用户名: 密码: 验证码:
PBO纤维表面耐紫外涂层的制备及其光老化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于PBO纤维具有优异的力学性能(高比强度和高比模量)和独特的属性(低密度,良好的热稳定性和化学稳定性)而被广泛地用作为树脂基复合材料的增强体。然而,对太阳光特别是紫外线(UV)的敏感性导致PBO纤维及其复合材料结构和性能退化,严重影响了PBO纤维复合材料的使用安全性和可靠性。因此,开展针对PBO纤维紫外防护的研究工作成为热点问题。为了提高PBO纤维对紫外光的抵抗能力,本文选用有机分子和无机纳米粒子紫外线吸收剂,借助等离子体改性方法﹑溶胶-凝胶和自组装技术制备了三种不同形式的PBO纤维表面保护涂层,对涂层结构进行了表征,对材料的性能特别是光老化性能进行了研究。
     PBO纤维表面光滑,无极性。为了有利于涂层的引入,PBO纤维进行了氧等离子体活化处理,评估了等离子体处理功率和处理时间对活化效果的影响。结果显示,提高处理功率和延长处理时间均使PBO纤维表面粗糙度增加,表面自由能及其与环氧树脂基体间的IFSS先增加后降低。确定最佳处理条件为:处理功率为175W,处理时间为10min。
     经实验优化确定了2-(2-羟基苯)-苯并三氮唑(BTZ)为有机分子紫外线吸收剂,并将其填加到环氧树脂浆料中,制备了PBO纤维表面耐紫外线涂层。上浆剂与环氧树脂间的分子结构相似性改进了PBO纤维与基体间的浸润性。紫外光加速老化实验显示:单纯的环氧树脂基上浆剂涂层不能有效保护纤维本体,而含紫外吸收有机分子的上浆剂涂层能有效地吸收入射紫外线,缓解纤维本体的老化降解。紫外加速老化480h后,原始PBO纤维的拉伸强度保持率和特性粘度保持率分别为29.2%和72.0%。经含1.0wt%BTZ上浆剂处理后,PBO-I纤维的拉伸强度保持率和特性粘度保持率分别提高到52.7%和81.7%。
     结合等离子体引发气相表面接枝和溶胶纳米粒子表面涂覆制备了PBO纤维的光稳定性涂层。氧等离子体引发丙烯酸气相接枝活化了PBO纤维表面,纤维表面粗糙度和表面功能基团含量增加,表面自由能提高,拉伸强度略有降低,PBO纤维与环氧树脂间的界面结合增强。伴随着接枝时间的延长,聚丙烯酸层对纤维表面的包覆愈加完整,纤维表面粗糙度逐渐增加,表面自由能和IFSS均先增加后降低,当气相接枝时间为10min时,处理效果最佳。TiO2和ZnO溶胶纳米粒子的平均粒径分别为38nm和50nm,粒径小且分布窄,完全满足纤维表面涂覆的使用需要。表面涂覆纳米粒子溶胶后,纤维表面形成一层光屏蔽无机纳米粒子层,纤维表面粗糙度和表面功能基团含量增加,这些促使纤维表面自由能提高,改进了纤维与环氧树脂间的界面剪切强度(IFSS)。伴随着表面涂覆次数的增加,纳米粒子保护层愈加致密,涂层厚度愈大,增加的纤维表面二氧化钛/氧化锌含量保证了涂层对紫外线的高效吸收。加速老化试验显示纤维表层的无机纳米粒子层能有效隔绝外界紫外光与纤维本体的接触,确保纤维具有较高的拉伸强度保持率和特性粘度保持率,并且该保护作用随着涂层厚度的增加愈加显著。紫外加速老化480h,PBO-II-1纤维和PBO-II-2纤维的拉伸强度保持率和特性粘度保持率分别为56.8%和53.8%,82.6%和79.8%。
     结合等离子体表面活化处理和层层自组装技术制备了PBO纤维表面光稳定涂层。借助自组装技术在纤维表面制备(PAA/BPEI)m/(PAA/TiO2)n或(PAA/BPEI)m/(POSS/TiO2)n保护涂层,纤维经过处理后,表面粗糙度和表面功能基团含量增加,表面自由能增加,纤维与环氧树脂间的IFSS增加。XPS谱图上出现明显的钛和硅元素特征吸收峰,且元素含量随自组装次数的增加而增加。紫外加速老化实验显示增加自组装次数可以增加涂层厚度,厚度增加的无机纳米涂层对纤维的保护效果更加明显。比较处理前后PBO纤维的拉伸强度保持率和特性粘度保持率发现,处理后的PBO纤维的耐紫外光稳定性更佳。紫外加速老化480h,PBO-III-1纤维和PBO-III-2纤维的拉伸强度保持率和特性粘度保持率分别为56.0%和60.7%,81%和82.3%。随着涂层厚度的增加,纤维的拉伸强度保持率和特性粘度保持率逐渐增加,这表明在纤维表面制备一定厚度的涂层可以有效地保护了纤维本体的完整性。
In recent years, Poly-p-phenylenebenzobisthiazole (PBO) fiber as reinforcingmaterial has been extensively used in resin-matrix composite, due to its superiormechanical properties including high-specific strength and high-specific modulus,as well as unique characteristics such as low density, high thermal and chemicalstabilities. However, the sensitivity to solar light, especially ultraviolet (UV), whichcan deteriorate structures and properties of PBO fiber and corresponding composites,seriously affects the safety and reliability of PBO fibers-composite materials.Therefore, research on the anti-UV protection of PBO fiber becomes a fascinatingfield. In the present research, organic-molecule and inorganic-nanoparticleUV-absorbed agents were used, and three different surface protective coatings wereprepared on PBO fiber surface by plasma modification method, sol-gol andself-assembly technology for improving UV-resistance of PBO fiber. The structureof coating on PBO fiber surface was characterized, and the properties of materialespecially photo-aging property were studied.
     PBO fiber surface is smooth, and non-polar. PBO fiber was activated byoxygen plasma modification for the successful preparation of coating. Theinfluences of voltage and time of plasma treatment on activation were evaluated.Results show that increasing power and time of plasma treatment both make surfaceroughness of fiber increase, surface free energy and IFSS between fiber and epoxyresin matrix first increase and then decrease. The optimal treatment condition wereobtained: voltage is175W and time is10min.
     2-(2-hydroxyphenyl)-benzotriazole (BTZ) was selected as organic-moleculeUV-absorbed agent after experimental optimization, and added into sizing agent ofepoxy resin for creation of anti-UV coating on PBO fiber surface. The similarity ofmolecular strcture between sizing agent and epoxy resin improves the wettabilitybetween PBO fiber and matrix. UV accelerated aging test shows that coating createdby pure epoxy resin based sizing agent can not protect fiber body, whereas coatingcreated by UV-absorbed organic-molecue containing sizing agent can effectivelyabsorb incident UV light, and relieve aging degradation of fiber body. After480hUV-accelerated aging, tensile strength (TS) retention and intrinsic viscosity (IV)retention of original PBO fiber is29.2%and72.0%, respectively. TS retention andIV retention of PBO-I fiber treated by sizing agent containing1.0wt%BTZ isincreased to52.7%and81.7%, respectively.
     Plasma induced vapor surface grafting technology and surface coatingmethod of sol nanoparticle were combined to prepare coating with photostability on PBO fiber surface. PBO fiber surface was activated through oxygen plasma inducedacrylic acid grafting reaction, Roughness, functional group content and surface freeenergy on PBO fiber increase, tensile strength decrease in a small extent, andinterface bonding between PBO fiber and epoxy resin increase. With the extensionof grafting time, polyacrylic acid coating on PBO fiber surface becomes moreperfect, fiber surface becomes more rough, surface free energy and IFSS both firstincrease and then decrease. The best result was obtained when vapor grafting time is10min. The average size of TiO2and ZnO sol nanoparticles is38nm and50nm.Small size and narrow size distribution of these particles can completely meet withthe demand of fiber surface coating. A photo-shielded inorganic nanoparticle layerwas formed on fiber surface after surface coating of nanoparticle. Increased surfaceroughness and surface functional group content of fiber cause surface free energy offiber increase, and interface shear strength (IFSS) between fiber and epoxy resin isimproved. With the increase in number of surface coating, nanoparticle protectivelayer becomes denser, coating thickness become greater, and increased TiO2andZnO content on fiber surface supply coating with a efficient absorption for UV ray.Accelerated aging test proved that inorganic nanoparticles on fiber surface build aeffective barrier between UV ray from external environment and fiber body, providefiber with high tensile strength retention and intrinsic viscosity retention, and thisprotective effect is more significant with coating thickness increase. TS retentionand IV retention of PBO-II-1fiber and PBO-II-2fiber is56.8%and53.8%,82.6%and79.8%, respectively.
     Coordinative usage of plasma surface active treatent and layer-by-layerself-assembly technology to create coating with photostability on PBO fiber surface.Protective coating of (PAA/BPEI)m/(PAA/TiO2)nor (PAA/BPEI)m/(POSS/TiO2)nwas prepared on fiber surface by virtue of self-assembly. After treatment, surfaceroughness and surface functional group content increase, surface free energyincrease, IFSS between fiber and epoxy resin also increase. Characteristicabsorption peaks of Ti and Si element appear on XPS spectrum, and element contentincreased with the increase in number of self-assembly. UV accelerated aging testshowed the increase in number of self-assembly can increase the thickness ofcoating, and increased thickness of inorganic nanoparticle coating can moreeffectively protect fiber. By comparing TS retention and IV retention of untreatedand treated PBO fiber after accelerated aging, a phenomenon is found that anti-UVstability of treated PBO fiber is better. After480h UV accelerated aging, TSretention and IV retention of PBO-III-1fiber and PBO-III-2fiber can reach56.0%and60.7%,81%and82.3%, respectively. With the increase in thickness of coating, TS retention and IV retention of fiber gradually increase, this result indicate thatpreparing a certain thickness of coating on fiber surface can effectively protectintegrity of fiber.
引文
[1] Chae H G, Kumar S. Rigid-rod Polymeric Fibers [J]. Journal of AppliedPolymer Science,2006,100:791-802.
    [2] Afshari M, Sikkema D J, Lee K, et al. High Performance Fibers Based onRigid and Flexible Polymers [J]. Polymer Reviews,2008,48:230-74.
    [3] Hu X, Jenkins S E, Min B G, et al. Rigid-Rod Polymers: Synthesis,Processing, Simulation, Structure, and Properties [J]. MacromolecularMaterials and Engineering,2003,288:823-43.
    [4] Wolfe J F, Arnold F E. Rigid-rod Polymers.1. Synthesis and ThermalProperties of Aara-aromatic Polymers with2,6-Benzobisoxazole Units inthe Main Chain [J]. Macromolecules,1981,14:909-15.
    [5] Wolfe J F, Loo B H, Arnold F E. Rigid-rod Polymers.2. Synthesis andThermal Properties of Para-aromatic Polymers with2,6-BenzobisthiazoleUnits in the Main Chain [J]. Macromolecules,1981,14:915-20.
    [6] Tashiro K, Yoshino J, Kitagawa T, et al. Crystal Structure and PackingDisorder of Poly(p-phenylenebenzobisoxazole): Structural Analysis byan Organized Combination of X-ray Imaging Plate System and ComputerSimulation Technique [J]. Macromolecules,1998,31:5430-40.
    [7] Kitagawa T, Yabuki K, Young R J. An Investigation into the Relationshipbetween Processing, Structure and Properties for High-Modulus PBOFibres. Part1. Raman Band Shifts and Broadening in Tension andCompression [J]. Polymer,2001,42:2101-12.
    [8] Davies R J, Eichhorn S J, Riekel C, et al. Crystal Lattice Deformation inSingle Poly(p-phenylene benzobisoxazole) Fibres [J]. Polymer,2004,45:7693-704.
    [9] So Y H. Rigid-rod Polymers with Enhanced Lateral Interactions [J].Progress in Polymer Science,2000,25:137-57.
    [10] Wang S, Wu P, Han Z. Random Conjugated Polybenzazole Copolymers:Synthesis, Characterization, and Exciton Confinement Effects inPhotophysical Properties [J]. Journal of Materials Science,2004,39:2717-26.
    [11] Tashiro K, Kobayashi M. Theoretical Young's Moduli ofPoly(p-phenylene benzobisthiazole) and Poly(p-phenylene benzobisoxa-zole)[J]. Macromolecules,1991,24:3706-8.
    [12] Lenhert P G, Adams W W. X-ray Diffraction Studies of the TensileModulus of Rigid-rod Polymer Fibers [J]. Materials Research SocietySymposium Proceedings,1989,134:324-40.
    [13] Ledbeter H D, Rosenberg S, Hurtig C W. An Integrated Laborated Processfor Preparing Rigid Rod Fibers from the Monomers [J]. MaterialsResearch Society Symposium Proceedings,1989,134:253-64.
    [14] Pottick L A, Farris R J. Property Modifications in Poly(p-phenylenebenzobisthiazole) Fibers with High-tension and High-temperature Dryingversus Postingprocess Heat Treatment [J]. Polymer Engineering&Science,1991,31:1441-9.
    [15] Bourbigot S, Flambard X. Heat Resistance and Flammability of HighPerformance Fibres: A Review [J]. Fire and Materials,2002,26:155-68.
    [16] Liu D, Hu J, Zhao Y, et al. Surface Modification of PBO Fibers by ArgonPlasma and Argon Plasma Combined with Coupling Agents [J]. Journal ofApplied Polymer Science,2006,102:1428-35.
    [17] Kim P K, Pierini P, Wessling R. Thermal and Flammability Properties ofPoly(p-phenylenebenzobisoxazole)[J]. Journal of Fire Sciences,1993,11:296-307.
    [18] Wolfe J F. Rigid-rod Polymer Synthesis: Development of MesophasePolymerization in Strong Acid Solutions [J]. Materials Research SocietySymposium Proceedings,1989,134:83-9.
    [19] Bourbigot S, Flambard X, Ferreira M, et al. Blends of Wool with HighPerformance Fibers as Heat and Fire Resistant Fabrics [J]. Journal of FireSciences,2002,20:3-22.
    [20] Martin D C, Thomas E L. Ultrastructure of Poly (p-phenylenebenzobisoxazole) Fibers [J]. Macromolecules,1991,24:2450-60.
    [21] Shin H S. Test for Measuring Cut Resistance of Yarns [J]. Journal ofMaterials Science,2003,38:3603-10.
    [22] Schneider-Muntau H J, Han K, Bednar N A, et al. Materials for100TMonocoil Magnets [J]. Ieee Transactions on Applied Superconductivity,2004,14:1153-6.
    [23] Kerzhanovich V. Breakthrough in Mars Balloon Technology [J].Advances in Space Research,2004,33:1836-41.
    [24] Seely L. The Use of Zylon Fibers in ULDB Tendons [J]. Advances inSpace Research,2004,33:1736-40.
    [25] Saito Y, Tahara A, Imaizumi M, et al. Polymer-coated Fibrous Materialsas the Stationary Phase in Packed Capillary Gas Chromatography [J].Analytical Chemistry,2003,75:5525-31.
    [26] Northolt M G, Sikkema D J. Lyotropic Main Chain Liquid CrystalPolymers [J]. Advances in Polymer Science,1991,98:115-77.
    [27] Song H H, Hong S K. Preparation of Rigid-rod Poly(p-phenylenebenzobisthiazole) Films of Single Crystalline Texture [J]. Polymer,1997,38:4241-5.
    [28] Ran S, Burger C, Fang D, et al. In-situ Synchrotron WAXD/SAXS Studiesof Structural Development during PBO/PPA Solution Spinning [J].Macromolecules,2002,35:433-9.
    [29] Wang S, Wu P, Han Z. Electron Paramagnetic Resonance ofPoly(benzazole)s and Conducting Properties of N+-implantedPoly(benzazole)s [J]. Polymer,2001,42:217-26.
    [30] So Y H. Polybenzoxazole from1,4-Bis(trichloromethyl)Benzene [J].Journal of Polymer Science Part A: Polymer Chemistry,1997,35:2143-5.
    [31] Wolfe J F, Sybert P D, Sybert J R. Liquid Crystalline PolymerCompositions, Process, and Products [P], US4533693.1985.
    [32] Sybert J R, Wolfe J F, Sybert P D, et al. Liquid Crystalline PolymerComposition, Process, and Products [P], US4772678.1988.
    [33] Gu J, Dang J, Geng W, et al. Surface Modification of HMPBO Fibers bySilane Coupling Agent of KH-560Treatment Assisted by UltrasonicVibration [J]. Fibers and Polymers,2012,13:979-84.
    [34] Song B, Meng L H, Huang Y D. Improvement of Interfacial Propertybetween PBO Fibers and Epoxy Resin by Surface Grafting of PolyhedralOligomeric Silsesquioxanes (POSS)[J]. Applied Surface Science,2012,258:10154-9.
    [35] Vázquez-Santos M B, Martínez-Alonso A, Tascón J M D, et al.Nanostructure Evolution in Heat-treated Porous Carbons Derived fromPBO Polymer [J]. Journal of Alloys and Compounds,2012,536,Supplement1: S464-S8.
    [36] Song B, Meng L, Huang Y. Surface Modification of PBO Fiber throughOxygen Plasma induced Vapor Phase Grafting of Acrylic Acid [J].Materials Letters,2012,83:118-20.
    [37] Mehta V R, Kumar S. Temperature Dependent Torsional Properties ofHigh Performance Fibres and Their Relevance to Compressive Strength[J]. Journal of Materials Science,1994,29:3658-64.
    [38] Nomura R, Yoneyama K, Ogasawara F, et al. Temperature Dependence ofSound Velocity in High-strength Fiber-reinforced Plastics [J]. JapaneseJournal of Applied Physics,2003,42:5205-7.
    [39] V. K V, Hao J, R. M V, et al. Compressive Behavior of Materials: Part II.High-Performance Fibers [J]. Journal of Materials Research,1995,10:1044-61.
    [40] Chen M, Liu D, Chen P, et al. The Interfacial Adhesion ofPoly-p-phenylenebenzobisoxazole/bismaleimide Composites Improved byOxygen/Argon Plasma Treatment and Surface Aging Effects [J]. Surfaceand Coatings Technology,2012,207:221-6.
    [41] Cao K K, Zhong Y J, Guan G H, et al. Effect of Hydration on theStructures and Properties of Poly(p-phenylene benzobisoxazole)/Poly(pyrido bisimidazole) Block Copolymer Fibers [J]. High PerformancePolymers,2012,24:432-40.
    [42] Deteresa S J, Porter R S, Farriis R J. A Model for the CompressiveBuckling of Extended Chain Polymers [J]. Journal of Materials Science1985,20:1645-59.
    [43] Deteresa S J, Porter R S, Farris R J. Experimental Verification of aMicrobuckling Model for the Axial Compressive Failure of HighPerformance Polymer Fibers [J]. Journal of Materials Science,1988,23:1886-94.
    [44] Vázquez-Santos M B, Geissler E, László K, et al. Graphitization of HighlyPorous Carbons Derived from Poly(p-phenylene benzobisoxazole)[J].Carbon,2012,50:2929-40.
    [45] Northolt M G, Balussen J J M, Korff B S. Yielding and Hysteresis ofPolymer Fibres [J]. Polymer,1995,36:3485-92.
    [46] Zhou C, Qiu X, Zhuang Q, et al. In Situ Polymerization and PhotophysicalProperties of Poly(p-phenylene benzobisoxazole)/Multiwalled CarbonNanotubes Composites [J]. Journal of Applied Polymer Science,2012,124:4740-6.
    [47] Shin H S, Erlich D C, Simons J W, et al. Cut Resistance of High-strengthYarns [J]. Textile Research Journal,2006,76:607-13.
    [48] Wu Z, Li F, Huang L, et al. The Thermal Degradation Mechanism andThermal Mechanical Properties of Two High Performance HeterocyclicPolymer Fibers [J]. Journal of Thermal Analysis and Calorimetry,2000,59:361-73.
    [49] Jones E G, Pedrick D L. Evolved Gas Analysis of Rigid Rod Polymer [J].Materials Research Society Symposium Proceedings,1989,134:407-12.
    [50] S. L. Thermal Degradation Profiles of Ordered Aromatic HeterocyclicPolymers [J]. Polymer Preprients,1991,32:276-8.
    [51] Nielsen C A, Pierini P, Fuh S. Thermal and Thermo-oxidativeDegradation of PBO: Determination of Kinetics and Reaction Products [J].Journal of Fire Sciences,1993,11:156-71.
    [52] Phoenix S L, Porwal P K. A New Membrance Model for the BallisticImpact Resonse and V50Performance of Multi-ply Fibrous Systems [J].International Journal of Solids and Structures,2003,40:6732-65.
    [53] Zhang C, Xu H, Jiang Z, et al. Carbon Nanotubes Grafting PBO Fiber: AStudy on the Interfacial Properties of Epoxy Composites [J]. PolymerComposites,2012,33:927-32.
    [54] Vázquez-Santos M B, Martínez-Alonso A, Tascón J M D. Effects ofPhosphoric Acid as Additive in the Preparation of Activated CarbonFibers from Poly(p-phenylene benzobisoxazole) by Carbon DioxideActivation [J]. Journal of Analytical and Applied Pyrolysis,2012,95:68-74.
    [55] Wu G M, Hung C H, You J H, et al. Surface Modification ofReinforcement Fibers for Composites by Acid Treatments [J]. Journal ofPolymer Research,2004,11:31-6.
    [56] Wu G M, Shyng Y T. Effects of Basic Chemical Surface Treatment onPBO and PBO Fiber Reinforced Epoxy Composites [J]. Journal ofPolymer Research,2005,12:93-102.
    [57] Yalvac S, Jakubowski J J, So Y H, et al. Improved Interfacial Adhesionvia Chemical Coupling of Cis-polybenzobisoxazole Fibre-polymerSystems [J]. Polymer,1996,37:4657-9.
    [58] Ming J J, Jun Z H, Guang L, et al. Poly(p-phenylene benzoxazole) FiberChemically Modified by the Incorporation of Sulfonate Groups [J].Journal of Applied Polymer Science,2008,109:3133-9.
    [59] Luo K, Jin J, Yang S, et al. Improvement of Surface Wetting Properties ofPoly(p-phenylene benzoxazole) by Incorporation of Ionic Groups [J].Materials Science and Engineering: B-Solid State materials for AdvancedTechnology,2006,132:59-63.
    [60] Tao Z, Dayong H, Junhong J, et al. Improvement of Surface Wettabilityand Interfacial Adhesion Ability of Poly(p-phenylene benzobisoxazole)(PBO) Fiber by Incorporation of2,5-Dihydroxyterephthalic Acid (DHTA)[J]. European Polymer Journal,2009,45:302-7.
    [61] Zhang R, Pan X, Jiang M, et al. Influence of Atmospheric Pressure PlasmaTreatment on Surface Properties of PBO Fiber [J]. Applied SurfaceScience,2012,261:147-54.
    [62] Wang Q, Chen P, Jia C, et al. Improvement of PBO Fiber Surface andPBO/PPESK Composite Interface Properties with Air DBD PlasmaTreatment [J]. Surface and Interface Analysis,2012,44:548-53.
    [63] Song B, Meng L H, Huang Y D. Influence of Plasma Treatment Time onPlasma Induced Vapor Phase Grafting Modification of PBO Fiber Surface[J]. Applied Surface Science,2012,258:5505-10.
    [64] Amor S B, Jacquet M, Fioux P, et al. XPS Characterisation of PlasmaTreated and Zinc Oxide Coated PET [J]. Applied Surface Science,2009,255:5052-61.
    [65] Barick A K, Tripathy D K. Preparation, Characterization and Properties ofAcid Functionalized Multi-walled Carbon Nanotube ReinforcedThermoplastic Polyurethane Nanocomposites [J]. Materials Science andEngineering: B,2011,176:1435-47.
    [66] Bozzi A, Yuranova T, Guasaquillo I, et al. Self-cleaning of ModifiedCotton Textiles by TiO2at Low Temperatures under Daylight Irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry,2005,174:156-64.
    [67] Chen P, Zhang C, Zhang X, et al. Effects of Oxygen Plasma TreatmentPower on Surface Properties of Poly(p-phenylene benzobisoxazole) Fibers[J]. Applied Surface Science,2008,255:3153-8.
    [68]陈明新. PBO纤维表面等离子体改性及PBO/BMI复合材料界面粘结性能的研究[D].大连;大连理工大学,2012:17-9.
    [69] Bozzi A, Yuranova T, Kiwi J. Self-cleaning of Wool-polyamide andPolyester Textiles by TiO2-rutile Modification under Daylight Irradiationat Ambient Temperature [J]. Journal of Photochemistry and PhotobiologyA: Chemistry,2005,172:27-34.
    [70] Guo F, Zhang Z Z, Zhang H J, et al. Effect of Air Plasma Treatment onMechanical and Tribological Properties of PBO Fabric Composites [J].Composites Part A: Applied Science and Manufacturing,2009,40:1305-10.
    [71]胡倩倩. PBO纤维表面常压等离子体处理研究[D].上海;东华大学,2012:11-6.
    [72]康晓涛.等离子体引发涂层改性对有机纤维/PPESK界面的影响[D].大连;大连理工大学,2012:43-8.
    [73] El Mendili Y, Bardeau J-F, Randrianantoandro N, et al. Insights into theMechanism Related to the Phase Transition from γ-Fe2O3to α-Fe2O3Nanoparticles Induced by Thermal Treatment and Laser Irradiation [J].The Journal of Physical Chemistry C,2012,116:23785-92.
    [74] H. Z C, D. H Y, D. Z Y. Surface Analysis of Gamma-Ray IrradiationModified PBO Fiber [J]. Materials Chemistry and Physics,2005,92:245-50.
    [75] So C L, Young R J. Interfacial Failure in Poly(p-phenylenebenzobisoxazole)(PBO)/Epoxy Single Fibre Pull-out Specimens [J].Composites Part A: Applied Science and Manufacturing,2001,32:445-55.
    [76] Chau C C, Biackson J, Im J. Kink Bands and Shear Deformation inPolybenzobisoxazole Fibres [J]. Polymer,1995,36:2511-6.
    [77] Wang J, Liang G, Zhao W, et al. Enzymatic Surface Modification of PBOFibres [J]. Surface and Coatings Technology,2007,201:4800-4.
    [78] Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, et al.Characteristics of Silica-Coated TiO2and its UV Absorption forSunscreen Cosmetic Applications [J]. Surface and Interface Analysis,2006,38:473-7.
    [79] Popov A P, Priezzhev A V, Lademann J, et al. TiO2Nanoparticles as anEffective UV-B Radiation Skin-protective Compound in Sunscreens [J].Journal of Physics D: Applied Physics,2005,38:2564.
    [80] Park O K, Kang Y S. Preparation and Characterization of Silica-coatedTiO2Nanoparticle [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2005,257–258:261-5.
    [81] Zhao M, Wang X, Cheng J, et al. Synthesis and Ethanol SensingProperties of Al-doped ZnO Nanofibers [J]. Current Applied Physics,2013,13:403-7.
    [82] Zhang Z, Wen Z, Wang C. Investigation of Surface Acoustic WavesPropagating in ZnO-SiO2-Si Multilayer Structure [J]. Ultrasonics,2013,53:363-8.
    [83] Shei S C, Lee P Y. Influence of Rinsing Temperature on Properties ofZnO Thin Films Prepared by SILAR Method with Propylene Glycol [J].Journal of Alloys and Compounds,2013,546:165-70.
    [84] Kundu D, Mukherjee R. UV Absorbing Transparent Sol-Gel DerivedCoatings on Glass [J]. Journal of Materials Science Letters,2003,22:1647-9.
    [85] Sakamoto H, Qiu J, Makishima A. The Preparation and Properties ofCeO2-TiO2Film by Sol-gel Spin-coating Process [J]. Science andTechnology of Advanced Materials,2003,4:69-76.
    [86] Lapidot N, Gans O, Biagini F, et al. Advanced Sunscreens: UV AbsorbersEncapsulated in Sol-Gel Glass Microcapsules [J]. Journal of Sol-GelScience and Technology,2003,26:67-72.
    [87] Wiener J, Shahidi S, Goba M M. Laser Deposition of TiO2Nanoparticleson Glass Fabric [J]. Optics&Laser Technology,2013,45:147-53.
    [88] Fan K, Peng T, Chen J, et al. A Simple Preparation Method forQuasi-Solid-State Flexible Dye-Sensitized Solar Cells by Using SeaUrchin-like Anatase TiO2Microspheres [J]. Journal of Power Sources,2013,222:38-44.
    [89] Miyazaki K, Shibata K, Nakatani H. Preparation of IsotacticPolypropylene/Fibrous Cellulose Composite Oxo-biodegradation Inducedby Poly(ethylene oxide)/TiO2Initiator and Accelerator System [J]. Journalof Applied Polymer Science,2013,127:854-61.
    [90] Gupta S, Tripathi M. A Review of TiO2Nanoparticles [J]. Chin Sci Bull,2011,56:1639-57.
    [91] Liu Z, Chen S, Zhang J. Effect of UV Absorbers and Hindered AmineLight Stabilizers on the Photodegradation of Ethylene-octene Copolymer[J]. Journal of Applied Polymer Science,2013,127:1135-47.
    [92] Coelho C, Stimpfling T, Leroux F, et al. Inorganic-organic HybridMaterials Based on Amino Acid Modified Hydrotalcites Used asUV-Absorber Fillers for Polybutylene Succinate [J]. European Journal ofInorganic Chemistry,2012,2012:5252-8.
    [93] Lima J F D, Martins R F, Serra O A. Transparent UV-absorbers ThinFilms of Zinc Oxide: Ceria System Synthesized via Sol-gel Process [J].Optical Materials,2012,35:56-60.
    [94] Mamnicka J, Czajkowski W. New Fiber-reactive UV-absorbers IncreasingProtective Properties of Cellulose Fibres [J]. Cellulose,2012,19:1781-90.
    [95] Cui Z H, Wang X D, Guo J C, et al. Synthesis, Spectroscopic Propertiesand Applications of Novel N-heterocycle-containing Benzotriazoles asUV Absorbers [J]. Chinese Chemical Letters,2012,23:1019-22.
    [96] Oguchi Fujiyama N, Miyazawa K, Kikuchi A, et al. PhotophysicalProperties of Dioctyl4-Methoxybenzylidenemalonate: UV-B Absorber [J].Photochemical&Photobiological Sciences,2012,11:1528-35.
    [97] Choi S S, Jang J H. Analysis of UV Absorbers and Stabilizers inPolypropylene by Liquid Chromatography/Atmospheric PressureChemical Ionization-mass Spectrometry [J]. Polymer Testing,2011,30:673-7.
    [98] Hong S, Kim I, Kim H, et al. Manufacture of UV Absorbers and UVProtection Fabrics Using Microcapsules [J]. Fibers and Polymers,2011,12:491-8.
    [99] Rajan V V, W ber R, Wieser J. Influence of Different Types of UVAbsorber/UV Stabilizer Combination on the Photodegradation of PC/ABSBlend [J]. Journal of Applied Polymer Science,2012,124:4007-15.
    [100] Posp il J, Ne purek S. Photostabilization of Coatings. Mechanisms andPerformance [J]. Progress in Polymer Science,2000,25:1261-335.
    [101] Mosquera M, Penedo J C, Ríos Rodríguez M C, et al. Photoinduced Inter-and Intramolecular Proton Transfer in Queous and Ethanolic Solutions of2-(2'-Hydroxyphenyl) Benzimidazole: Evidence for Tautomeric andConformational Equilibria in the Ground State [J]. The Journal of PhysicalChemistry,1996,100:5398-407.
    [102] Woessner G, Goeller G, Kollat P, et al. Photophysical and PhotochemicalDeactivation Processes of Ultraviolet Stabilizers of the (2-Hydroxyphenyl)Benzotriazole Class [J]. The Journal of Physical Chemistry,1984,88:5544-50.
    [103] Formosinho S J, Arnaut L G. Excited-State Proton Transfer Reactions II.Intramolecular Reactions [J]. Journal of Photochemistry and PhotobiologyA: Chemistry,1993,75:21-48.
    [104] Carturan S, Quaranta A, Maggioni G, et al. Optical Study of the MatrixEffect on the ESIPT Mechanism of3-HF Doped Sol-gel Glass [J]. Journalof Sol-Gel Science and Technology,2003,26:931-5.
    [105] Mcgarry P F, Jockusch S, Fujiwara Y, et al. DMSO Solvent InducedPhotochemistry in Highly Photostable Compounds. The Role ofIntermolecular Hydrogen Bonding [J]. The Journal of Physical ChemistryA,1997,101:764-7.
    [106] Kamegawa T, Kido R, Yamahana D, et al. Design of TiO2-ZeoliteComposites with Enhanced Photocatalytic Performances under Irradiationof UV and Visible Light [J]. Microporous and Mesoporous Materials,2013,165:142-7.
    [107] Bloh J Z, Dillert R, Bahnemann D W. Transition Metal-modified ZincOxides for UV and Visible Light Photocatalysis [J]. Environ Sci PollutRes,2012,19:3688-95.
    [108] Burks B, Kumosa M. The Effects of Atmospheric Aging on a HybridPolymer Matrix Composite [J]. Composites Science and Technology,2012,72:1803-11.
    [109] Jiang X, Kolstein H, Bijlaard F S K. Moisture Diffusion andHygrothermal Aging in Pultruded Fibre Reinforced Polymer Compositesof Bridge Decks [J]. Materials&Design,2012,37:304-12.
    [110] Said M A, Dingwall B, Gupta A, et al. Investigation of Ultra Violet (UV)Resistance for High Strength Fibers [J]. Advances in Space Research,2006,37:2052-8.
    [111] Cangialosi D, Boucher V M, Alegría A, et al. Enhanced Physical Aging ofPolymer Nanocomposites: The Key Role of the Area to Volume Ratio [J].Polymer,2012,53:1362-72.
    [112] Breese R R. General Effects of Aging on Textiles [J]. Journal of AmericanInstitute for Conservation,1986,25:39-48.
    [113] Fu Q, Zhang H, Song B, et al. Mechanism of Degradation ofPoly(p-phenylene benzobisoxazole) under Hydrolytic Conditions [J].Journal of Applied Polymer Science,2011,121:1734-9.
    [114] Song B, Fu Q, Ying L, et al. Study on Photoaging of Poly(p-phenylenebenzobisoxazole) Fiber [J]. Journal of Applied Polymer Science,2012,124:1050-8.
    [115] Bourbigot S, Flambard X, Duquesene S. Thermal Degradation ofPoly(p-phenylene benzobisoxazole) and Poly(p-phenylene diamineterephthalamide) Fibres [J]. Polymer International,2001,50157-64.
    [116] Cai G M, Yu W D. Study on the Thermal Degradation of HighPerformance Fibers by TG/FTIR and Py-GC/MS [J]. Journal of ThermalAnalysis and Calorimetry,2010,104:757-63.
    [117]张鹏. PBO纤维热稳定性研究[J].高科技纤维与应用,2012,37:25-30.
    [118]赵浩.复合抗紫外剂对PBO纤维光稳定性的影响[J].材料导报,2011,25:107-9.
    [119] Zhang C, Huang Y, Yuan W, et al. UV Aging Resistance Properties ofPBO Fiber Coated with Nano-ZnO Hybrid Sizing [J]. Journal of AppliedPolymer Science,2011,120:2468-76.
    [120] Zhang H, Millington K R, Wang X. The Photostability of Wool Dopedwith Photocatalytic Titanium Dioxide Nanoparticles [J]. PolymerDegradation and Stability,2009,94:278-83.
    [121] Zhang W, Ni Y, Huang W, et al. Hydrothermal Synthesis, Structure Studyand Luminescent Properties of YbPO4:Tb3+Nanoparticles [J]. Journal ofRare Earths,2010,28, Supplement1:299-302.
    [122] Zheng M, Wu J. One-step Synthesis of Nitrogen-doped ZnONanocrystallites and Their Properties [J]. Applied Surface Science,2009,255:5656-61.
    [123] Jin J, Li G, Yang S, et al. Effects of Light Stabilizer on the UltravioletStability of Poly-p-phenylenebenzobisoxazole (PBO) Fibers [J]. IranPolym J,2012,21:739-45.
    [124] Yamashita H, Taoka A, Uchihashi T, et al. Single-molecule Imaging onLiving Bacterial Cell Surface by High-speed AFM [J]. Journal ofMolecular Biology,2012,422:300-9.
    [125] Khokhlova M, Gallyamov M, Khokhlov A. Chitosan NanostructuresDeposited from Solutions in Carbonic Acid on a Model Substrate asResolved by AFM [J]. Colloid Polym Sci,2012,290:1471-80.
    [126] Yan Y, Sun Y, Yang Y, et al. Effects of the AFM Tip Trace onNanobundles Formation on the Polymer Surface [J]. Applied SurfaceScience,2012,258:9656-63.
    [127] Gates R S, Pratt J R. Accurate and Precise Calibration of AFM CantileverSpring Constants Using Laser Doppler Vibrometry [J]. Nanotechnology,2012,23:375702.
    [128] Shahbazmohamadi S, Jordan E H. Optimizing an SEM-based3D SurfaceImaging Technique for Recording Bond Coat Surface Geometry inThermal Barrier Coatings [J]. Measurement Science and Technology,2012,23:125601.
    [129] Li Y, Xie H, Tang M, et al. The Study on Microscopic MechanicalProperty of Polycrystalline with SEM Moiré Method [J]. Optics andLasers in Engineering,2012,50:1757-64.
    [130] Klaver J, Desbois G, Urai J L, et al. BIB-SEM Study of the Pore SpaceMorphology in Early Mature Posidonia Shale From the Hils Area,Germany [J]. International Journal of Coal Geology,2012,103:12-25.
    [131] Khattak G D, Mekki A, Gondal M A. XPS Studies of Pulsed LaserInduced Surface Modification of Vanadium Phosphate Glass Samples [J].Journal of Physics and Chemistry of Solids,2013,74:13-7.
    [132] Senkovskiy B V, Usachov D Y, Fedorov A V, et al. Electronic Structureof Ti-Ni Alloys: An XPS and NEXAFS Study [J]. Journal of Alloys andCompounds,2012,537:190-6.
    [133] Bukhtiyarov A V, Kvon R I, Nartova A V, et al. An XPS and STM Studyof the Size Effect in NO Adsorption on Gold Nanoparticles [J]. RussChem Bull,2011,60:1977-84.
    [134]吴茂英.聚合物光老化、光稳定机理与光稳定剂(上)[J].高分子通报,2006,76-83.
    [135] Zhou H, Yi D, Yu Z, et al. Preparation of Aluminum Doped ZincOxideFilms and the Study of Their Microstructure, Electrical and OpticalProperties [J]. Thin Solid Films,2007,515:6909-14.
    [136] Zigler D F, Mongelli M T, Jeletic M, et al. A Trimetallic SupramolecularComplex of Osmium (II) and Rhodium (III) Displaying MLCT Transitionsin the Near-IR [J]. Inorganic Chemistry Communications,2007,10:295-8.
    [137] Zucchi S, Bluthgen N, Ieronimo A, et al. The UV-absorberBenzophenone-4Alters Transcripts of Genes Involved in HormonalPathways in Zebrafish (Danio Rerio) Eleuthero-embryos and Adult Males[J]. Toxicology and applied pharmacology,2011,250:137-46.
    [138] Bayati M R, Zargar H R, Talimian A, et al. Characterization ofAl2O3-TiO2Nano Porous Solar Absorbers Derived via MAO/Sol-gelHybrid Process [J]. Surface and Coatings Technology,2010,205:2483-9.
    [139] Lima J F D, Martins R F, Neri C R, et al. ZnO:CeO2-based Nanopowderswith Low Catalytic Activity as UV Absorbers [J]. Applied SurfaceScience,2009,255:9006-9.
    [140] Hsieh Y L, Wu M. Residual Reactivity for Surface Grafting of AcrylicAcid on Argon Alow-Discharged Poly(ethylene terephthalate)(PET)Films [J]. Journal of Applied Polymer Science,1991,43:2067-82.
    [141] Johnsen K, Kirkhorn S, Olafsen K, et al. Modification of PolyolefinSurfaces by Plasma-Induced Grafting [J]. Journal of Applied PolymerScience,1996,59:1651-7.
    [142] Basarir F, Choi E Y, Moon S H, et al. Electrochemical Properties of PPMembranes with Plasma Polymer Coatings of Acrylic Acid [J]. Journal ofMembrane Science,2005,260:66-74.
    [143] De Vietro N, D’agostino R, Fracassi F. Improvement of the AdsorptionProperties of Carbon Black Granules by means of Plasma EnhancedChemical Vapour Deposition with Acrylic Acid Vapours [J]. Carbon,2011,49:249-55.
    [144] Jafari R, Tatoulian M, Arefi-Khonsari F. Improvement of the Stability ofPlasma Polymerized Acrylic Acid Aoating Deposited on PS Beads in aFluidized Bed Reactor [J]. Reactive and Functional Polymers,2011,71:520-4.
    [145] Kai W, Iwamoto S, Akamatsu K, et al. Enhanced Interlayer Interaction inCellulose Single Nanofibre and Poly(L-lactic acid) Layered Films byPlasma-Initiated Surface Grafting of Poly(acrylic acid) onto Poly(L-lacticacid) Films [J]. Polymer Degradation and Stability,2010,95:1004-10.
    [146] Besch W, Schrder K, Ohl A. Access of Plasma Polymerization and PlasmaInduced Vapor Phase Grafting Processes to High Aspect Ratio Trenches inPolymeric Microstructures Analyzed by XPS [J]. Plasma Processes andPolymers,2005,2:97-103.
    [147] Chen J P, Chiang Y P. Surface Modification of Non-woven Fabric by DCPulsed Plasma Treatment and Graft Polymerization with Acrylic Acid [J].Journal of Membrane Science,2006,270:212-20.
    [148] Choi H S, Kim Y S, Zhang Y, et al. Plasma-induced GraftCo-polymerization of Acrylic Acid onto the Polyurethane Surface [J].Surface and Coatings Technology,2004,182:55-64.
    [149] Vilani C, Weibel D, Zamora R, et al. Study of the Influence of the AcrylicAcid Plasma Parameters on Silicon and Polyurethane Substrates UsingXPS and AFM [J]. Applied Surface Science,2007,254:131-4.
    [150] Wang C, Chen J. Studies on Surface Graft Polymerization of Acrylic Acidonto PTFE Film by Remote Argon Plasma Initiation [J]. Applied SurfaceScience,2007,253:4599-606.
    [151] Wang J, Somasundaran P. Reversible Conformational Behavior ofPoly(acrylic acid) LB Film with Changes in pH, Ionic Strength and Time[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,273:63-9.
    [152] Weibel D E, Vilani C, Habert A C, et al. Surface Modification ofPolyurethane Membranes Using RF-plasma Treatment with Polymerizableand Non-polymerizable Gases [J]. Surface and Coatings Technology,2006,201:4190-4.
    [153] Zhao H, Zhu J, Fu Z, et al. Plasma Surface Graft of Acrylic Acid andBiodegradation of Poly(butylene succinate) Films [J]. Thin Solid Films,2008,516:5659-63.
    [154] Zhao Z, Li J, Zhang D, et al. Nanofiltration Membrane Prepared fromPolyacrylonitrile Ultrafiltration Membrane by Low-temperature Plasma[J]. Journal of Membrane Science,2004,232:1-8.
    [155] Majidi H, Baxter J B. Electrodeposition of CdSe Coatings on ZnONanowire Arrays for Extremely Thin Absorber Solar Cells [J].Electrochimica Acta,2011,56:2703-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700