用户名: 密码: 验证码:
外负载无机纳米/木材功能型材料的低温水热共溶剂法可控制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将无机纳米材料有效负载于木材表面以制备多功能的无机纳米/木材复合新型材料,对木材的持久性提高、功能化拓展和高附加值利用均具有重要的研究价值和实际意义。然而,无机纳米材料若以传统的浸渍或机械刷涂等方法涂于木材表面时,则易发生分散不均、与基体界面结合性差等问题,使得纳米材料难以体现小尺寸效应和表面效应,进而使得纳米材料不能真正发挥其特性,对木材功能性的改良也会由此而受到很大限制。因此,寻求新的在木材表面原位生长纳米材料的技术以克服传统方法之不足,是发展高附加值多功能无机纳米/木材复合材料的关键。
     针对上述问题,并考虑木材应尽量避免受高温处理以防组分及材质的劣变,本论文提出采用低温水热共溶剂法在木材表面生长无机纳米材料的新思路,将水热结晶法和溶剂热法有机地结合在一起,在木材表面预先培植纳米晶种,经水热能量诱导和表面活性剂自组装,在木材表面生长了TiO2、ZnO、SiO2、CaCO3、MnO2、单质Ag及二元复合纳米材料Ti02-ZnO等7种无机纳米材料晶层。详细研究了无机纳米材料在木材表面的生长工艺,系统探讨了纳米材料的形貌、尺寸、结晶特性及晶型的可控制备,并对纳米材料所引发的木材固有性能改善和特殊性能衍生进行了检测分析。论文主要研究内容及结论如下:
     1、制备了钛酸盐纳米管并对其影响因素和工艺进行了深入分析,结果表明前驱体锐钛矿型Ti02在强碱水热环境中可经历“颗粒-片-管-线”的转变过程;NaOH浓度、水热温度和水热时间对钛酸盐纳米管的形成和光催化活性均有影响,制备的钛酸盐纳米管具有良好的热稳定性,经500℃煅烧仍可保持完整的管状结构,此时纳米管光催化活性较好。研究结果为本文后几章开发低温水热共溶剂法制备外负载无机纳米/木材功能型材料的工作提供了相应的基本技术方法和良好的前期研究基础。
     2、在木材表面上实现了纳米Ti02的可控生长并对制备的Ti02/木材功能性材料的特征和性能进行了分析表征。结果表明:(1)反应时间、温度、化学环境和前驱物钛酸四丁酯的添加量对木材表面生长的锐钛矿型Ti02的形貌、维度、尺寸及生长量均有显著影响。在70℃-100℃之间,不同颗粒尺寸、形貌、维度、生长量的Ti02连续晶层会在木材表面形成;颗粒尺寸可从典型的纳米尺度向微米尺寸转变,形貌可从纳米颗粒向光滑球形和一维尺度转变,生长量可从9.6%升至32.6%。(2)经90天冷水浸泡,外负载型Ti02/木材的吸水率比素材减少近11倍,木材径面、弦面及体积尺寸变化微小;经不同湿度(20%-90%)的调湿处理,外负载型Ti02/木材的吸湿率较素材降低近3倍,尺寸变化约较素材降低近20倍;抗弯强度(MOR)和抗弯弹性模量(MOE)较素材并无显著变化。(3)对木材表面生长的锐钛矿Ti02进行二次改性,将具有疏水长链烷烃的表面活性剂十二万基硫酸钠(SDS)经水热作用覆盖于Ti02表面制备了疏水性Ti02/木材,最大水接触角(WCA)为154°。(4)成功地在木材表面生长了锐钛矿和金红石相Ti02微球层,经1200h紫外老化加速试验发现外负载金红石相Ti02/木材具有显著抵御紫外光侵蚀的能力,能很好地保护木材表面材色不发生光致变色。(5)锐钛矿Ti02/木材具有良好的抗菌性能并能够光催化降解气体甲醛,紫外光激发下4小时内对大肠杆菌和金黄葡萄球菌的杀菌率分别为94.7%和92.6%;室温下168h对气体甲醛的吸附降解率可达98.7%。(6)经燃烧测试表明,木材表面生长Ti02无机晶层后,可使得材料的燃烧时间较木材素材延长近2倍,并可显著降低材料燃烧时的烟释放量。
     3、在木材表面预植氧化锌晶种,采用低温水热共溶剂法加以Zn源诱导和表面活性剂的自组装作用在木材表面成功地生长了不同形貌的ZnO纳米材料,系统考察了水热温度、时间、Zn源浓度及前驱体配比对ZnO晶体形貌、生长量和结晶特性的影响,探讨了不同形貌ZnO纳米材料在木材表面的生长机理。结果表明:(1)水热温度、时间、Zn源浓度和前驱物配比对ZnO纳米材料的形貌、生长量和结晶特性均有显著影响,在木材表面生长结晶完好的ZnO纳米棒阵列(ZNA)的适宜条件为:水热温度为90℃、反应时间为2.5h、前驱体浓度为0.015M、六次甲基四胺(HMT)A与硝酸锌的摩尔比为1:1。(2)经90天冷水浸泡,ZNA/木材的吸水率较素材降低近4倍,水接触角在20s内由118°仅降至106°,而此时木材素材的水接触角已降为0°。测定了90天不同相对湿度(20%-90%)下ZNA/木材的吸湿率,ZNA/木材的最大吸湿量为14%,较素材的18%差异并不显著;不同相对湿度下ZNA/木材的尺寸变化较素材的要小得多。ZNA/木材的MOR和MOE较素材并无显著变化。(3)经1200h紫外加速老化试验表明ZNA/木材具有良好的抵御紫外光侵蚀能力,其综合色差变化不明显,仅为木材素材的1/4左右。(4)ZNA/木材的水接触角为118°,进行二次负载十二烷基三甲氧基硅烷(DTMS)后可达到156°,具有超疏水性效果。(5)室温紫外光照射下,5h内ZNA/木材对pH=6.86的甲基橙溶液的降解率为80%,环境温度和溶液pH值对甲基橙溶液的降解率有显著影响。(6)在表面活性剂乙二胺、柠檬酸三乙酯、十二烷基硫酸钠及尿素的自组装作用下,木材表面生长了纳米针、纳米盘、纳米花和纳米球等不同形貌的ZnO纳米材料。形貌对材料的抗紫外能力、表面润湿性及光催化降解能力均有显著影响。经1200h紫外照射后,不同形貌ZnO/木材整体色差变化从小至大的顺序依次为纳米针、纳米花、纳米盘和纳米球;经DTMS改性后,外负载ZnO纳米针、纳米花、纳米盘及纳米球/木材的WCA分别为153°、151°、134°和126°,不同形貌ZnO/木材都具有疏水或者超疏水效果,而它们经300min紫外光照射后的甲基橙降解率分别为80%、78%、75%和62%。(7)探讨了不同形貌的ZnO纳米材料在木材表面的生长机理:水热状态下,前驱物自由离子分解形成ZnO晶核,晶核在水热能量、前驱物分解能力和反应介质控制下进行生长,加之表面活性剂的自组装功能即可在木材表面形成不同形貌的ZnO纳米材料。
     4、配置含有不同无机自由离子的前驱溶液,采用低温水热共溶剂法分别在木材表面生长了Si02、CaCO3、Mn02、单质Ag和二元Ti02-ZnO材料等5种纳米材料,对制备的复合材料进行了分析表征和性能测试。结果表明:(1)木材表面生长的无定形纳米SiO2具有颗粒、球状和线状等形貌,生长量可从7.12%增至14.26%;SiO2与木材表面羟基通过氢键键合而连接在一起;制备的Si02/木材具有一定的抗紫外侵蚀能力。(2)木材表面生长的纳米CaCO3具有颗粒、梭形、方形和球形等形貌,生长量可从4.25%增至10.72%;生长的CaCO3可使木材表面硬度提高约55%。(4)木材表面生长的体心四方α-MnO2具有颗粒、短棒状和线状等形貌,生长量可从4.26%增至11.24%;Mn02/木材的WCA为142°。(5)木材表面生长了面心立方结构的纳米Ag颗粒,制备的Ag/木材对大肠杆菌的杀菌率可达99.2%。(6)尝试在木材表面生长二元TiO2-ZnO纳米复合材料,结果表明纤锌矿ZnO和锐钛矿TiO2可在水热能量作用下可生长于木材表面,制备的外负载Ti02-ZnO/木材室温下300min对甲基橙溶液的降解率可达90%。
     5、经研究分析阐释了采用低温水热共溶剂法在木材表面生长无机纳米材料的机理:木材在含有无机自由离子或胶粒的溶液或胶体中,自由离子或者胶粒在水热能量作用下生长为纳米材料,其表面产生的基团与木材表面富含的羟基发生氢键键合而连接于木材表面,从而在木材表面形成无机纳米晶层,进而可改善木材固有性能并衍生新的特殊性能。
Manufacture multi-functional new composite materials of inorganic nanometer/wood by effectively loading the inorganic nanometer materials on the wood surface has great research values and practical significance to the persistent, functional and high value-added utilization of woods. However, the traditional dipping or mechanical brushing of the inorganic nanometer materials on the wood surface is easy to cause problems such as uneven dispersion and poor bonding property with the matrix interface, which makes it hard to realize the small size effect and surface effect and further restricts the full play of the properties of nanometer materials and the improved properties of woods. Therefore, the key to seek new in-situ grown nanometer material technology on the wood surface and overcome the defects of the traditional methods is to develop high value-added and multi-functional composite materials of inorganic nanometer/wood.
     In view of the above problems and on the basis of the wood components'characteristics of avoiding high temperature treatment, this paper presents a new thought of low-temperature-cosolvent hydrothermal method to grow inorganic nanometer materials on the wood surface. This method combines the hydrothermal crystallization method and solvothermal method, which cultivates nanocrystalline on the wood surface in advance and grows7kinds of inorganic nanometer crystal layers on the wood surface through the hydrothermal energy induction and surface active agent self-assembly. They are TiO2, ZnO, SiO2, CaCO3, MnO2, simple substance Ag and binary composite nanometer material TiO2-ZnO. This paper detailedly studies the technique of growing inorganic nanometer materials on the wood surface and systematically discusses the nanometer materials'feature, size and the crystallization properties and the controllable manufacture of crystalline, and also examines and analyzes the improved wood inherent properties and special properties derived from the nanometer materials. The major research contents and conclusion of this paper are as follows.
     1. Manufacture the titanate nanotubes and make profound analysis on its influence technique. The results show that TiO2of precursor anatase experiences the transition process of "particle-slice-tube-line" in the strong base hydrothermal environment. The concentration of NaOH, the temperature and time of hydrothermal all influence the formation and photecatalytic activity of titanate nanotube. The manufactured titanate nanotubes have good thermal stability and it can still keep complete tubular structure under500℃calcinations and at this time the photocatalytic activity of nanotubes is better. The research results provide a good theoretical guidance and early-stage preparation for the development of manufacturing outer-loading inorganic nanometer/wood functional materials through low-temperature-cosolvent hydrothermal method.
     2. Realize the controlled growth of nano TiO2on the wood surface and carry out the analysis and characterization of the characteristics and properties of the manufactured TiO2/wood functional materials. The results show that:(1) the reaction time, temperature, chemical environment and the added amount of precursors tetrabutyl titanate have significant influences on the feature, dimension, size and growing amount of anatase TiO2. Between temperatures of70℃~100℃, continuously-growing TiO2crystal layers of different particle sizes, features, dimensions and growing amounts. The particle sizes will transit from the typical nanometer scale to micron scale; features transits from nanoparticles to smooth sphere and one-dimensional scale and the growing amount increases from9.6%to32.6%.(2) After90-day cold-water dripping, the water absorption of outer loaded TiO2/wood decreases by11times of the material and there is little changes on the diametric plane, flat grain face and dimension of woods. By different humidity (20%~90%), the water absorption of outer loaded TiO2/wood is nearly3times lower than that of material and the size change is about20times lower than that of material; MOR and MOE has no significant change compared with materials.(3) Carry out secondary modification of anatase TiO2on the wood surface and cover the surface active agent SDS with lyophobic long-chain alkane under the hydrothermal effect on the surface of TiO2to manufacture hydrophobic TiO2/wood, with maximum water contact angle (WCA) of154°.(4) Successfully grow anatase TiO2and rutile phase TiO2microspheres layer on the wood surface. After1200-hour UV irradiation accelerated aging test, it is found that outer loaded rutile phase TiO2/wood owns significant uvioresistant erosion ability and protects the material color on the wood surface from photochromatism.(5) Anatase TiO2/wood has good antibacterial property and photcatalytic degradation of gas formaldehyde; the sterilization rates of escherichia coli and staphylococcus aureus are94.7%and92.6%respectively under the stimulation of4-hour ultraviolet light; and the degradation rate of gas formaldehyde can amount to98.7%in168hours at room temperature.(6) The burning tests show that, the grown TiO2inorganic crystal layer on the wood surface can prolong nearly2times burning time compared with that of material and significantly reduce the smoke release a quantity when material is burning.
     3. Pre-cultivate ZnO crystal seeds on the wood surface and successfully grow ZnO nano materials with different features on the surface by adopting low-temperature-cosolvent hydrothermal method and Zn source inducement and self-assembly of surface active agents. At the same time, systematically explore the influences of the different hydrothermal temperature, time, Zn source concentration and precursor proportion on ZnO crystal features, growing amount and crystallization properties as well as the growing mechanism of ZnO nanometer materials with different features on the wood surface. The results show that:(1) The influences of the different hydrothermal temperature, time, Zn source concentration and precursor proportion on ZnO crystal features, growing amount and crystallization properties are significant and the appropriate conditions for ZNA perfectly crystallized on the wood surface are:90℃C hydrothermal temperature,2.5h reaction time,0.015M precursor concentration and HMT A and zinc nitrate with molar ratio of1:1.(2) After90-day-cold water dipping, the water absorption of ZNA/wood is nearly4times lower than that of material; ASE decreases from67%to35%; water contact angle drops from118°to merely106°in20s, in which case that the water contact angle of wood material has dropped to0°. The water absorption of ZNA/wood with different relative humidity (20%~90%) in the90days is tested, with a maximum hygroscopic capacity of14%and not significantly different from18%of the material. The size change of ZNA/wood with different relative humidity is much smaller than that of material. MOR and MOE of ZNA/wood have no significant damage compared with that of material.(3)1,200-hour ultraviolet accelerated aging test shows that ZNA/wood has good uvioresistant erosion ability and the integrated color difference is not apparent, which is only about a quarter of that of wood material.(4) The water contact angle of ZNA/wood is118°and reaches156°after secondary load of DTMS. The super hydrophobicity is good.(5) Under UV irradiation at room temperature, the degradation rate of ZNA/wood on methyl orange solution with pH=6.86within5h is80%. The influences of environment temperature and solution pH values on the degradation rate on methyl orange solution are significant.(6) Under the self-assembly effect of surface active agents such as ethidene diamine, triethyl citrate, lauryl sodium sulfate and urea, on the wood surface, ZnO nano materials with different features of needle, dish, flower, sphere and others grow and the influence of different features on uvioresistant ability, surfacial wettability and photocatalytic degradation ability is significant. After1200-hour uvioresistant irradiation, ZnO/wood integrated color differences of different features in increasing tendency are nano needle, nano flower, nano dish and nano sphere. After DTMS modification, WCA of outer loaded ZnO nano needle, nano flower, nano dish and nano shpere/wood are respectively153°,151°,134°and126°; ZnO/wood of different features all have hydrophobic effect or super-hydrophobic effect; and their degradation rates on methyl orange in300minutes'uv irradiation are80%,78%,75%and62%.(7)Explore and discuss the growing mechanism of ZnO nanometer materials of different features on the wood surface and ZnO crystal nucleus formed by precursor free ions'decomposition under hydrothermal condition. Crystal nucleus grows under the controls of hydrothermal energy, precursor decomposition ability and the reaction medium. With the aid of self-assembly function of surface active agent, ZnO nano materials of different features on the wood surface forms on the wood surface.
     4. By preparing precursor solution containing different inorganic free ions and adopting low-temperature-cosolvent hydrothermal method, grow5kinds of nano materials such as SiO2, CaCO3, MnO2, simple substance Ag and binary TiO2-ZnO material respectively on the wood surface and carry out analysis and characterization and property tests on the manufactured composite materials. The results show that:(1) Amorphism nano SiO2grown on the wood surface has the features of particle, sphere and line and the growing amount should increase from7.12%to14.26%. SiO2bonds with hydroxide radical on the wood surface to be connected together. The manufactured SiO2/wood has certain uvioresistant erosion ability.(2) Nano CaCO3grown on the wood surface has features of particles, spindle, square, sphere and others. The growing amount should increase from4.25%to10.72%. The grown CaCO3can improve wood surface hardness by about55%.(4) body-centered tetragonala-MnO2grown on the wood surface has the features of particles, cosh, line and others. The growing amount should increase from4.26%to11.24%. WCA of MnO2/wood is142°.(5) On the wood surface, nano Ag particles with face-centered cubic structure grow and the manufactured Ag/wood owns99.2%sterilizing rate of escherichia coli.(6) Try to grow binary TiO2-ZnO nano composite materials on the wood surface. The results show that wurtzite ZnO and anatase TiO2can successfully load on the wood surface under the effect of hydrothermal energy and the manufactured outer loaded TiO2-ZnO/wood owns90%degradation rate of methyl orange solution in300minutes.
     5. Put forward the mechanism of growing inorganic nanometer materials on the wood surface. The woods are set in the solution or colloid containing inorganic free ions or colloidal particles, which will grow into nanometer materials with the hydrothermal energy effect. The groups generated on the surface react with hydroxide radical on the wood surface and forms hydrogen bond, in this way to be connected on the wood surface and further generate the inorganic nanometer crystal layer on the wood surface. Finally, the wood properties are improved and new special properties are derived.
引文
[1]邱坚,李坚.纳米科技及其在木材科学中的应用前景(Ⅰ)——纳米材料的概况、制备和应用前景.东北林业大学学报.2003(01):1-5
    [2]李坚,邱坚.纳米技术及其在木材科学中的应用前景(Ⅱ)——纳米复合材料的结构、性能和应用.东北林业大学学报.2003(02):1-3
    [3]李坚,邱坚.生物矿化原理与木材纳米结构复合材料.林业科学.2005(01):189-193
    [4]邱坚,李坚,刘迎涛.无机质复合木材研究进展.东北林业大学学报.2004(01):64-67
    [5]JF. Beecher. Organic materials:wood, trees and nanotechnology. Nat Nanotechnol.2007,2(8):466-467
    [6]G. Rassam, Y. Abdi, A. Abdi. Deposition of TiO2 nano-particles on wood surfaces for UV and moisture protection. J Exp Nanosci.2011:1-9
    [7]RJ. Moon, A. Martini, J. Nairn, et al.. Cellulose nanomaterials review:structure, properties and nanocomposites. Chem Soc Rev.2011,40(7):3941-3994
    [8]CAS. Hill. Wood modification-chemical, thermal and other processed. Wiley, Chichester, 2006
    [9]T. P. Wegner, D. Jones. Nanotechnology for the forest products industry. Wood Fiber Sci. 2007,37(4):549-551
    [10]S. Kumar. Chemical modification of wood. Wood Fiber Sci.1994,26(2):270-280
    [11]A. Laachachia, E. Leroyb, M. Cocheza, et al.. Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym Degrad Stab.2005,89(2):344-352
    [12]M. Le Bras, C. Wilkie, S. Bourbigot, et al. Fire retardancy of polymers:the use of micro-and nano-sized mineral fillers. R.S.C, Cambridge,2004
    [13]TH. Wegner, P. Jones. Advancing cellulose-based nanotechnology. Cellulose.2006,13(2): 115-118
    [14]M.Agarwal, Y. Lvov, K. Varahramyan. Conductive wood microfibers for smart paper through layer-by-layer nanocoating. Nanotechnol.2006,17(21):5319-5325
    [15]郑兴国,姜卸宏,曹金珍,等.新型纳米杀菌剂在木材防腐中的应用.林业机械与木工设备.2008,36(7):9-11
    [16]G. Goncalves, PAA. Marques, RJB. Pinto, et al.. Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Composites Sci Technol.2009,69(7-8): 1051-1056
    [17]S. Donath, H. Militz, C. Cai. Wood modification with alkoxysilanes. Wood Sci Technol. 2004,38(7):555-566
    [18]刘一星,于海鹏,赵荣军.木质环境学.北京:科学出版社,2007
    [19]李坚.木材科学.北京:高等教育出版社,2002
    [20]吴书泓 吴玉章,叶克林.中国木材功能性改良技术发展方向.木材工业.2000,14(3):16-18
    [21]崔会旺,杜官本.我国木材功能性改良研究进展.林产工业.2007,34(6):3-7
    [22]李坚,邱坚,刘一星Sol-Gel法制备木材功能性改良用Si02凝胶.林业科学.2007,43(12):106-111
    [23]陈小辉,林金国.最近10年我国木材功能性改良研究进展.福建林业科技.2011,38(1):154-158
    [24]李坚,段新芳,刘一星.木材表面的功能性改良.东北林业大学学报.1995,23(2):95-101
    [25]刘元,胡云楚,袁光明.纳米科技与纳米木材学的发展方向.中南林学院学报.2004,24(5):143-146
    [26]崔会旺,杜官本.纳米材料在木材工业中的应用.中国人造板.2008,1:5-8
    [27]张久荣.纳米技术与木材工业.中国人造板.2009,4:11-15
    [28]杨文斌, 张文辉.纳米科技与21世纪的木材工业.福建林业科技.2004,31(4):100-102
    [29]李坚,邱坚.新型木材-无机复合材.北京:科学出版社,2005
    [30]袁光明,刘元,胡云楚,等.几种用于木材/无机纳米复合材料的纳米粒子分散与改性研究.武汉理工大学学报(交通科学与工程版).2008,32(1):142-145
    [31]袁光明,吴义强,胡云楚.用无机纳米材料复合改性木材的机理研究进展.中南林业科技大学学报.2010,30(5):163-167
    [32]刘元,袁光明,胡云楚,等.木材/无机纳米复合材料研究现状与展望.中南林学院学报.2005,25(3):111-116
    [33]张平,许福,万辉.纳米技术应用于木材改性的实验研究.湘潭大学自然科学学报.2005,27(2):80-83
    [34]赵广杰.木材中的纳米尺度、纳米木材及木材-无机纳米复合材料.北京林业大学学报.2002,24(Z1):204-207
    [35]时尽书,李建章,周文瑞,等.纳米材料:木材改性的希望.中国林业产业.2004,7:48-50
    [36]邱坚,李坚.纳米科技走进木材科学.国际木业.2003,1:10-11
    [37]李坚,吴玉章,马岩.功能性木材.北京:科学出版社,2011
    [38]Z. Wang. Zinc oxide nanostructures:growth, properties and applications. J Phys: Condens Matter.2004,16(25):R829-R858
    [39]Z. Fan. J. Lu. Zinc oxide nanostructures:synthesis and properties. J Nanosci Nanotechno.2005,5(10):1561-1573
    [40]D. Xiong, J. Lin, D. Fan. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy. Biomed Mater.2006,1(3):175-179
    [41]A. Mazahery, M. Ostadshabani. Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. J Compos Mater.2011,45(24):2579-2586
    [42]X. Li, Z. Cao, Z. Zhang, et al.. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl Surf Sci.2006,252(22):7856-7861
    [43]M. Rong, M. Zhang, Y. Zheng, et al.. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer.2001, 42(7):3301-3304
    [44]N. Chen, C. Wan, Y.Zhang, et al.. Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend. Polym Test.2004,23(2):169-174
    [45]C. Wang, C. Piao, Xi. Zhai, et al.. Synthesis and character of super-hydrophobic CaCO3 powder in situ. Powder Technol.2010,200(1-2):84-86
    [46]X. Chen, Z. Wang, Z. Liao, et al.. Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polym Test.2007,26(2):202-208
    [47]B. Mahltig, C. Swaboda, A. Roessler, et al.. Functionalising wood by nanosol application. J Mater Chem.2008,18(27):3180-3192
    [48]R. Espinosa, I. Zumeta, J. L. Santana, et al.. Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600 nm. Sol Energ Mat Sol C.2005,85(3):359-369
    [49]H. Miyafuji, S. Saka. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Sci Technol.1997,31(6):449-455
    [50]T. Hubert, B. Unger, M. Bucker. Sol-gel derived TiO2 wood composites. J Sol-Gel Sci Techn.2010,53(2):384-389
    [51]邱坚.木材/Si02气凝胶纳米复合材的研究.东北林业大学博士论文.2004
    [52]刘磊,朱玮,赵砺.杨木/无机硅化物复合材处理工艺初探.木材工业.2001,15(3):8-11
    [53]C. Wang, C. Piao, C. Lucas. Synthesis and characterization of superhydrophobic wood surfaces. J Appl Polym Sci.2011,119(3):1667-1672
    [54]王成毓,王书良,刘常瑜,等.木材表面超疏水性球状α-FeOOH膜的合成.中国科技论文在线.2010
    [55]龙玲,万祥龙,王金林.抗菌型饰面人造板的研究.林业科学.2006,42(12):114-119
    [56]黄素涌,李凯夫,佘祥威.杉木/Ti02复合材料的抗菌性.林业科学.2011, 47(1):181-184
    [57]Y. Yu, Z. Jiang, G. Wang, G. Tian, et al.. Surface functionalization of bamboo with nanostructured ZnO. Wood Sci Technol:1-10
    [58]余雁,宋烨,王戈,等.ZnO纳米溥膜在竹材表面的生长及防护性能.深圳大学学报理工版.2009,26(4):360-363
    [59]田根林,余雁,王戈,等.竹材表面超疏水改性的初步研究.北京林业大学学报.2010,32(3):166-169
    [60]江泽慧,孙丰波,余雁,等.竹材的纳米Ti02改性及防光变色性能.林业科学.2010,42(2):116-121
    [61]孙丰波,余雁,江泽慧,等.竹材的纳米Ti02改性及抗菌防霉性能研究.光谱学与光谱分析.2010,30(4):1056-1060
    [62]Y. Yu, Z. Jiang, G. Wang, et al.. Surface functionalization of bamboo with nanostructured ZnO. Wood Sci Technol doi:10.1007/s00226-011-0446-7
    [63]Y. Yu, Z.Jiang, G. Tian, et al.. Improving photostability and antifungal performance of bamboo with nanostructured zinc oxide. Wood Fiber Sci.2011,43(3):293-304
    [64]MA. Tshabalala, R. Libert, CM. Schaller. Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers. Holzforschung.2011,65(2):215-220
    [65]MA. Tshabalala, LP. Sung. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films. J Coat Technol Res.2007,4(4):483-490
    [66]MA. Tshabalala. Wood surface modification by in situ sol-gel deposition of hybrid inorganic-organic thin films. Abstr Pap Am Chem S.2006,231
    [67]MA. Tshabalala, JE. Gangstad. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. J Coating Technol.2003, 75(943):37-43
    [68]MA. Tshabalala, P. Kingshott, MR. VanLandingham, et al.. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process. J Appl Polym Sci.2003,88(12):2828-2841
    [69]AR. Denes, MA. Tshabalala, R. Rowell. Hexamethyldisiloxane-plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung.1999, 53(3):318-326
    [70]Y. Yu, Z. Jiang, G. Wang, et al.. Growth of ZnO nanofilms on wood with improved photostability. Holzforschung.2010,64(3):385-390
    [71]S. Saka, T. Ueno. Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci Technol.1997,31(6):457-466
    [72]Q. Sun, H. Yu, Y. Liu, et al.. Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method. J Mater Sci.2010,45(24):6661-6667
    [73]T. Furuno, Y. Imamura. Combinations of wood and silicate Part 6. Biological resistances of wood-mineral composites using water glass-boron compound system. Wood Sci Technol.1998,32(3):161-170
    [74]T. Furuno, T. Uehara, S. Jodai. Combinations of wood and silicate I. Impregnation by water glass and applications of aluminum sulfate and calcium chloride as reactants. Mokuzai Gakkaishi,.1991.,37(5):462-472
    [75]T. Furuno, T. Uehara, S. Jodai. Wood-mineral composites using water glass and reactants of barium chloride, boric acid, and borax, and their properties. Mokuzai Gakkaishi.1992,38(5):448-457
    [76]T. Furuno, T. Uehara, S. Jodai. Some properties of wood-mineral composites using the water glass-boron compound system. Mokuzai Gakkaishi.1993,39(5):561-570
    [77]T. Furuno, L. Lin, S. Katoh. Leachability, decay, and termite resistance of wood treated with metaborates. J Wood Sci.2003,49(4):344-348
    [78]M. Doi, S. Saka, H. Miyafuji, et al.. Development of carbonized TiO2-woody composites for environmental cleaning. Mater Sci Res Int.2000,6(1):15-21
    [79]S. Fujita, H. Miyafuji, S. Saka. Antimicrobial SiO2 wood-inorganic composites as prepared by the sol-gel process with water-soluble silicon oligomer agents. Mokuzai Gakkaishi.2003,49(5):365-370
    [80]H. Matsumura, S. Saka. Cellulose triacetate prepared from low-grade wood pulp.1. Insoluble residue in acetylation solution. Mokuzai Gakkaishi.1992,38(3):270-276
    [81]H. Matsumura, S. Saka. Cellulose triacetate prepared from low-grade wood pulp.2. Remedies for reducing the insoluble residue in acetylation solution. Mokuzai Gakkaishi.1992,38(9):862-868
    [82]H. Miyafuji, H. Kokaji, S. Saka. Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent. J Wood Sci.2004,50(2):130-135
    [83]H. Miyafuji, S. Saka. Wood-inorganic composites prepared by the sol-gel process.5. Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites. Mokuzai Gakkaishi.1996,42(1):74-80
    [84]H. Miyafuji, S. Saka. Topochemistry of SiO2 wood-inorganic composites for enhancing water-repellency. Mater Sci Res Int.1999,5(4):270-275
    [85]H. Miyafuji, S. Saka. Na2O-SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J Wood Sci.2001,47(6):483-489
    [86]H. Miyafuji, S. Saka, A. Yamamoto. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforschung.1998,52(4):410-416
    [87]K. Ogiso, S. Saka. Wood-inorganic composites prepared by Sol-Gel process.2. Effects of ultrasonic treatments on preparation of wood-inorganic composites. Mokuzai Gakkaishi.1993,39(3):301-307
    [88]K. Ogiso, S. Saka. Wood-inorganic composites prepared by Sol-Gel process.4. Effects of chemical-bonds between wood and inorganic substances on properly enhancement. Mokuzai Gakkaishi.1994,40(10):1100-1106
    [89]S. Saka. Special issue on "Wood science and technology for mitigation of global warming". J Wood Sci.2009,55(6):389-389
    [90]S. Saka, H. Miyafuji, F. Tanno. Wood-inorganic composites prepared by the sol-gel process. J Sol-Gel Sci Techn.2001,20(2):213-215
    [91]S. Saka, F. Tanno. Wood-inorganic composites prepared by the sol-gel process.6. Effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O5 wood-inorganic composites. Mokuzai Gakkaishi.1996,42(1):81-86
    [92]S. Saka, Y. Yakake. Wood-inorganic composites prepared by Sol-Gel process.3. Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi.1993, 39(3):308-314
    [93]王西成,程之强,莫小洪,等.木材-二氧化硅原位复合材料及其界面研究.材料工程.1998,5:16-18
    [94]孙立,莫小洪,程之强,等.用化学方法制备木材/二氧化硅纳米复合材料.中国建材科技.1998,7(3):23-25
    [95]周平,张志毅,梁树平.毛白杨无机复合木材研究.北京林业大学学报.2000,22(6):39-42
    [96]蔡宁,马荣,乔冠军,等.木材陶瓷化反应机理的研究.无机材料学报.2001,16(4):763-767
    [97]陈志林,王群,左铁墉,等.无机质复合木材的复合工艺与性能.复合材料学报.2003,20(4):128-132
    [98]吕宁.溶胶-凝胶法制备木材/无机复合材料.北京林业大学硕士学位论文.2004
    [99]吕文华.木材/蒙脱土纳米插层复合材料的制备.北京林业大学博士学位论文.2004
    [100]邱坚,李坚.超临界制备木材-Si02气凝胶复合材料及其纳米结构.东北林业大学学报.2005,33(3):3-4
    [101]邱坚,李坚,刘一星.Si02溶胶空细胞法浸渍处理木材工艺.林业科学.2008,44(3):124-128
    [102]袁光明,刘元,吴义强,等.杉木-纳米Si02复合材料结构表征及复合机理研究.湖南大学学报(自然科学版).2009,36(9):59-62
    [103]袁光明,刘元,吴义强,等.杉木/纳米Al203复合材料结构及其机理研究.武汉理工大学学报(交通科学与工程版).2009,31(19):45-48
    [104]袁光明,刘元,胡云楚,等.杉木-纳米碳酸钙复合材料制备及性能表征.中南林业科技大学学报.2009,29(4):83-87
    [105]袁光明,刘元,刘干.杉木-纳米CaCO3复合材料结构表征及其复合机理分析.中南林业科技大学学报.2010,30(4):116-121
    [106]KJ. Schmalzl, PD. Evans. Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stabil.2003,82(3):409-419
    [107]P. Evans, H. Matsunaga, M. Kiguchi. Large-scale application of nanotechnology for wood protection. Nat Nano.2008,3(10):577-577
    [108]F. Chen, X. Yang, Q. Wu. Antifungal capability of TiO2 coated film on moist wood. Build Environ.2009,44(5):1088-1093
    [109]U. Diebold. The surface science of titanium dioxide. Surf Sci Rep.2003,48(5-8):53-229
    [110]李燕,陈祖耀.纳米级超细粉的水热合成及结构相变的研究.安徽建筑工业学院学报.1997,5(1):39-41
    [111]张霞,赵岩,张彩碚.表面疏水性纳米Ti02颗粒的制备及光催化性能.材料研究学报.2005,19(2):131-138
    [112]H. Cheng, J. Ma, Z. Zhao, et al.. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater.1995,7(4):663-671
    [113]R. Penn, J. Banfield. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania. Geochim Cosmochim Ac.1999,63(10):1549-1557
    [114]Z. Zhang, X. Zhong, S. Liu, et al.. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Edit.2005,117(22):3532-3536
    [115]H. Yang, C. Sun, S. Qiao, et al.. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature.2008,453(7195):638-641
    [116]H. Yang, G. Liu, S. Qiao, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets. J Am Chem Soc.2009, 131(11):4078-4083
    [117]Y.Liu, Y.Yang, H.Yang, et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J Inorg Biochem.2005,99(10):2046-2053
    [118]H. Yin, Z. Xu, Q. Wang, et al. Study of assembling ZnO nanorods into chrysanthemum-like crystals. Mater Chem Phys.2005,91(1):130-133
    [119]L. Guo, Y. Ji, H. Xu, et al. Regularly shaped, single-crystalline ZnO nanorods with wurtzite Structure. J Am Chem Soc.2002,124(50):14864-14865
    [120]JH. Choy, ES. Jang, JH. Won, et al. Hydrothermal route to ZnO nanocoral reefs and nanofibers. Appl Phys Lett.2004,84(2):287-289
    [121]P. Yang, J. Wang, W. Tsai, et al. Field-emission characteristics of Al-doped ZnO nanostructures hydrothermally synthesized at low temperature. J Nnanosci Nanotechno.2011, 11(7):6013-6019
    [122]K. Sun, Y. Jing, N. Park, et al. Solution synthesis of large-Scale, high-Sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J Am Chem Soc.2010, 132(44):15465-15467
    [123]常德龙,李坚,黄文豪,等.镀膜木材的耐候性.东北林业大学学报.2011,39(12):80-81
    [124]李坚.人+木=休——木材神奇之力量.家具.1998,2:4
    [125]李坚.木材的碳素储存与环境效应.家具.2007,(3)
    [126]李坚.木材的生态学属性——木材是绿色环境人体健康的贡献者.东北林业大学学报.2010,38(5):1-8
    [127]李坚.木材对环境保护的响应特性和低碳加工分析.东北林业大学学报.2010,38(6):111-114
    [128]李坚,董玉库,刘一星.木材、人类与环境.家具.1991,4:10-11
    [129]李坚,董玉库,刘一星.木材、人类与环境(续).家具.1991,5:15-16
    [130]李坚,董玉库,刘一星.木材、人类与环境(续).家具.1992,1:15-17
    [131]韩士杰 李坚,徐子才,等.木质材料的表面劣化与木材保护的研究.东北林业大学学报.1989,17(02):48-56
    [132]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature.1972,238(5358):37-38
    [133]B. Oregan, M. Gratzel. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature.1991,353(6346):737-740
    [134]X. Chen, S. S. Mao. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications. Chem Rev.2007,107(7):2891-2959
    [135]A. Hagfeldt, M. Gratzel. Light-induced redox reactions in nanocrystalline systems. Chem Rev.1995,95(1):49-68
    [136]MR. Hoffmann, ST. Martin, WY. Choi, et al. Environmental applications of semiconductor photocatalysis. Chem Rev.1995,95(1):69-96
    [137]AL. Linsebigler, GQ. Lu, JT. Yates. Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem Rev.1995,95(3):735-758
    [138]TL. Thompson, JT. Yates. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev.2006,106(10):4428-4453
    [139]R. Wang, K. Hashimoto, A. Fujishima, et al. Light-induced amphiphilic surfaces. Nature.1997,388(6641):431-432
    [140]李坚.生物质复合材料学.北京:科学出版社,2008
    [141]KK. Pandey. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci.1999,71(12):1969-1975
    [142]J. Ruhe, VJ. Novotny, KK. Kanazawa, et al.. Structure and tribological properties of ultrathin alkylsilane films chemisorbed to solid-surfaces. Langmuir.1993,9(9):2383-2388
    [143]MT. Colomer, MJ. Velasco. Rutile-type dense ceramics fabricated by pressureless sintering of Til-xRuxO2 powders prepared by sol-gel. J Eur Ceram Soc.2007, 27(6):2369-2376
    [144]T. Tseng, Y. Lin, Y. Chen, et al.. A review of photocatalysts prepared by sol-gel method for VOCs removal. Int J Mol Sci.2010; 11(6):2336-2361
    [145]H. Zheng, PC. Maness, DM. Blake, et al.. Bactericidal mode of titanium dioxide photocatalysis. J Photoch Photobio A.2000,130(2-3):163-170
    [146]PG. Romero, C.Sanchez. Functional hybrid materials. Wiley-VCH,2004
    [147]M. Arkas, D. Tsiourvas, CM. Paleos. Functional dendritic polymers for the development of hybrid materials for water purification. Macromol Mater Eng.2010, 295(10):883-898
    [148]J. Ruehe, VJ. Novotny, KK. Kanazawa, et al.. Structure and tribological properties of ultrathin alkylsilane films chemisorbed to solid surfaces. Langmuir,1993,9 (9):2383-2388
    [149]T. Pietsch, N. Gindy, B. Mahltig, et al.. Fabrication of functional nano-objects via self-assembly of nanostructured hybrid materials. J Polym Sci Pol Phys.2010, 48(14):1642-1650
    [150]R. Costi, A. E. Saunders, U. Banin. Colloidal hybrid nanostructures:A new type of functional materials. Angew Chem Int Edit.2010,49(29):4878-4897
    [151]A. Ethirajan, K. Landfester. Functional hybrid materials with polymer nanoparticles as templates. Chem-Eur J.2010,16(31):9398-9412
    [152]YQ. Gu, T. Niu, J. G. Huang. Functional polymeric hybrid nanotubular materials derived from natural cellulose substances. J Mater Chem.2010,20(45):10217-10223
    [153]A. Fahmi, T. Pietsch, C. Mendoza, et al.. Functional hybrid materials. Mater Today.2009,12(5):44-50
    [154]N. Tsubokawa. Surface grafting of polymers onto nanoparticles in a solvent-free dry-system and applications of polymer-grafted nanoparticles as novel functional hybrid materials. Polym J.2007,39(10):983-1000
    [155]P. Gomez-Romero, C. Sanchez. Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New J Chem.2005,29(1):57-58
    [156]B. Liu, LS. Qiang. Progress of organic/inorganic hybrid optical-functional materials prepared by the sol-gel method. Prog Chem.2005,17(1):85-90
    [157]EW. Shin, KG. Karthikeyan, MA. Tshabalala. Adsorption mechanism of cadmium on juniper bark and wood. Bioresource Technol.2007,98(3):588-594
    [158]MK. Yalinkilic, K. Tsunoda, M. Takahashi, et al. Enhancement of biological and physical properties of wood by boric acid-vinyl monomer combination treatment. Holzforschung.1998,52(6):667-672
    [159]E. Baysal, SK. Ozaki, MK. Yalinkilic. Dimensional stabilization of wood treated with furfuryl alcohol catalysed by borates.Wood Sci Technol.2004,38(6):405-415
    [160]K. Tomita, M. Kobayashi, V. Petrykin, et al.. Hydrothermal synthesis of TiO2 nano-particles using novel water-soluble titanium complexes. J Mater Sci. (2008) 43:2217-2221
    [161]J. Zhang, X. Xiao, J. Nan. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J Hazard Mater.2010,176(1-3):617-622
    [162]D. Yang, H. Liu, Z. Zheng, et al.. An efficient photocatalyst structure:TiO2(B) nanofibers with a shell of anatase nanocrystals. J Am Chem Soc.2009, 131(49):17885-17893
    [163]MAB. Barata, MC. Neves, CP. Neto, T. Trindade.growth of BiVO4 particles in cellulosic fibres by in situ reaction. Dyes Pigments.2005,65(2):125-127
    [164]S. Amberg-Schwab, M. Hoffmann, H. Bader, et al.. Inorganic-organic polymers with barrier properties for water vapor, oxygen and flavors. J Sol-Gel Sci Techn.1998,13(1-3):141-146
    [165]D. Huang, S. Liao, S.Quan, et al.. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. J Non-Cryst Solids.2008,354(33):3965-3972
    [166]A. Fujishima, TN. Rao, DA. Tryk. Titanium dioxide photocatalysis. J Photoch Photobio C.2000,1(1):1-21
    [167]X. Colom, F. Carrillo, F. Nogues, et al.. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stabil.2003,80(3):543-549
    [168]S. Inouye, AP Chikkatur, DM. Stamper-Kurn, et al.. Superradiant Rayleigh scattering from a bose-einstein condensate. Science.1999,285(5427):571-574
    [169]G.A. Miller. Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing media. J Phys Chem.1978,82(5):616-618
    [170]NS. Allen, M. Edge, G. Sandoval, et al.. Photocatalytic coatings for environmental applications. Photochem Photobio.2005,81(2):279-290
    [171]JR. Devore. Refractive indices of rutile and sphalerite. J. Opt. Soc. Am..1951, 41(6):416-417
    [172]G. Mie. Beitrage zur optik truber medien, speziell kolloidaler Metallosungen. Annalen der Physik.1908,330(3):377-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700