haploids. Genetics,1998,148:839~850.
    [374] Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in zebrafish(Danio rerio). Genetics,2002,160:649~657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700