用户名: 密码: 验证码:
TGF-β1体外扩增/诱导的CD4~+CD25~+调节性T细胞逆转和预防慢性移植物抗宿主病鼠狼疮样综合征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:明确转化生长因子-β1 (transforming growing factor-β1,TGF-β1)在CD4+CD25+调节性T细胞(regulatory T cell,Treg)发挥体内外免疫抑制功能中的作用,分析TGF-β1体外扩增/诱导的Treg细胞在逆转和预防慢性移植物抗宿主病(chronic graft-versus-host disease,cGVHD)鼠狼疮样综合征中的效应,明确Treg细胞体内外扩增和分化的信号通路,为系统性红斑狼疮(systemic lupus erythematosus,SLE)的免疫干预提供新的思路。
     方法:采用磁活性标记的细胞分选方法(magnetic activated cell sorting,MACS)分选BALB/c小鼠的CD4+CD25-T和CD4+CD25+T细胞,应用流式细胞术(flow cytometry,FCM)检测分选细胞纯度。建立体外细胞培养体系,应用Trizol试剂提取培养后细胞总RNA ,采用逆转录-聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR)方法检测叉状头/翅膀状螺旋转录因子(forkhead/ winged helix transcriptionfactor,Foxp3)的表达水平。同时,采用混合淋巴细胞反应方法,比较新鲜分离的CD4+CD25+Treg、TGF-β1体外扩增的Treg (eTreg)以及TGF-β1体外诱导CD4+CD25-T分化成的Treg (iTreg)细胞的体外抑制效应,应用β液闪烁仪测定CPM值。采用亲代淋巴细胞输注方法建立cGVHD鼠狼疮样综合征模型,以检测血常规(红细胞、白细胞和血小板)、ELISA法检测自身抗体(抗-dsDNA和ANA抗体)、尿蛋白试纸法检测尿蛋白、制备肾标本的石蜡切片、冰冻切片和电镜切片观察病理学改变等作为评价指标。在体外实验的基础上,将新鲜分离的CD4+CD25+Treg、eTreg和iTreg细胞分别于cGVHD鼠狼疮样综合征模型诱导后2周(逆转实验)或诱导前1天(预防实验)输入CB6F1小鼠,前瞻性观测输入不同类型Treg细胞后小鼠的临床表现和实验室指标的变化,评价Treg细胞在体内逆转和预防cGVHD鼠狼疮样综合征中的效应。应用SPSS 11.5软件,定量资料中两组均数比较采用t检验或Mann-Whitney秩和检验,三组及以上组间比较采用方差分析或重复测量数据的方差分析;定性资料的组间比较采用χ2检验或Kruskal-Wallis H检验。应用GraphPad Prism 4.0软件,采用Kaplan-Meier方法计算生存率、log rank方法进行统计学分析。
     结果:体外实验结果显示,BALB/c小鼠脾脏单个核细胞经MACS分选后,CD4+CD25+T细胞纯度达98.5%。新鲜分离的CD4+CD25+T细胞在anti-CD3单克隆抗体(monoclonal antibody, mAb)和经过3 000 rad照射的同系基因型C57BL/6小鼠脾细胞的刺激下无反应;而当反应体系中加入IL-2时,细胞增殖为原来的4~5倍;若再加入TGF-β1,细胞增殖1~2倍。而新鲜分离的CD4+CD25-T细胞在anti-CD3 mAb和经照射后C57BL/6脾细胞的刺激下能够增殖;与此相比,当反应体系中加入IL-2,细胞增殖1~2倍;若再加入TGF-β1,细胞增殖效应降至原来的30%~40%。新鲜分离的CD4+CD25-T细胞表达极少量的Foxp3,相似于体外anti-CD3 mAb/ APC/ IL-2/ CD4+CD25-T细胞培养体系中Foxp3的表达水平;当培养体系中再加入TGF-β1,其诱导生成的iTreg细胞表达Foxp3的水平明显提高,近似于新鲜分离的CD4+CD25+T细胞的表达水平;此外,iTreg细胞体外也具有无反应性和免疫抑制性,同样相似于新鲜分离的CD4+CD25+Treg细胞。即外源性TGF-β1可诱导CD4+CD25-T细胞分化为CD4+CD25+Treg细胞,进而发挥免疫抑制效应。剂量反应关系显示,在anti-CD3 mAb/ APC/ IL-2/ TGF-β1/ CD4+CD25-T细胞的培养体系中,CD25和Foxp3的表达水平随TGF-β1剂量的加大而增高,但升高幅度下降,提示1 ng/ml TGF-β1可能是适宜剂量。在混合淋巴细胞反应中,新鲜分离的Treg、eTreg和iTreg细胞均能够明显抑制CD4+CD25-T细胞的增殖;此外,iTreg细胞与应答细胞在1:1,1:2,1:5,1:10或1:20的比例下,均具有免疫抑制效应,且抑制作用与Treg细胞的剂量呈正相关;而当iTreg细胞与应答细胞的混合培养体系中加入anti-TGF-β1时,不但Foxp3的表达水平降低,且iTreg细胞的抑制效应被部分阻断。体内实验结果显示,当采用亲代淋巴细胞输注后,子代CB6F1小鼠可出现尿蛋白;体重降低,皮肤干涩;红细胞、白细胞和血小板计数降低;抗ds-DNA和ANA抗体的OD值上升;以及狼疮肾炎的病理学改变,如肾小球系膜细胞和内皮细胞增生、系膜增宽、基底膜增厚、免疫复合物沉积等;表明本次cGVHD鼠狼疮样综合征模型诱导成功。将体外新鲜分离的CD4+CD25+Treg、TGF-β1作用下的eTreg和iTreg细胞分别于cGVHD鼠狼疮样综合征模型诱导后2周输入CB6F1小鼠,结果显示,输入3组Treg细胞对已出现自身抗体的模型鼠均有明显的逆转效应,小鼠于输注后抗-dsDNA滴度即开始下降,并伴随其他临床症状和实验室指标的逐渐改善;其中以iTreg细胞的体内逆转效应较新鲜分离的CD4+CD25+Treg和eTreg细胞的作用更明显,提示TGF-β1可能作为CD4+CD25+Treg细胞发挥免疫抑制信号的中介,有助于维持体内Treg细胞的数量以及免疫抑制效应的循环。体内预防实验中,将不同剂量的iTreg细胞于cGVHD鼠狼疮样综合征模型诱导前1天输入CB6F1小鼠,结果显示,仅输入1×106 iTreg细胞即能延缓和减轻CB6F1小鼠的发病,但以输入25×106 iTreg细胞对自身免疫反应的抑制效应最明显,该组小鼠的表现与正常对照组的差异无统计学意义,提示iTreg细胞可延缓和预防cGVHD鼠狼疮样综合征的发生。
     结论:TGF-β1与外周CD4+CD25+Treg细胞的活化、增殖,以及诱导CD4+CD25-T分化为CD4+CD25+Treg细胞密切相关,在维持Treg细胞体内外的免疫抑制功能方面发挥不可或缺的作用,尤其是TGF-β1诱导生成的iTreg细胞具有更明显的逆转和预防cGVHD鼠狼疮样综合征的效应,研究结果为SLE的免疫干预开辟了新的途径。
Objectives: To analyze and confirm the contribution of TGF-β1 on the function of CD4+CD25+ regulatory T cells (Tregs) in vitro. Furthermore,the important purpose of this study is to identify and compare in vivo suppressive effect of CD4+CD25+Tregs generated in vitro through TGF-β1 on reversing and preventing murine lupus-like syndrome of chronic graft-versus-host disease (cGVHD). Therefore, a better understanding of signals for the generation and development of CD4+CD25+Tregs will probably result in a new immunotherapy for systemic lupus erythematosus.
     Methods: CD4+CD25-T and CD4+CD25+T cells of BALB/c murine were separated with MACS and the purity was analyzed by FCM. First of all, we set up different cell culture systems. Total RNA was prepared from cultured cells with Trizol reagent and reverse transcribed into cDNA. And Foxp3 expression was detected by PCR. Also freshly isolated CD4+CD25+Tregs, in vitro-expanded CD4+CD25+Tregs (eTregs) and in vitro -induced CD4+CD25+Tregs (iTregs) conditioned with TGF-β1 were assessed by their abilities to inhibit the proliferation of CD4+CD25-T cell, CPM (cycles per minute) value was detected. Furthermore, we generated murine lupus-like syndrome of cGVHD by parental lymphocyte engraftment, and CB6F1 recipients were monitored for clinical signs by the following parameters: weight of body, red blood cell, white blood cell and platelet, serum anti-dsDNA and ANA autoantibodies measured by ELISA, proteinuria detected by albustix, pathologic changes of kidney tested through light microscope and electron microscope. To assess the reverse effect of different Tregs on murine lupus-like syndrome of cGVHD, freshly isolated CD4+CD25+Tregs, eTregs and iTregs through TGF-β1 were injected into CB6F1 mice after 2 wk of disease induction. And to analyze the preventive effect in vivo, different doses of iTregs were injected on 1 day before disease induction. Statistical analysis was performed by Mann-Whitney rank sum test or Student t test or ANOVA test depending on the dataset using SPSS 11.5 software. GraphPad Prism 4.0 software was used to analyze survival data, survival fractions were calculated by Kaplan-Meier method and compared by log rank test.
     Results: The purity of BALB/c CD4+CD25-T and CD4+CD25+T cells were >98%. Freshly isolated CD4+CD25+T cells were unresponsive to anti-CD3 mAb and syngeneic antigen-presenting cells (irradiated C57BL/6 splenic cells), but it could expand up to 4- to 5-fold if IL-2 was added to the culture system. And adding IL-2 and TGF-β1 would lead to only 1- to 2-fold expansion on cells. Compared with the culture system including freshly isolated CD4+CD25-T cells, anti-CD3 mAb and syngeneic APCs, the expansion of cells was 1- to 2-fold in the culture system added with IL-2, but it was only 30% to 40%-fold in the culture system conditioned with IL-2 and TGF-β1. As to the level of Foxp3, freshly isolated CD4+CD25-T cells expressed little Foxp3, as well as CD4+CD25-T cells cultured with anti-CD3 mAb, syngeneic APCs and IL-2 in the absence of TGF-β1. When TGF-β1 was added to the culture protocol above, it led to a significant elevated Foxp3 expression. When these iTregs were re-stimulated with anti-CD3 mAb and APCs, this population did not proliferate in response to the stimulators, which was similar to freshly isolated CD4+CD25+Tregs. The dose-response analysis showed that CD25 and Foxp3 expression were rising with the increase of TGF-β1. And 1 ng/ml TGF-β1 was the most appropriated dose. Freshly isolated CD4+CD25+Tregs, eTregs and iTregs had visible effect on inhibiting the proliferation of CD4+CD25-T cells in vitro. iTregs and responder cells mixed with a different ratio (1:1, 1:2, 1:5, 1:10 or 1:20), could suppress the alloresponse markedly. Furthermore, the addition of graded numbers of iTregs resulted in a positive dose-dependent manner. When anti-TGF-β1 was added to the system of mixed lymphocyte reaction, it would partially block the Foxp3 expression and might impair the suppressive function of iTregs. After parental lymphocyte engraftment, proteinuria, weight loss, reduced RBC (red blood cell), WBC (white blood cell) and PLT (platelet), anti-dsDNA and ANA autoantibodies, glomerulonephritis occured on CB6F1 mice. Our results showed that in vitro-expanded and -induced Tregs by TGF-β1 could retroconverse the morbidity of cGVHD with lupus-like syndrome mice which have already developed autoantibody. And iTregs had more efficient inhibition than that of freshly isolated or eTregs in reversing the clinical symptom of the diseased mice. When comparing the protective effect among different groups which were injected with 25×106 or 5×106 or 1×106 iTregs respectively, the difference was distinguished. And the best inhibition on autoimmunity was mediated by 25 million iTregs, and there was no pathologic effect in this group.
     Conclusions: We established an essential correlation between TGF-β1 and CD4+CD25+Tregs’activation, expansion, as well as induction from precursor cells. It indicates that TGF-β1 signaling is required to maintain the suppressive effect of CD4+CD25+Tregs in vitro and in vivo. Importantly, iTregs have more inhibitive function on reversing an established disease and preventing the onset of lupus-like syndrome of cGVHD. In a word, the present study raises a possibility that CD4+CD25+Tregs induced by TGF-β1 in vitro have the potential that is used as an immunotherapy agent to control SLE.
引文
1 Choileain NN, Redmond HP. Regulatory T-cells and autoimmunity. J Surg Res, 2006, 130 (3): 124-35
    2 Bharat A, Fields RC, Mohanakumar T. Regulatory T cell-mediated transplantation tolerance. Immunol Res, 2005, 33 (3): 195-212
    3 Bach JF. Regulatory T cells under scrutiny. Nature Rev Immunol, 2003, 3 (3): 189-98
    4 Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptorα-chains (CD25): Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995; 155 (3): 1151-64
    5 Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 2005, 6 (4): 345-52
    6 Groux H, O’Garra A,Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 1997, 389 (6652): 737-42
    7 Krogsgaard M, Davis MM. How T cells“see”antigen. Nat Immunol, 2005, 6(3): 239-45
    8 Cohen JL, Trenado A, Vasey Douglas, et al. CD4+CD25+ Immunoregulatory T Cells: New Therapeutics for Graft-Versus-Host Disease. J Exp Med, 2002, 1966 (3): 401-6
    9 Ochs HD, Ziegler SF, Torqerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev, 2005, 203: 156-64
    10 Fu S, Zhang N, Yopp AC, et al. TGF-beta induced Foxp3+ T-regulatory cells from CD4+CD25- precursors. Am J Transplant, 2004, 4 (10): 1614-27
    11 Fantini MC, Becker C, Monteleone G, et al. Cutting Edge: TGF-βinduces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J Immunol, 2004, 172 (9): 5149-53
    12 Marie JC, Letterio JJ, Gavin M, et al. TGF-β1 maintains suppressor function andFoxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med, 2005, 201 (7): 1061-7
    13 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299 (5609): 1057-61
    14 Crispin JC, VargasM I, AlcocerV J.Immunoregulatory T cells in autoimmunity. Autoimmun Rev, 2004, 3 (2): 45-51
    15 Thompson C, Powrie F. Regulatory T cells. Curr Opin Pharmacol, 2004, 4: 408-14.
    16 Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunological tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity and transplantation tolerance. Immunol Rev, 2001, 182: 18-32
    17 Llorente L, Richaud PY, Wijdendes J, et al .Spontaneous production of interleukin-10 (IL-10) by B lymphocytes and monocytes in systemic Lupus erythematosus. Eur Cytokine Netw, 1993, 4 (6): 421-7
    18 Zhao DM, Thornton AM, Dipaolo RJ, et al. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood, 2006, 107 (10): 3925-32
    19 Ermann J, Hofmann P, Edinger M, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005, 105 (5): 2220-6
    20 Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood, 2005, 106(9): 3300-7
    21 Nakamura K, Kitani A,Fuss I,et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol, 2004, 172 (2): 834-42
    22 Alard P, Clark SL, Kosiewicz MM. Mechanisms of tolerance induced by TGF beta-treated APC: CD4+ regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF beta. Eur J Immunol, 2004,34(4): 1021-30
    23 Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 2003, 3 (11): 807-21
    24 Chipuk JE, Bhat M, Hsing AY, et al. Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apat-1-dependent caspase activation in prostate epithelial cells. J Biol Chem, 2001, 276 (28): 26614-21
    25 Lee JH ,Wang LC, LinYT, et al. Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology, 2006, 117 (2): 280-6
    26 Fontenot JD, Gavin MA, Rudensky AY, et al. Foxp3 programs the development and function of CD4+CD25+regulatory T cells. Nat Immunol, 2003, 4(4): 330-6
    27 Ramsdell F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity, 2003, 19 (2): 165-8
    28 Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol, 2001, 166 (12): 7282-9
    29 Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect, 2004, 6 (8): 745-51
    30 Pyzik M, Piccirillo CA. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol, 2007, May 2; [Epub ahead of print]
    31 Fahlen L, Read S, Gorelik L, et al. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med, 2005, 201 (5): 737-46
    32 Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+ T Cells with regulatory properties from human blood. J Exp Med, 2001, 193 (4): 1303-10
    33 Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity:production of CD4+CD25+ naturally anergic and suppressive T cell as a key function of the thymus in maintaining immunologic self tolerance. J Immunol, 1999, 162 (11): 5317-26
    34陈昊,诸禹平,元林,等. TGF-β抑制T细胞功能及其相关机制的体外研究.中国现代医学杂志,2005, 5 (21): 3244-7
    35 Zheng SG, Wang J, Wang P, et al. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol, 2007, 178 (4): 2018-27
    36 Baecher-Allan C, Hafler DA. Suppressor T cels in human diseases. J Exp Med, 2004, 200 (3): 273-6
    37 Bluestone JA. Regulatory T-cell therapy: is it ready for the clinic? Nat Rev Immunol, 2005, 5 (4): 343-9
    1 Sakaguchi S,Sakaguchi N,Asano M et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance cause various autoimmune diseases. J Immunol, 1995, 155 (3): 1151-64
    2 Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998, 188 (2): 287-96
    3 Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD4+CD25+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev, 2001, 182: 18-32
    4 Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor micro-environment of patients with pancreas or breast adenocarcinma. J Immunol, 2002, 169 (5): 2756-61
    5 Nichoileain N, Redmond HP. Regulatory T-cells and autoimmunity.J Surg Res, 2006, 130 (1): 124-35
    6 Nakamura K, Kitani A, Strober W. Cell Contact–dependent immunosuppression by CD4+CD25+ regulatory T cells is Mediated by cell surface–bound transforming growth factorβ. J Exp Med, 2001, 194 (5): 629-44
    7 Zheng SG, Wang JH, Gray JD, et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol, 2004, 172 (9): 5213-21
    8 Huber S, Schramm C, Lehr HA, et al. Cutting Edge: TGF-βsignaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol, 2004, 173 (11): 6526-31
    9 Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4+CD25+ regulatory T cells canmediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med, 2002, 196 (2): 237-45
    10 Mamura M, Lee W, Sullivan TJ, et al. CD28 disruption exacerbates inflammation in Tgf-β1-/- mice:in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-β1. Blood, 2004, 103 (12): 4594-601
    11 Fahlén L, Read S, Gorelik L, et al. T cells that cannot respond to TGF-? escape control by CD4+CD25+ regulatory T cells. J Exp Med, 2005, 201 (5): 737-46
    12 Ochs HD, Ziegler SF, Torqerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev, 2005, 203: 156-64
    13 Fu S, Zhang N, Yopp AC, et al. TGF-beta induced Foxp3+ T-regulatory cells from CD4+CD25- precursors. Am J Transplant, 2004, 4 (10): 1614-27
    14 Fantini MC, Becker C, Monteleone G, et al. Cutting Edge:TGF-βinduces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J Immunol, 2004, 172 (9): 5149-53
    15 Marie JC, Letterio JJ, Gavin M, et al. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med, 2005, 201 (7): 1061-7
    16 Jan A, Bruijn MD, Pancras CW, et al. Murine chronic graft-verse-host disease as a model for lupus nephritis. Am J Pathol, 1988, 130 (3): 639-42
    17 Treumiet RA, Bergijk EC, Baelde JJ, et al. Gender-related influences on the development of chronic gfaft-versus-host disease-induced experimental lupus nephritis. Clin Exp Immunol, 1993, 91 (3): 442-8
    18 Bergijk EC, Munaut C, Baelde JJ, et al. A histologic study of the extracellular matrix during the development of glomerulosclerosis in murine chronic graft-verse-host disease. Am J Pathol, 1992, 140 (5): 1147-56
    19高春芳,高玉祥.系统性红斑狼疮小鼠模型的研究近况.国外医学皮肤病学分册, 1995, 21 (4): 211
    20 Helyer BJ, Howie JB. Renal disease associated with positive lupus erythematosus test in a cross bred strain of mice. Nature, 1963, 233 (4863): 197-203
    21高春芳,高玉祥.青篙琉醋对系统性红斑狼疮样小鼠模型的影响.中华皮肤科杂志, 1995, 28(1): 17
    22 Tschetter JR, Mozes E, Shearer GM. Progression from acute to chronic disease in a murine parent-into-F1 model of graft-versus-host disease. J Immunol, 2000, 165 (10): 5987-94
    23 Rozendaal L, Pals T, Gleichmann E, et al.Persistence of allospecific helper T cells is required for maintaining autoantibody formation in lupus-like graft-versus-host disease. Clin Exp Immunol, 1990, 82 (3): 527-32
    24郭玲,吴厚生,胡新美.活化淋巴细胞与慢性GVHR诱导的SLE样小鼠模型的比较.中国免疫学杂志, 2000, 16 (10): 568-71
    25阳晓,叶任高,陈伟英.慢性移植物抗宿主病狼疮样肾炎小鼠模型的研制.中华肾脏病杂志, 2000, 16 (5): 277-81
    26 Bruijn JA, Bergijk EC, et al. Induction and progression of experimental lupus nephritis exploration of a pathogenetic pathway. Kidney Int, 1992, 41 (1): 5-13
    27 Meziere C, Stockl F, Batsford S, et a1. Antibodies to DNA, chromatin core particles and histones in mice with graft-verse-host disease and their involvement in glomerularin jury. Exp Immunol, 1994, 98 (2): 289-94
    28 LI Hong, ZHANG Yun-yi, SUN Ya-nan, et al. Induction of systemic lupus erythematosus syndrome in BALB/c mice by immunization with active chromatin1. Acta Pharmacol Sin, 2004, 25 (6): 807-11
    29任文英,陈香美,邱全瑛,等.慢性移植物抗宿主病狼疮样小鼠模型的诱导.中国比较医学杂志, 2004, 14 (40): 215-21
    30 Zheng SG, Wang JH, Koss MN, et al. CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-βsuppress a Stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol, 2004, 172 (3): 1531-9
    31 Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol, 2001, 15, 166 (12): 7282-9
    32 Zheng SG, Gray JD, Ohtsuka K, et al. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol, 2002, 15, 169 (8): 4183-9
    33 Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol, 2001, 167 (3): 1137-40
    34 Taylor PA, Lees CJ, Blaza BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune-regulatory cells inhibits graft-versus-host disease lethality. Blood, 2002, 99 (10): 3493-9
    35 Cohen JL, Trenado A, Vasey D, et al. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. 2002, J Exp Med, 196 (3): 401-6
    36 Zheng SG, Meng LZ, Wang JH, et al. Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient International Immunology, 2006, 18 (2): 279-89
    37 Hsu WT, Suen JL, Chiang BL.The role of CD4CD25 T cells in autoantibody production in murine lupus.Clin Exp Immunol, 2006, 145 (3): 513-9
    38 Horwitz DA, Gray JD, Zheng SG. The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases. Arthritis Res, 2002, 4(4): 241-6
    39 Chen ZM, O’Shaughnessy MJ, Gramaglia I, et al. IL-10 and TGF-β1 induce alloreactive CD4+CD25- T cells to acquire regulatory cell function. Blood, 2003, 101 (12): 5076-83
    40 Peng Y, Laouar Y, Li MO, et al. TGF beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci, 2004, 101 (13): 4572-7
    41 Ghiringhelli F, Puiq PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med, 2005, 202 (7): 919-29
    42 Qin S, Cobbold SP, Pope H, et al.“Infectious”transplantation tolerance. Science, 1993, 259 (5097): 974-7
    43 Adeegbe D, Bayer AL, Levy RB, et al. Allogeneic CD4+CD25+ Foxp3+ T Regulatory cells suppress autoimmunity while establishing transplantation tolerance. J Immunol, 2006, 176 (12): 7149-53
    44 Trenado A, Sudres M, Tang Q, et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol, 2006, 176 (2): 1266-73
    45 Ohtsuka K., Gray JD, Stimmler MM, et al. Decreased production of TGF-βby lymphocytes from patients with systemic lupus erythematosus. J Immunol, 1998, 160 (5): 2539-45
    1 Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptorα-chains (CD25). J Immunol, 1995; 155 (3): 1151-64
    2 Sakaguchi S.Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 2005, 6 (4): 345-52
    3 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299 (5609): 1057-61
    4 Kronenberg M, Rudensky A. Regulation of immunity by self-reactive T cells. Nature, 2005, 435 (7042): 598-604
    5 Kawahata K, Misaki Y, Yamauchi M, et al. Generation of CD4+CD25+ regulatory Tc ellsf rom autoreactiveT cells simultaneously with their negatives election in the thymusa ndf rom non autoreactive Tcells by endogenous TCR expression. J Immunol, 2002, 168(9): 4399-405
    6 Sempowski GD, Cross SJ, Heinly CS, et al. CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis. J Immunol, 2004, 172 (2): 787-94
    7 Taams L, Vukmanovie-Stejic M, Salmon M. Immune regulation by CD4+CD25+ regulatory T cells: implications for transplantation tolerance. Trans Immunol, 2003, 11 (3-4): 277-85
    8 Dipaolo RJ, Glass DD, Bijwaard KE, et al. CD4+CD25+T cells prevent the development of organ-specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J Immunol, 2005, 175 (11): 7135-42
    9 Veldman C, Hohne A, Dieckmann D, et al. TypeⅠregulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol, 2004, 172 (10): 6468-75
    10 Fontenot JD, Gavin MA, Rudensky AY, et al. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003, 4 (4): 330-6
    11 Fontenot JD, Rudensky AY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol, 2005, 6 (4): 331-7
    12 Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood, 2005, 105 (2): 735-41
    13 Yamano Y, Takenouchi N, Li HC, et al. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J Clin Invest, 2005, 115 (5): 1361-8
    14 Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 Protein expression in human CD4+CD25+ regulatory T cells at the single -cell level. Eur J Immunol, 2005, 35 (6): 1681-91
    15 Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med, 2005, 201 (7): 1060-7
    16 Zhang SG, Wang JH, Gray JD. Natural and induced CD4+CD25+ T cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol, 2004, 172 (9): 5213-21
    17 Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA, 2005, 102 (18): 6449-54
    19 CofferP J, Burqering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol, 2004, 4 (11): 889-99
    19 Bettelli E, Dastrange M, Qukka M, et al. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effectorfunctions of T helper cells.Proc Natl Acad Sci USA, 2005, 102 (14): 5138-43
    20 Karube K, Ohshima K, Tsuchiya, et al. Expression of FoxP3, a key molecule in CD4+CD25+ regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol, 2004, 126 (1): 81-4
    21 Hofmann P, Ermann J, Edinger M, et al. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone~transplantation. J Exp Med, 2002, 196 (3): 389-99
    22 Papiemik M. Natural CD4+CD25+ regulatory T cells.their role in the control of superantigen responses. Immunol Rev, 2001, 182: 180-9
    23 Thornton AM, Donovan EE, Piccirillo CA, et al. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immunol, 2004, 172 (11): 6519-23
    24 Bensinger SJ, WalshPT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol, 2004, 172 (9): 5287-96
    25 Su L, Creusot RJ,Gallo EM, et al. Murine CD4+CD25+ regulatory T cells fail to undergo chromatin remodeling across the proximal promoter region of the IL-2 gene. J Immunol, 2004, 173 (8): 4994-5001
    26 Chinen J, Shearer WT. Advances in asthma, allergy and immunology series 2004: basic and clinical immunology. J Allergy Clin Immunol, 2004, 114 (2): 398-405
    27 Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol, 2002, 3 (2): 135-42
    28 McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity, 2002, 16 (2): 311-23
    29 Curotto-de-Lafaille MA, Lafaille JJ. CD4+ regulatory T cells in autoimmunity and allergy. Curr Opin Immunol, 2002, 14 (6): 771-8
    30 Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Imunol, 2004, 173 (8): 5008-20
    31 Ji HB, Liao G, Faubion WA, et al .Cutting edge:the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol, 2004, 172 (10): 5823-7
    32 Cardona ID, Goleva E, Qu LS, et al. Staphylococcal enterotoxin B inhibits regulatory T cells by inducing glucocorticoid-induced TNF receptor-related protein ligand on monocytes.J Allergy Clin Immunol, 2006, 117 (3): 688-95
    33 Ronchetti S, Zollo O, BruscoliS, et al .GITR, a member of the TNF receptor superfamily, is co-stimulatory to mouse T lymphocyte subpopulations. Eur J Immunol, 2004, 34 (3): 613-22
    34 Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol, 2005, 174 (4): 1783-6
    35 Mellor AL, Munn DH. IDO expression by dendritic cells; tolerance and tryptophan catabolism. Nat Rev Immunol, 2004, 4 (10): 762-74
    36 Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD4+CD25+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med, 2000, 192 (2): 303-10
    37 Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4+CD25+ T Cells with regulatory properties from human blood. J Exp Med, 2001, 193 (11): 1303-10
    38 Zheng SG, Wang JH, Stohl W, et al. TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol, 2006, 176 (6): 3321-9
    39 von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol, 2005, 6 (4): 338-44
    40 Liang S, Alard P, Zhao Y, et al. Conversion of CD4+CD25- cells into CD4+CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J Exp Med, 2005, 201 (1):127-137
    41 Shevach EM, McHugh RS, Piccirillo CA, et al. Control of T-cell activation by CD4+CD25+ suppressor T cells. Immunol Rev, 2001, 182: 58-67
    42 Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol, 2003, 3 (3): 253-7
    43 Itch M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity:production of CD4+CD25+ naturally anergic and suppressive T cell as a key function of the thymus in maintaining immunologic self tolerance. J Immunol, 1999, 162 (9): 5317-26
    44 Sakaquchi S, Sakaguchi N, Shimizu J, et al. Immunological tolerance maintained by CD25+CD4+ regulatory T cells: their role in controlling autoimmunity, tumor immunity and transplantation tolerance. Immunol Rev, 2001, 182: 18-32
    45 Ng WF, Duggan PJ, Ponchel F, et al. Human CD4+CD25+cells: a naturally occurring population of regulatory T cells. Blood, 2001, 98 (9): 2736-44
    46 Ermann J, Hofmann P, Edinger M, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood, 2005, 105 (5): 2220-6
    47 Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, et al. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood, 2005, 106 (9): 3300-7
    48 Hanash AM, Levy RB. Donor CD4+CD25+ is T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantstion. Blood, 2005, 105 (4): 1828-36
    49 Powrie F. Immune regulation in the intestine: a balancing act between effector and regulatory T cell responses.Ann N Y Acad Sci, 2004, 1029: 132-41
    50 Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol, 2004, 172 (2): 834-42
    51 Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4+CD25+ suppressor T c ells in vivo. Nat Immunol, 2002, 3 (1): 33-41
    52 Min WP, Zhou D, Ichim TE, et al. Inhibitory feed back loop between tolerogenic dendritic cells and regulatory T cells in Transplant tolerance. J I mmunol, 2003, 170 (3): 1304-12
    53 Alard P, Clark SL, Kosiewicz MM. Mechanisms of tolerance induced by TGF beta-treated APC: CD4+ regulatory T cells prevent the induction of the immune response possibly through a mechanism involving TGF beta. Eur J Immunol, 2004, 34 (4): 1021-30
    54 Horwitz DA, Zheng SG, Gray JD, et al. Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin Immunol, 2004, 16 (2): 135-43
    55 Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, 420 (6915): 502-7
    56 Bagley KC, Shata MT, Onyabe DY, et al. Immunogenicity of DNA vaccines that direct the coincident expression of the 120 kDa glycoprotein of human immunodeficiency virus and the catalytic domain of cholera toxin. Vaccine, 2003, 21 (23): 3335-41
    57 Chen ZM, Shaughnessy MJ, Gramaglia J, et al. IL-10 and TGF-beta induce alloreactive CD4+CD25- T cells to acquire regulatory cell function. Blood, 2003, 101 (12): 5076-83
    58 Green EA,Choi Y,Flavell RA. Pancreatic lymph node-derived CD4(+)CD25(+)Tregcells:highly potent regulators of diatetes that require TRANCE-RANK signals. Immunity, 2002, 16 (2): 183-91
    59 Mukherjee R, Chaturvedi P, Qin HY, et al. CD4+CD25+ regulatory T cells generated in response to insulin B: 9~23 peptide prevent adoptive transfer of diabetes by diabetogenicT cells. J Autoimmun, 2003, 21 (3): 221-37
    60 Sarween N, Chodos A, Raykundalia C, et al. CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol, 2004, 173 (5): 2942-51
    61 Lindley S, Dayan CM, Bishop A, et al.Defective suppressor function in CD4+CD25+ T-cells from patients wity type 1 diabetes. Diabetes, 2005, 54 (1): 92-9
    62 Reijonen H, Novak EJ, Kochik S .Detection of GAD65 specificT cells by major histocompatibility complex class II tetramers in type I diabetic patients and a trisk subjects. Diabetes, 2002, 51 (5): 1375-82
    63 Pop SM, Wong CP, Culton DA, et al.Single cell analysis shows decreasing Foxp3 and TGFbeta1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med, 2005, 201 (8): 1333-6
    64 Jackel E, von Boehmer H, Manns MP. Antigen-specific Foxps-transducec T-cells can control established type 1 diabetes. Diabetes, 2005, 54 (2): 306-10
    65 Viglietta V,Baecher-Allan C,Weiner HL,et al.Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med, 2004, 199 (7):971-9
    66 Huan J, Culbertson N, Spencer L, et al. Decreased Foxp3 levels in multiple sclerosis patients. J Neurosci Res, 2005, 81 (1): 45-52
    67 Venken K, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and Foxp3 expression. J Neurosci Res, 2006, 83 (8): 1432-46
    68 Crispin JC, Matrinez A, Alcover-Varela J. Quantification of regulatory T cell in patients with systemic lupus erythematosus. J Autoimmun, 2003, 21 (3): 273-6
    69李向培,翟志敏,钱龙,等.系统性红斑狼疮患者CD4+CD25+调节性T细胞的变化.中华风湿病学杂志, 2006, 10 (3): 141-4
    70 Lee JH , Wang LC, Lin YT, et al .Inverse correlation between CD4+ regulatory T -cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology, 2006, 117 (2): 280-6
    71 Akbari O, Stock P, DeKruyff RH, et al. Role of regulatory T cells in allergy and asthma. Curr Opin Immunol, 2003, 15 (6): 627-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700