用户名: 密码: 验证码:
大射电望远镜悬索式馈源支撑系统的非线性静力学、运动学和动力学理论及方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了建立大射电望远镜FAST悬索式支撑馈源系统的非线性静力学,运动学和动力学的数学力学模型所涉及的相关理论和方法。悬索式支撑馈源系统属于并联机构,然而悬索具有的柔性特征使它与一般的刚性并联机构(如Stewart平台)有很大不同。由于悬索并联机构能够满足室外露天工程的要求,同时又能根据需要设计出巨大的工作空间,因此正逐步成为并联机构领域的研究热点;同时,作为建造新一代大射电望远镜的关键技术,已受到广泛的关注,然而关于这种新型机构的研究国内外仍处于探索阶段,尚没有形成统一的理论和方法。本文围绕FAST工程,对并联悬索结构的静力学、运动学及动力学分析的相关理论及方法进行了系统而深入的研究。全文分七章,各章所讨论的主要内容如下
     第一章 绪论。本章介绍了新一代大射电望远镜的研究背景及机电光一体化的悬索馈源系统的技术特点与主要研究内容。回顾了并联悬索机构的研究现状。围绕悬索式馈源系统的非线性静力学、运动学和动力学分析,提出了本文付诸研究并取得进展的若干问题。最后介绍了本文的研究思路和内容。
     第二章 悬索馈源系统的静力分析。本章建立了悬索式支撑馈源系统的非线性静力学模型。论述了柔性悬索的虚牵问题并提出了判定准则。定义并分析了系统的解空间。提出了悬索张力的均匀原则,实现了张力的优化配置。针对六悬索系统工作空间中存在的六个无解面,在综合考虑馈源舱运行规律及悬索受力特点的基础上,通过增加两根向下拉的冗余悬索,提出并设计了八悬索馈源系统。建立了八悬索系统的非线性静力学模型,提出了可行的求解方法——预估张力迭代法。彻底解决了六悬索馈源系统工作空间不连续的问题。
     第三章 悬索馈源系统驱动力的研究。在已知馈源舱的位置,姿态,速度和加速度的情况下,本章对系统的驱动力进行了研究。建立了悬索馈源系统的动平衡方程。确定了在动平衡条件下各悬索的形状。通过将悬索离散为柔性索杆单元,建立了系统的逆运动学及逆动力学模型。分析了悬索上各离散点的位置、速度、加速度和惯性力。推导了在重力和惯性力共同作用下悬索的空间挠曲线微分方程,并研究了悬索的刚体位移和弹性变形。通过刚体-柔体的反复迭代算出悬索馈源系统的驱动力。
     第四章 悬索馈源系统时变结构的顺风向风致响应研究。本章应用余弦级数模拟了符合Davenport功率谱的自然风。基于时不变结构的有限单元法,在综合考虑馈源舱运动规律的基础上,提出了时变系统的瞬时结构假定法,
    
    通过将悬索离散为索杆单元,建立了系统的时变有限元模型,该模型充分考
    虑了悬索的垂度和大变形等几何非线性因素,应用Ne。。ark-D数值积分方
    法,在时域上分析了馈源舱停留在空间某一位置(典型点)和沿空间某一轨
    迹运行(变结构)时,系统的顺风向风致响应。风振时程曲线表明在观测风
    速内,无论是六悬索还是八悬索系统,均满足设计精度要求,但八悬索的两
    根冗余下拉悬索对馈源舱Z方向的振动起到了很好的抑制作用。
     第五章 悬索馈源系统的横风向共振和空气动力失稳的研究。大射电望
    远镜悬索馈源系统是风敏感结构,在风力作用下可能导致横风向涡流脱落振
    动和空气动力失稳。由于系统属于多自由度几何非线性结构,现有的线性结
    构横风向共振分析方法和传统上用于节断模型分析的驰振临界风速判别式不
    再适用。本章利用Newmark法和Newton-Raphson法的思想建立了系统的横风
    向共振模型、平均风及脉动风空气动力模型,通过比较结构在不同风速作用
    下的振动时程曲线,确定了横风向共振和驰振的临界风速,并应用瞬时结构
    假定法研究了脉动风作用下系统的空气动力失稳情况。
     第六章 大射电望远镜50米模型的研究。本章根据大射电望远镜50米
    模型荷载、运动速度等要求,确定了悬索的型号。对模型的静力和驱动力进
    行了研究。分析了模型的顺风向随机风振响应、横风向涡激共振及空气动力
    失稳响应。完成了相关的实验。数值计算和实验数据的比较表明,本文建立
    的大射电望远镜悬索馈源系统的数学力学模型是准确的,数值计算结果是可
    靠的。
     第七章 总结与展望。本章回顾和总结了新一代大射电望远镜机电光一体
    化的悬索馈源系统所涉及的理论、技术和方法。归纳了本文的创新之处和特
    色,并提出了设计和力学分析中仍需进一步研究的若干问题。
FAST (Five hundred meter Aperture Spherical Telescope) is a project of constructing the largest radio telescope of the world in Guizhou Province, China. Optomechatronics on Synthetic Design for Feed Support and Control System, with higher precision and low cost, is applied in the FAST project. Cable-suspension sustaining feed system characterized with the flexibility, as a parallel mechanics, is largely different from other rigid parallel manipulator commonly known as the Stewart platform. With a huge working space, low cost and less requirement of environments, this new type parallel mechanics has been a hot point in the field of parallel manipulator, simultaneously, as a key technology and the most challenging part of FAST, it has been focused in by the astronomer and antenna experts all over the world. However, at present time, it is still open, the existing studies have not established uniformed theories and methods yet. The purpose of this dissertation is to study the related theories and methods on establishing mathematics, mechanics and computational models of non-linear statics, kinematics and dynamics for cable-suspension feed system. There are seven chapters in this dissertation as follows.
    Chapter 1 Preface
    The research background and target of new generation large radio telescope are presented. The technical features and research contents of cable-suspension feed system are described. The current study on parallel cable mechanics is reviewed. Several issues that have been studied and the progresses have been made in this dissertation are proposed.
    Chapter 2 Non-linear static analysis of the cable-suspension system
    Non-linear static mathematics and computational model of cable-suspension feed system is established. Pseudo-drag problem of flexible cable is described and the critical criterion is deduced. The problems of solution space and unique solution of system are defined and discussed. Two optimization principles are proposed to distribute the load ideally among cables, thereby avoid pseudo-drag. Based on the movement laws of cabin, and considering the force condition in cables, a 8-cable suspension feed system, which can completely remove the no solution surfaces in 6-cable system, is presented and designed by means of adding 2 down-ward cables. A solving method, whose feasibility is proved, is developed
    
    
    
    for static equilibrium equations of the cabin.
    Chapter 3 Research on driving forces in the cable-suspension feed system
    Dynamics equilibrium equations of the feed cabin are deduced. Inverse kinematic and dynamic mathematics and computational model are established by discretizing cable into flexible cable-rob body. When cable interacted under the load both of gravity and inertia force, derivative equation of cable's defection curve in space is deduced to study cable's rigidity movement, and flexible deformation is also determined by finite element method. An iterative algorithm of rigid-flexible body is developed to compute driving force of system if the position, posture, velocity and acceleration of feed cabin are known.
    Chapter 4 Time-dependent computational simulation of the response of cable-suspension feed system in gusty wind
    Based on the time-independent structure finite element method, and with consideration of the movement laws of cabin, a 3-D time-dependent structure finite element model formulated by a new method named ISS method (Instantaneous Structure Supposition method) to deal with the vibration response of cable-suspension feed system in gusty wind is presented. In the model, all sources of geometric non-linearity, cable sag and changes of cable geometry due to large displacement, are fully considered. In time domain, turbulent wind load is simulated by applying cosine series. The Newmark- P step-by-step numerical integration algorithm is used to calculate the response behavior of system when feed cabin locates at a certain position (typical location) and when feed cabin moves along a certain trace (time-dependent structure). Compared with the data
引文
[1]保罗·戴维斯著,徐培译,上帝与新物理学,湖南科学技术出版社,1992
    [2]Memorandum of an agreement to co-operate in a technology study program eading to a future very large radio telescope, signed by participants from Astralia, Canada, China, India, the Netherlands, and U.S.A, http://www.nfra.nl/skai/
    [3]M.Nahon, Dynamics and control of a novel radio telescope antenna. AIAA,1999(40): 1-9
    [4]J.Mervis and J. Kinoshiata, Science of America, 1995(270)
    [5]Li Hui, China hopes to move FAST on large telescope. Science of America, 1998(281):771
    [6]南仁东,邱育海,彭勃等,1999——FAST学术年会工作报告.1999,4,北京
    [7]Y.H.Qiu, A novel design for a giant Arecibo-type spherical radio telscope with a active main reflector. Mon. Not. R. Astron. Soc., 1998(301): 827-830
    [8]邱育海,具有主动主反射面的巨型球面射电望远镜.天体物理学报,1998(18):222—227
    [9]B.Y. Duan, Study on the feeder system of large spherical radio telescope from view point of mechanical and strucrural engineering. Proceeding of the Third International Conference on Large Radio Telescope, Guizhou ,China, Oct.2-6,1995
    [10]B.Y. Duan and S.J.Duan, On the nonlinear Dynamic analysis of the line source structure and its suspended cable structure used in large sperical radio telescops. The invited paper of the 25th URSI General Assembly, Lille, France,Aug. 1996
    [11]B.Y. Duan, Some new result about the design of mechanical, electronic, optic and automatic control technologies for next generation large radio telescopes. The invited paper of the URSI Large Telescope working Group Meeting and 1KT International Technical Workshop, Sydney, Australia, 1997
    [12]段宝岩,王均阳,大型球面天线线馈源结构光机电综合随机设计研究,西安电子科技大学学报,1998(25):575-581
    [13]B.Y. Duan, A new design project of the line feed structure for large radio telescope and its nonlinear dynamic analysis. Mechatronics, 1999(9): 53-64
    [14]段宝岩,苏玉鑫等,新一代大射电望远镜机电光一体化的研究.中国机械工程,1999(10):1002-1004
    
    
    [15]王文利,段宝岩,刘宏,等.并联宏-微机器人系统的逆运动学模型.科学通报,2000(45):1617—1622
    [16]Y.X. Su, B.Y.Duan,The application of the Stewart Platform in large Spherical Radio Telescopes. Journal of Robotic Systems, 2000(17): 375-383.
    [17]S.Y. Wu, Offset illumination and enlarge sky coverage. Astrophysics Report, Pub of BAO, 1999(33): 89-94
    [18]D.Stewart, A platform with six degrees of freedom. Proc Instr Mech Engng,1965(15): 371-386
    [19]C.D.Rahn, F.Zhang et al, Asymptotically stabilizing angle feedback for a flexible cable gantry crane. Journal of Dynamic Systems, Meansurement, and Control, 1999(121): 563-566
    [20]H.Lee, Modeling and control of a three-dimensional overhead crane. Journal of Dynamic Systems,Meansurement, and Control, 1998(120);471-476
    [21]J. Albus, R. Bostelman and N. Dagalakis, The NIST spider, a robot crane. Journal of Research of the NIST, 1992(97): 373-385
    [22]J. Albus, R. Bostelman and N. Dagalakis, The NIST robocrane. Journal of Robotic Systems, 1993(10): 709-724
    [23]R.V. Bostelman, J. Albus and R.E.Graham, Robocrane and emma applied to waste storage tank remediation. The American Nucelar Society 7th Topical Meeting on Robotics and Remote Systems, Auguesta, Georgia, Apr. 27-May 1, 1997
    [24]L.F. Yang, M. Mikulas et al, Stability and 3-D spatial dynamics analysis of a three cable crane. AIAA-92-2456-CP: 2096-2076
    [25]W.J.Shiang, D.Cannon and J.Gorman, Dynamic analysis of the cable array robotic crane. Proc. IEEE International Conference on Robotics & Automation,1999:2495-2500
    [26]S.Kawamura, H.Kino and C.Won, High-speed manipulation by using parallel wire-driven robots. Robotica, 2000(18): 13-21
    [27]孙欣,段宝岩,巨型柔性Stewart平台极限工作角度的确定.西安电子科技大学学报,2001(28),168-172
    [28]朱文白:FAST望远镜馈源运动的描述.MEMOS of the FAST(1999)
    [29]孙欣,段宝岩,巨型柔性Stewart平台解空间、工作空间的研究及悬索张力的优化分析.机械工程学报(已录用)
    [30]孙欣,王文利,段宝岩,巨型柔性Stewart平台解空间的研究.机器人,
    
    2001 (23) : 497-502
    [31] 陈云鹏,矩阵论.西北工业大学出版社, 1989
    [32] 陈开周,最优化计算方法.西安电子科技大学出版社,1986
    [33] A. Ming, T. Higuchi, International of JSPE, 28(1994) 131-138.
    [34] A. Ming, T. Higuchi, International of JSPE, 28(1994) 235-242.
    [35] A. Ming, M. Kajitani, T. Higuchi, International of JSPE, 29(1995) 337-342.
    [36] J. W. Jeong, S. H. Kim, Y. K. Kwak, "Kinematics and Workspace Analysis of a Parallel Wire Mechanism for Measuring a Robot Pose". Mech Mach Theory, 34(1999) 825-841.
    [37] 陆佑方,柔性多体系统动力学,高等教育出版社,1996, 461-485
    [38] J.Q. song and E.J. Huang, Dynamic analysis of planar flexible mechanisms. Comp meth appl mech Engng, 1980(24) :359-381
    [39] T.R. Kane and D.A. Levinson, Simulation of large motions of non-unform beams in orbit. Part II-the unrestrained beam. J. Astronaut Sci, 1981(29) 213-244
    [40] H.Asada and J. Slotine, Robot analysis and control. John Wiley & Sons, Inc. 1986
    [41] F.Pfeiffer and B. Gebler, A multstage-approach to the dynimacs and control of elastic robots. IEEE Robotic and Automation conference, 1988:77-89
    [42] H.Asada, Z.D.Ma and H.Tokumaru, Inverse dynamics of flexible robot arms: modeling and computation for trajectory control. Journal of Dynamic System, Measurement and Control, ASME, 1990(112) : 117-185
    [43] A. Ibrahimbegovic and S. Mamouri, Nonlinear dynamics of flexible beams in planar motion: forulation and time-stepping scheme for stiff problems. Comput struct, 1999(70) : 1-22
    [44] W.chen, Dynamic modleing of multi-link flexible robotic manipulators. Comput struct, 2001(79) : 183-195
    [45] E. Bayo, J. John et al, A finite-element approach to control the end-point motion of a single-link flexible robot. J. Robotic System, 1987(4) :67-75
    [46] E.Bayo, R.Movaghar and M.Medus, Inverse dynamics of a sigle-link flexible robot analytical and experimental results. Int. J. Robotics and Automation, 1988(3) :150-157
    [47] E.Bayo, M.Serna et al, Inverse dynamics and kinematics of multi-link elastic robots, an iterative frequency domain approach. Int. J. Robotics Research, 1989(8) : 49-62
    
    
    [48]D.Stewart, A platform with six degrees of freedom. Proc Instr Mech Engng, 1965(15): 371-386
    [49]B.Dasgupta. and T.S. Mruthyunjaya, a cononical formulation of the direct position kinematics problem for a general 6-6 Stewart platform. Mech. Mach. Theory, 1994(29): 819-827
    [50]P. Nanua, K.J. Waldron and V. Murthy, Direct kinematic solution of a Stewart platform. IEEE Transactions on Robotics and Automation, 1990(6): 438-444
    [51]J.P. Yin and C.G. Liang, The forward displacement analysis of a kind of special platform manipulator mechanism. Mech. Mach. Theory, 1994(29): 1-9
    [52]F. Wen and C.G. Liang, Displacement analysis of the 6-6 stewart platform mechanisms. Mech. Mach. Theory, 1994(29): 547-557
    [53]S.V. Sreenivasan and K.J.Waldron, Closed-form direct displacement analysis of a 6-6 stewart platform. Mech. Mach. Theory, 1994(29): 885-864
    [54]C.Innocenti and V. Parenti-Castelli, Direct position analysis of the Stewart platform mechanism. Mech. Mach. Theory, 1990(25):611-621
    [55]J.Wang and C.M.Gosselin, Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mech. Mach. Theory, 1999(34): 437-452
    [56]I.A.Bonev and J.Ryu, A new method for solving the direct kinematics of general 6-6 Stewart platforms using three linear extra sensors. Mech. Mach. Theory, 2000(35): 423-436
    [57]J.Wang and C.M.Gosselin, Static balancing of spatial four-degree-of-freedom parallel mechanisms. Mech. Mach. Theory, 2000(35): 563-592
    [58]B.Dasgupta and T.S. Mruthyunjaya, The Stewart platform manipulator: a review. Mech. Mach. Theory, 2000(35): 15-40
    [59]R. Karoumi, Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Comput Struct, 1999(71): 397-412
    [60]黄真,孔令富,方跃法,并联机器人机构学理论及控制.1997
    [61]于清,洪嘉振,柔性机械臂逆动力学及驱动规律研究.应用力学学报,1999(16):98-102
    [62]沈世钊等:悬索结构设计.中国建筑工业出版社,1997
    [63]赵臣、吕伟平、沈世钊:悬索屋盖结构风振反应的时域分析方法.哈尔滨建筑大学学报,1995(2):77-80
    [64]张相庭:工程结构风荷载理论和抗风计算手册.同济大学出版社,1990
    [65]C.H.Choi and H.C.Noh, Simulation of wind process by spectral representation method and application to cooling tower shell. Wind and Structures, 1999(2),105-117
    
    
    [66]A.G.Davenport, The spectrum of horizantal gusstiness near the ground in high wind. J.Royal Meteorol. Soc., 1961 (87), 194-211
    [67]J.C.Kaimal, Spectral characteristics of surface-layer turbulence. J.Royal Meteorol. Soc., 1972(98),563-589
    [68]E.Simiu, Laboratory simulation of turbulent wind spectra. Engineering Machanics Division, 1979(105), 1050-1054
    [69]M.Shinozuka and C.M.Jan, Digital simulation of random processes and its application. J. of Sound and Vibration, 1972(25)
    [70]A.Iannuzzi and P. Spinelli, Artificial wind generation and structural response. J.of Structural engineering ASME, 1987(113)
    [71]王宏之:风荷载的模拟研究.建筑结构学报,1994(15):44-52
    [72]瞿伟廉、沈小白等,V型AMD对台湾T&C Tower大楼风振控制的设计.土木工程学报,1995(28),3-11
    [73]M.Shinozuka and G.Deodatis, Simulation of stochastic processes by spectral representation. Applied Mech. Rev. ASME, 1991(44), 191-203
    [74]赵臣、张小刚、吕伟平,具有空间相关性风场的计算机模拟.空间结构,1996(2),21-25
    [75]Gimsing NJ, Cable supported bridges, second. Chichester: John Wiley, 1997.
    [76]Nazmy As, Abdel-Ghaffar AM. Three-dimensional non-linear static analysis of cable-stayed bridges. Comput Struct 1990(34): 257-271
    [77]Raid Karoumi, Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Comput Struct 1999(71): 397-412
    [78]Abdel-Ghaffar AM, Khalifa MA. Importance of cable vibration in dynamics of cable-stayed bridges. J Enging Mech ASME 1991 (117): 2571-2589
    [79]J.H. Argyris, D.W. Scharpf, Large deformation analysis of prestressed networks. J. Struct. Div. ASCE 1972(48): 633-654
    [80]W.H.Hengold, J.J Russell, Equilibrium and natural frequencies of cable structure (a nonlinear finite element approach). Comput Struct 1976( 6): 267-271
    [81]M.L.Gambhir, B.Batchelor, A finite element for 3-D prestressed cable nets. J. Num. Mech. Engng. 1977(11): 1699-1718
    [82]H. Ozdemir, A finite element approach for cable problems. Int. J. Soilds Structures 1979(15): 427-437
    
    
    [83]Ali HM, Abdel-Ghaffar AM, Modeling the nonlinear seismic behavior of cable-stayed bridges with passive control bearings. Comput Struct 1995(54): 461-492
    [84]H.B.Jayaraman, W.C.Knudson, Acurved element for the analysis of cable structure. Comput Struct 1981(14):325-333
    [85]Raid Karoumi, Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Comput Struct 1999(71): 397-412
    [86]W. Ternce O'Brien, Arthur J. Francis, Cable movements under two-dimensional loads. J. Struct. Div. ASCE June, 1964:89-123
    [87]W. Ternce O'Brien, General solution of suspended cable problems. J. Struct. Div. ASCE February, 1967:1-26
    [88]欧阳鬯,马文华等:弹性·塑性·有限元.湖南科学技术出版社,1983:465-519
    [89]张相庭:高层建筑抗风抗震设计计算.同济大学出版社,1997:32-33
    [90]张相庭:结构风压和风振计算.同济大学出版社,1985:145-154
    [91]P. K.C.Wang, J.D.Wei, Vibrations in a moving flexible robot arm. Journal of Sound and Vibration 1987(116): 149-160
    [92]M.Stylianou, B.Tabarrok, Finite element analysis of an axially moving beam, part Ⅰ: time integration. Journal of Sound and Vibration 1994(178): 433-453
    [93]T. Kotera, R. Kawai, Vibrations of string with time-varying length, second report, free vibration induced by initial displacements. Transactions of JSME part C 1988(54): 9-12
    [94]T. Kotera, R. Kawai, Vibrations of string with time-varying length,third report, the case having a weight at its one end. Transactions of JSME part C 1988(54): 16-21
    [95]T. Kotera, Vibrations of string with time-varying length, fouth report, the case for a damping. Transactions ofJSME part C 1988(54): 2597-2604
    [96]T. Kotera, R. Kawai, Vibrations of string with time-varying length, the case having a weight at its one end. JSME International Series III, Vibration Control Engineering for Industry 1988(31): 524-529
    [97]T. Kotera, R. Kawai, Vibrations of string with time-varying length, method using hypergeometric differential equations. Transactions of JSME part C 1993(59): 2421-2424
    [98]R.F. Fung and C.R.Tseng. Non-linear vibration analysis of a travelling string with time-dependent length by new hybrid Laplace transform/finite element method. Journal of Sound and Vibration 1999(219): 323-337
    
    
    [99]闻邦椿,袁艺等,含慢变参数的非线性振动系统的振动特性.非线性动力学学报,1998(5)181-187
    [100]孙焕纯,宋亚新,张典仁:变质量、变阻尼、变刚度结构系统的动力响应.计算结构力学及其应用,1996(13):127-137
    [101]刘晋川,虞守仁等,岸边集装箱起重机时变结构动力响应分析.港口装卸,2000(131):1-6
    [102]曹资,薛素铎等,索网屋盖结构阻尼特性实验研究,地震工程与工程振动,1995(15):67-70
    [103]赵臣,沈士钊,双曲抛物面鞍形索网风振反应分析.哈尔滨建筑大学学报,1990(23):73-79
    [104]朱宏平,唐家祥,斜拉桥动力分析的三维有限元模型.振动工程学报,1998(11):463-466
    [105]王肇明,高耸结构振动控制.同济大学出版社,1997
    [106]朱伯芳,有限单元法原理及应用.水利电利出版社,1979
    [107]A.Miyake, T. Yoshimura and M.Makino, Aerodynamic instability of suspended roof modals. Journal of Wind Engineering and Industrial Aerodynamics, 1992(41-44): 1471-1482
    [108]V. Ragavan and A.M.Made, Nonlinear buckling and postbuckling of cablestiffened prestressed domes. J Enging Mech ASME 1999(126): 1164-1172
    [109]王起,张相庭,大跨度索膜屋盖结构横风向非线性共振响应分析.’2000年ANSYS中国用户年会论文集,成都,2000:89-93
    [110]埃米尔·希缪,罗伯特·H·斯坎伦著,刘尚培等译,风对结构的作用——风工程导论.同济大学出版社,1990
    [111]A.Simpson, Determination of the natural frequencies of multi-conductor overhead transmission lines. Journal of Sound and Vibration, 1972(20): 417-449
    [112]Yukino, T., Galloping phenomena of large bundle conductors observed on the full scale test line. Proceedings of International symposium on Cable Dynamics, Liege, Oct. 1995:557-564
    [113]M,J.Tunstall, Wind-induced vibrations of overhead transmission lines-an overview. Proceedings of International Seminar on Cable Dynamics, Tokyo, Oct, 1997:13-26
    [114]Takeshi Ohkuma, Hisao Marukawa, Galloping of overhead transmission lines in gusty wind. Wind and Structures, 2000(3) 243-253
    
    
    [115]范社新,输电线舞动原理的有限元分析.大连理工大学研究生学位论文,1987
    [116]Y.K.Lin, and J.N.Yang, Multimode bridge response to wind excitation. J. Engrg. Mech. Div., ASCE, 1983(109): 586-603
    [117]R.H.Scanlan, Interpreting aeroelastic model of cable-stayed bridge. J. Engrg. Mech. Div., ASCE, 1987(113): 555-575
    [118]R.H.Scanlan and N.P. Jones, Aeroelasitc analysis of cable-stayed bridge. J. Struct. Engrg., ASCE, 1990(123): 232-236
    [119]I.Kovacs, Hs. Svenesson and E. Iordet, Analytical aerodynamic investigation of cable-stayed bridge. J. Struct. Engrg., ASCE, 1992(118): 147-168
    [120]A. Namini, P. Albrecht et al. Finite element-based flutter analysis of cablesuspended bridges. J. Struct. Engrg., ASCE, 1992(118): 1509-1526
    [121]A. Jain, N.P. Jones, et al. Computed flutter and buffeting analysis of longspan bridges. J. Struct. Engrg., ASCE, 1996(122): 716-725
    [122]R.H.Scanlan, N.P. Jones, et al. Comparison of taut-strip and section-model-based approaches in long-span bridge aerodynamics. J. Wind Engrg. And Industr Aerody, 1997(72): 275-287
    [123]R.Kiviluoma, Coupled-mode buffeting and flutter analysis of bridge. Comput Struct 1998(70): 219-228
    [124]H.Katsuchi, N.P. Jones, et al. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J. Struct. Engrg., ASCE, 1999(125): 60-70
    [125]Y. Nakamura, Recent research into bluff-body flutter. J. Wind Engrg. And Industr Aerody, 1990(33): 1-9
    [126]杨庆山,沈世钊,悬索结构随机风振反应分析.建筑结构学报,1998 (19):29-39
    [127]向阳,簿膜结构的非线性响应分析.建筑结构学报,1999 (20):38-46
    [128]史宇炜,张相庭,大跨索膜屋盖结构空气动力失稳非线性分析研究.’2000年ANSYS中国用户年会论文集,成都,2000:95-100
    [129]M.Matsumoto, N.Shiraishi and H.Shirato, Rain-wind induced vibration of cables of cable-stayed bridges. J. Wind Engrg. And Industr Aerody, 1992(44): 2011-2022
    [130]M.Matsumoto, N.Shiraishi, Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges. J. Wind Engrg. And Industr Aerody, 1995(57): 323-333
    
    
    [131]顾明,刘慈军等,斜拉桥拉索的风(雨)激振及控制.上海力学,1998 (19):281-288
    [132]Q.Ding and P. Lee, Computer simulation of bufferting actions of susspension bridges under turbulent wind. Comput Struct, 2000(76): 787-797
    [133]J.B.Jakobsen, E.Hjorth-Hansen, Aeroelastic effects on a rectangular boxgirder bridge. J. Wind Engrg. And Industr Aerody, 1998(74-76): 819-827.
    [134]M.Hortmanns, H.Ruscheweyh, Development of a method for calculating galloping amplitudes considering nonlinear aerodynamic coefficients measured with the forced oscillation method. J. Wind Engrg. And Industr Aerody, 1997(69-71): 251-261.
    [135]H. Kawai, Effect of corner modifications on aeroelastic instabilities of tall buildings. J. Wind Engrg. And Industr A erody, 1998(74-76): 719-729.
    [136]O.Chabart, J.L.Lilien, Galloping of electrical lines in wind tunnel facilities. J. Wind Engrg. And Industr Aerody, 1998(74-76): 967-976.
    [137]N.Pulipaka, P.P. Sarkar, J.R.McDonald, On galloping vibration of traffic signal structures. J. Wind Engrg. And Industr Aerody, 1998(77-78): 327-336.
    [138]T. Tamura, Y. Itoh, Three-dimensional vortical flows around a bluff cylinder in unstable oscillations. J. Wind Engrg. And Industr Aerody, 1997(67-68): 141-154.
    [139]M.Bourdeix, P. Hemon, F. Santi, Wind induced vibrations of chimneys using an improved quasi-steady theory for galloping. J. Wind Engrg. And Industr Aerody, 1998(74-76): 785-794.
    [140]C.Ziller, H.Ruscheweyh, A new approach for determining the onset velocity of galloping instability taking into account the nonlinearity of the aerodynamic damping characteristic. J. Wind Engrg. And Industr Aerody, 1997(69-71): 303-314.
    [141]Y. Fujino, P. Warnitchai and B.Pacheco, Active stiffness control of cable vibration. Active and Passive Damping, ASME, 1991: 27-36
    [142]T. Yoshimura, Device for suppressing wake galloping of stay-cables for cable-stayed bridges. J. Wind Engrg. And Industr Aerody, 1993(49): 497-506
    [143]第一汽车制造厂设备修造分厂编写组,机械工程材料手册(上册).机械工业出版社,1982
    [144]HM.Irvine, Cable structure. Cambridge, MA: MIT Press,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700