用户名: 密码: 验证码:
NG2蛋白多糖在糖尿病肾病发病机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:糖尿病肾病(diabetic nephropathy, DN)的发病率在全世界范围内正在逐年升高。DN已经成为欧美诱导终末期肾衰竭需要肾替代治疗的最常见的原因。早期DN的主要特征为小球肥大和进行性细胞外基质(extracellular matrix, ECM)增加,损害逐渐加重和持续性蛋白尿导致肾小球硬化,肾功能恶化和慢性肾功能衰竭。.小球肥大和ECM积聚的分子机制涉及到多种因素和途径,是目前研究的热点。NG2是一种重要的硫酸软骨素蛋白多糖(chondroitin sulfate proteoglycan, CSPG),分子结构显示NG2具有完整的跨膜结构,可与胞外多种配体结合,并介导胞内信号转导,因此在调节细胞与细胞,细胞与ECM的相互作用中发挥了重要的功能。近年来研究者们发现NG2不仅表达在中枢神经系统(central nervous system, CNS),许多间叶细胞中也发现NG2的表达,如成软骨细胞、骨骼肌成肌细胞、表皮干细胞、血管平滑肌细胞/周细胞以及黑色素瘤细胞等。但NG2在肾脏组织中的表达、定位以及功能仍未见报道。
     目的:本课题旨在观察NG2在大鼠肾脏中的表达和定位,以及NG2在糖尿病大鼠模型中的表达变化,探讨NG2与DN肾小球肥大和ECM积聚之间的关系,从而为DN的发病机制提供新的理论,并为DN的早期防治提供新的作用靶点。
     方法:(1)雄性SD大鼠麻醉后,灌注固定,取肾脏皮质,免疫荧光法和免疫电镜法观察NG2在大鼠肾脏组织中的定位。取新鲜的肾脏皮质,RT-PCR法和western blot法分别检测NG2 mRNA和蛋白的表达。(2)链脲佐菌素(Streptozocin, STZ)65 mg/kg单次腹腔注射,复制糖尿病大鼠模型,分别于2、4、8周各处死6只。观察肾脏组织病理学和生化指标改变。取肾脏皮质,免疫荧光染色,荧光定量PCR法和western blot法观察NG2表达的变化(。3)体外培养大鼠肾小球系膜细胞HBZY-1,高糖(30mmol/L)刺激24 hs后观察NG2表达的变化。构建两条针对NG2的shRNA真核表达载体Pgenesil-siNG21和Pgenesil-siNG22,检测干扰效率,取效率高的质粒进行后续实验。(4)将Pgenesil-siNG2和NG2表达载体(pcDNA-NG2)转染入HBZY-1细胞,MTT法观察细胞增殖情况,流式细胞仪(flow cytometry, FCM)检测细胞周期,荧光定量PCR法观察ECM成分collagen VI和Laminin的表达变化。
     结果:(1)共聚焦显微镜和免疫电镜观察均发现正常大鼠肾脏中可见NG2的表达,主要定位于肾小球系膜区,包括系膜细胞和系膜基质。RT-PCR法和western blot法分别检测NG2 mRNA和蛋白的表达,结果提示正常大鼠肾脏中NG2表达水平较低。(2)STZ腹腔注射3天后,大鼠血糖>16.7mmol/L,视为达到糖尿病诊断标准,且在处死前的8周内始终维持高血糖水平。糖尿病大鼠的血糖、肾重/体重和尿白蛋白/肌酐明显高于对照组,有统计学意义(P<0.05或P<0.01)。8周糖尿病大鼠可见明显的肾小球肥大和系膜区增生,平均肾小球体积为(1.29±0.11)x106μm3,与对照组(1.14±0.12)x106μm3相比,有统计学意义(P<0.05);电镜显示糖尿病组大鼠部分足突融合,中度系膜基质增生。免疫荧光染色显示糖尿病大鼠NG2表达也定位于系膜区,但较正常组荧光强度增加;荧光定量PCR和western blot结果显示糖尿病大鼠NG2 mRNA和蛋白表达增高。与对应时间段对照大鼠相比,2周糖尿病大鼠NG2 mRNA水平显著增高(138±76)% ,达到峰值;4周和8周糖尿病大鼠也分别增高(74±40)%和(73±37)%。(3)高糖(30mmol/L)刺激HBZY-1细胞24 hs后,NG2表达水平较正常对照组和甘露醇对照组明显升高,有统计学意义(P<0.01)。构建两条针对NG2的shRNA ( Pgenesil-siNG21和Pgenesil-siNG22 ),以及随机阴性对照Pgenesil-siNC,经酶切鉴定和DNA测序均符合设计要求。荧光定量PCR结果显示Pgenesil-siNG21和Pgenesil-siNG22对HBZY-1细胞中NG2基因的抑制率分别为54%和72%,选取Pgenesil-siNG22做后续实验。(4)将Pgenesil-siNG22、Pgenesil-siNC、NG2表达质粒(pcDNA-NG2)和空质粒pcDNA分别转染入HBZY-1细胞,MTT法检测结果显示质粒pcDNA-NG2转染组细胞吸光度值(1.309±0.018)较对照组pcDNA转染组(1.016±0.031)明显增加,有显著统计学意义(P<0.01);而质粒Pgenesil-siNG22转染组细胞吸光度值(0.835±0.038)较对照组Pgenesil-siNC转染组(1.021±0.049)明显下降,有统计学意义(P<0.05),提示NG2基因对HBZY-1细胞有促进增殖的作用。FCM结果显示质粒pcDNA-NG2转染组和Pgenesil-siNG22转染组细胞周期中位于S期的比例分别为17.66%和2.88%,较对照组(10.46%和10.47%)有统计学意义(P<0.05)。荧光定量PCR法结果显示质粒pcDNA-NG2转染组细胞α2 (VI) collagen和Lamininβ1 mRNA表达较对照组明显升高,有统计学意义(P<0.05);而质粒Pgenesil-siNG22转染组细胞α2 (VI) collagen和Lamininβ1 mRNA表达较对照组显著减少,有统计学意义(P<0.05或P<0.01)。
     结论:(1)NG2在大鼠肾脏中有表达,主要定位于肾小球系膜区,包括系膜细胞和系膜基质。(2)糖尿病大鼠肾脏NG2表达明显增加,并有时序性改变,2周时达到高峰,后维持较高水平至观察的第8周。(3)体外高糖刺激肾小球系膜细胞可见NG2表达的升高。从沉默和过表达NG2两方面的实验观察发现,NG2基因有促进系膜细胞增殖和ECM成分collagen VI和Laminin增生的作用。(4)因此,NG2可能是参与DN发生进展的重要因子。本课题为DN发病机制的研究提供了新的理论,为DN的早期防治提供了新的作用靶点。
Background: Diabetic nephropathy is increasing dramatically worldwide and is now the most common cause of end-stage renal failure requiring renal replacement therapy in Europe and America. Glomerular hypertrophy and progressive expansion of extracellular matrix (ECM) have been supposed to be the early features of diabetic nephropathy. It is believed that with the progression of these lesions and persistent proteinuria, glomerular sclerosis occurs, which lead to deterioration of renal function and chronic renal failure. Molecular mechanisms underlying the pathogenesis of glomerular hypertrophy and ECM accumulation have, however, remained incompletely understood. NG2 is a large, integral membrane-spanning chondroitin sulfate proteoglycan (CSPG). It is capable of binding to multiple extracellular ligands and participating in cytoplasmic signal transduction. NG2 plays an important role in mediating the cellular interactions or interactions between cells and ECM. NG2 is expressed not only in central nervous system, but also in a variety of mesenchymal cell types such as chondroblasts, skeletal myoblasts, epidermal stem cells, vascular smooth cells/pericytes and melanoma cells. But the expression and role of NG2 in kidneys has not been clarified.
     Objective: To investigate the expression of NG2 proteoglycan in the kidneys of normal rats and strepozotocin (STZ)-induced diabetic rats, and observe the role of NG2 in the pathogenesis of diabetic nephropathy.
     Methods: (1) Sprague-Dawley rats were anaesthetized and perfusion-fixed. Immunohistochemistry and immunoelectron microscopy was performed to examine the location of NG2 in rat kidneys. The expression of mRNA and protein of NG2 was measured by RT-PCR and western blot respectively. (2) To induce diabetes, rats were given a single intraperitoneal injection of 65 mg/kg Streptozocin (STZ). 2, 4 and 8 weeks after injection, 6 animals of each group were sacrificed and kidneys were removed for the further investigations. Biochemical parameters and pathological changes were examined. The expression of NG2 was detected by immunohistochemistry, real-time PCR and western blot. (3) Rat glomerular mesangial cell line HBZY-1 was cultured in vitro. HBZY-1 cells were treated with high glucose (30mmol/L) for 24 hs and the changes of NG2 expression were observed. Two small hairpin RNA (shRNA) constructs targeting NG2 were created, and the interference efficiency was measured. The better construct was selected to perform the next experiments. (4) HBZY-1 cells were transfected with Pgenesil-siNG2 and NG2 expression vectors (pcDNA-NG2) by LipofectamineTM 2000. The effect of NG2 on the proliferation of HBZY-1 cells was examined by MTT method and flow cytometry (FCM), and the effect of NG2 on the synthesis of collagen VI and Laminin was measured by real-time PCR.
     Results: (1) The location of NG2 proteoglycan in kidneys was investigated by confocal microscopy and immunoelectron microscopy. NG2 was mainly expressed in the mesangial matrix and mesangial cells of glomeruli. The expression of mRNA and protein of NG2 in rat kidneys was detected by RT-PCR and western blot. (2) Rats with blood glucose concentration>16.7mmol/L were accepted as diabetic models 3 days after STZ injection. Hyperglycemia persisted in diabetic animals during the 8 weeks study period before they were sacrificed. The blood glucose level, kidney-to-body weigh ratio and urinary albumin/creatinine of diabetic rats were significantly higher than those of control rats (P<0.05 or P<0.01). Glomerular hypertrophy and mesangial expansion were evident in 8 week diabetic rats. There was a significant increase of mean VG from (1.14±0.12) to (1.29±0.11) x106μm3 (P<0.05). The electron micrographs showed segmental fusion of podocyte foot processes and moderate mesangial matrix expansion. The expression of NG2 was also observed predominantly in glomerular mesangium in diabetic rats. Compared with control rats, the expression of NG2 in renal cortex was significantly higher than that in diabetic rats. The NG2 mRNA levels peaked within 2 weeks (increase by 138±76%, P<0.01) and still remained significantly enhanced 4 weeks (by 74±40%, P<0.05) and 8 weeks (by 73±37%, P<0.01) in diabetic rats compared with time-match control rats. (3) The expression of NG2 in HBZY-1 cells significantly increased (P<0.01) after treated with high glucose (30mmol/L) for 24 hs. Two shRNA vectors targeting NG2 (Pgenesil-siNG21 and Pgenesil-siNG22) were constructed successfully, and their interference efficiency was 54% and 72% respectively. Pgenesil-siNG22 was selected to perform the next experiments. (4) HBZY-1 cells were transfected with Pgenesil-siNG22, Pgenesil-siNC, pcDNA-NG2 and empty vector pcDNA respectively. According to MTT assay, overexpression of NG2 significantly stimulated, while NG2 silencing inhibited the proliferation of mesangial cells. The data of cell-cycle analysis by FCM showed that NG2 increased the cell numbers in the S phase and decreased the cell number in the G0/G1 phase, while silencing NG2 induced decrease of the cell numbers in the S phase and increase of the cell numbers in the G0/G1 phase. The expression of collagen VI and Laminin was significantly increased by overexpressing of NG2 and was decreased by treating with NG2 siRNA.
     Conclusions: In the kidneys of normal and STZ-induced diabetic rats, the expression of NG2 was observed predominantly in glomerular mesangium. Both mRNA and protein levels were significantly higher in diabetic rats than those in control rats. In cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted cell proliferation and formation of ECM such as type VI collagen and Laminin. Furthermore, gene silencing targeting NG2 resuLted in decreased cell proliferation and formation of ECM. The observations suggest that NG2 is up-regulated in diabetic nephropathy and actively participates in the development and progression of glomerulosclerosis by stimulating the proliferation of mesangial cells and the deposition of ECM. NG2 is a potential target for prevention and therapy of DN.
引文
1. Baricos WH, Cortez SL, el-Dahr SS, et al. ECM degradation by cultured human mesangial cells ismediated by a PA/plasmin/MMP-2 cascade. Kidney Int. 1995; 47(4): 1039-1047.
    2. Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes. 2004; 53: 2101-2109.
    3. Levidiotis V, Freeman C, Punler M, et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol. 2004; 15: 2882- 2892.
    4. Joosten SA, Sijpkens YW, van Ham V, et al. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant. 2005; 5: 383-93.
    5. Khalad Karram, Nivedita Chatterjee, Jacqueline Trotter. NG2-expressing cells in the nervous system: role of the proteoglycan in migration and glial–neuron interaction. J Anat. 2005; 207: 735-744.
    6. Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002; 31: 423-435.
    7. Nishiyama A, Yang Z, Butt A. Astrocytes and NG2-glia: what’s in a name? J Anat. 2005; 207: 687-694.
    8. Burg MA, Tillet E, Timpl R, et al. Binding of the NG2 Proteoglycan to Type VI Collagen and Other Extracellular Matrix Molecules. J Biol Chem. 1996; 271:26110-26116.
    9. Goretzki L, Burg MA, Grako KA, et al. High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteolycan. J Biol Chem. 1999; 274: 16831-16837.
    1. Karram K, Chatterjee N, Trotter J. NG2-expressing cells in the nervous system: role of the proteoglycan in migration and glial-neuron interaction. J Anat. 2005; 207: 735-744.
    2. Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002; 31: 423-435.
    3. Nishiyama A, Yang Z, Butt A. Astrocytes and NG2-glia: what’s in a name? J Anat. 2005; 207: 687-694.
    4. Delehedde M, Deudon E, Boilly B, et al. Proteoglycans and breast cancer. Pathol Biol. 1997; 45(4): 305-311.
    5. Cattaruzza S, Perris R. Approaching the Proteoglycome: Molecular Interactions of Proteoglycans and Their Functional Output. Macromol Biosci. 2006; 6: 667- 680.
    6. Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002; 31(6-7): 423-435.
    7. Wiley LA, Rupp GR, Steinle JJ. Sympathetic Innervation Regulates Basement Membrane Thickening and Pericyte Number in Rat Retina. Invest Ophthalmol Vis Sci. 2005; 46: 744-748.
    1. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999; 341:1127–1133. Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice: nephropathy in patients with type 2 diabetes. N Engl J Med. 2002; 346: 1145-1151.
    2. Doi T, Vlassara H, Kirstein M, et al. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci USA, 1992, 89: 2873-2877.
    3. Yokoyama H, Myrup B, Oturai P, et al. Heparin, a possible therapy for diabetic complications: the effect on mesangial and myomedial cells in vivo and in vitro, especially in relation to extracellular matrix. J Diabetes Complications. 1995; 9(2): 97-103.
    4. Baricos WH, Cortez SL, el-DahrSS, et al. ECM degradation by cultured human mesangial cells ismediated by a PA/plasmin/MMP-2 cascade. Kidney Int. 1995; 47(4): 1039-1047.
    5. Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes. 2004; 53: 2101-2109.
    6. Levidiotis V, Freeman C, Punler M, et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J Am Soc Nephrol. 2004; 15: 2882- 2892.
    7. Joosten SA, Sijpkens YW, van Ham V, et al. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant. 2005; 5: 383-393.
    8. Stallcup WB, Beasley L, Levine J. Cell-surface molecuLes that characterize different stages in the development of cerebellar interneurons. Cold Spring Harb Symp Quant Biol. 1983; 48: 761-774.
    9. Nishiyama A, Lin XH, Giese N, et al. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res. 1996; 43: 299-314.
    10. Nishiyama A, Lin XH, Giese N, et al. Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res. 1996; 43: 315-330.
    11. Nishiyama A, Dahlin KJ, Stallcup WB. The expression of NG2 proteoglycan in the developing rat limb. Development. 1991; 111: 933-944.
    12. Schlingemann RO, Rietveld FJ, de Waal RM, et al. Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol. 1990; 136: 1393-1405.
    13. Grako KA, Stallcup WB. Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res. 1995; 221: 231-240.
    14. Real FX, Houghton AN, Albino AP, et al. Surface antigens of melanomas and melanocytes defined by mouse monoclonal antibodies: specificity analysis andcomparison of antigen expression in cultured cells and tissues. Cancer Res. 1985; 45: 4401-4411.
    15. Schrappe M, Klier FG, Spiro RC, et al. Correlation of chondroitin sulfate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astroglial cells. Cancer Res. 1991; 51: 4986-4993.
    16. Leger O, Johnson-Leger C, Jackson E, et al. The chondroitin sulfate proteoglycan NG2 is a tumour specific antigen on the chemically-induced rat sarcoma HSN. Int J Cancer. 1994; 58: 700-705.
    17. Smith FO, Rauch C, Williams DE, et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood. 1996; 87: 1123-1133.
    18. Belachew S, Chittajallu R, Aguirre AA, et al. Postnatal NG2 proteoglycan- expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol. 2003; 161: 169-186.
    19. Burg MA, Grako KA, Stallcup WB. Expression of the NG2 proteoglycan enhances the growth and metastatic properties of melanoma cells. J Cell Physiol. 1998; 177: 299-312.
    20. Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002; 31: 423-435.
    21. Nishiyama A, Dahlin KJ, Prince JT, et al. The primary structure of NG2, a novel membrane-spanning proteoglycan. J Cell Biol. 1991; 114: 359-371.
    22. Stallcup WB, Dahlin K, Healy P. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Biol. 1990; 111: 3177-3188.
    23. Burg MA, Tillet E, Timpl R, et al. Binding of the NG2 Proteoglycan to Type VI Collagen and Other Extracellular Matrix Molecules. J Biol Chem.1996; 271: 26110-26116.
    24. Goretzki L, Burg MA, Grako KA, et al. High- affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteolycan. J Biol Chem. 1999; 274: 16831-16837.
    25. Floege J, Eng E, Young BA, et al. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest. 1993; 92: 2952-2962.
    26. Dlugosz JA, Munk S, Ispanovic E, et al. Mesangial cell filamentous actin disassembly and hypocontractility in high glucose are mediated by PKC- . Am J Physiol Renal Physiol. 2002; 282: F151-F163.
    27. Lin XH, Dahlin-Huppe K, Stallcup WB. Interaction of the NG2 proteoglycan with the actin cytoskeleton. Journal of Cellular Biochemistry. 1996; 63: 463-477.
    1. Stallcup WB, Dahlin K, Healy P. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Biol. 1990; 111: 3177-3188.
    2. Burg MA, Tillet E, Timpl R, et al. Binding of the NG2 Proteoglycan to Type VI Collagen and Other Extracellular Matrix Molecules. J Biol Chem. 1996; 271: 26110-26116.
    3. Goretzki L, Burg MA, Grako KA, et al. High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteolycan. J Biol Chem. 1999; 274: 16831-16837.
    4. Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002; 31: 423-435.
    5. Floege J, Eng E, Young BA, et al. Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest. 1993; 92: 2952-2962.
    6. Djikeng A, Shi H, Tschudi C, et al. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA. 2001; 7(11): 1522-1530.
    7. Fjose A, Ellingsen S, Wargelius A, et al. RNA interference: mechanisms and applications. Biotechnol Annu Rev. 2001; 7: 31-57.
    8. Waterhouse PM, Wang MB, Lough T. Gene silencing as an adaptive defence against viruses. Nature. 2001; 411(6839): 834-842.
    9. Bosher JM, Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol. 2000; 2(2): E31-36.
    10. Plasterk RH. RNA silencing: the genome's immune system. Science. 2002; 296 (5571): 1263-1265.
    11. Hunter CP. Gene silencing: shrinking the black box of RNAi. Curr Biol. 2000; 10 (4):R137-140.
    12. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature.1998; 391(6669): 806- 811.
    13. Sharp PA. RNA interference-2001. Genes Dev. 2001; 15 (5): 485-490.
    14. Jorgensen RA, Cluster PD, English J, et al. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol. 1996; 31(5): 957- 973.
    15. Cogoni C, Irelan JT, Schumacher M, et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 1996; 15(12): 3153-3163.
    16. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature. 2002; 418(6896): 435-438.
    17. Svoboda P, Stein P, Hayashi H, et al. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development. 2000; 127(19): 4147-4156.
    18. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000; 101(1): 25-33.
    19. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001; 107(3): 309-321.
    20. Caplen NJ, Parrish S, Imam F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001; 98(17): 9742-9747.
    21. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411(6836): 494-498.
    22. Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy. Nucleic Acids Res. 2003; 31(7):e38.
    23. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short- interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Aead Sci USA. 2002; 99(9): 6047-6052.
    24. Yang D, Buchholz F, Huang Z, et al. Short RNA duplexes produced by hydrolysis with Eseherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2002; 99(15): 9942-9947.
    25. Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002; 16(8): 948- 958.
    26. Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002; 20(5): 497-500.
    27. Shinagawa T, Ishii S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 2003; 17 (11): 1340-1345.
    28. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 2003; 31(2): 700-707.
    29. Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products. RNA. 2002; 8(11): 1454-1460.
    30. Grako KA, Stallcup WB. Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res. 1995; 221(1): 231-40.
    31. Nishiyama A, Lin XH, Giese N, et al. Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res. 1996; 43(3): 315-330.
    32. Goretzki L, Burg MA, Grako KA, et al. High-affinity binding of basic fibroblast growthfactor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem. 1999; 274(24): 16831-16837.
    33. Grako KA, Ochiya T, Barritt D, et al. PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci. 1999; 112(Pt 6): 905-915.
    34. Uhrbom L, Hasselager G, Ostman A, et al. Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int J Cancer. 2000; 85(3): 398-406.
    35. Fukushi J, Makagiansar IT, Stallcup WB, et al. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3 beta1 integrin. Mol Biol Cell. 2004; 15(8): 3580-3590.
    36. Wen Y, Makagiansar T, Fukushi J, et al. Molecular basis of interaction between NG2 proteoglycan and galectin-3. J Cell Biochem. 2006; 98(1): 115-127.
    37. Iida J, Skubitz PN, Furcht LT, et al. Coordinate role for cell surface chondroitin sulfate proteoglycan and alpha 4 beta 1 integrin in mediating melanoma cell adhesion to fibronectin. J Cell Biol. 1992; 118(2): 431-444.
    38. Iida J, Meijne AM, Spiro RC, et al. Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma-associated proteoglycan (NG2) and alpha 4 beta 1 integrin. Cancer Res. 1995; 55(10): 2177-2185.
    39. Goretzki L, Lombado CR, Stallcup WB, et al. Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin (ogen). J Biol Chem. 2000; 275(37): 28625-28633.
    40. Chekenya M, Hjelstuen M, Enger P, et al. NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by sequestering angiostatin. FASEB J. 2002; 16(6): 586-588.
    41. Iida J, Pei D, Kang T, et al. Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. JBiol Chem. 2001; 276(22): 18786-18794.
    42. Stallcup WB, Dahlin K, Healy P. Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J Cell Biol. 1990; 111(6 Pt 2): 3177-3188.
    43. Burg MA, Tillet E, Timpl R, et al. Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem. 1996; 271(42): 26110-26116.
    44. Burg MA, Nishiyama A, Stallcup WB. A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res. 1997; 235(1): 254-264.
    45. Tillet E, Ruggiero F, Nishiyama A, et al. The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J Biol Chem. 1997; 272(16): 10769-10776.
    46. Tillet E, Gential B, Garrone R, et al. NG2 proteoglycan mediates beta1 integrin-independent cell adhesion and spreading on collagen VI. J Cell Biochem. 2002; 86(4): 726-736.
    47. Eisenmann KM, McCarthy JB, Simpson MA, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol. 1999; 1(8): 507-513.
    48. Majundar M, Vuori K, Stallcup WB. Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signal. 2003; 15(1): 79-84.
    49. Lin XH, Dahlin-Huppe K, Stallcup WB. Interaction of the NG2 proteoglycan with the actin cytoskeleton. J Cell Biochem. 1996; 63: 463-477.
    50. Burg MA, Tillet E, Timpl R, et al. Binding of the NG2 Proteoglycan to Type VI Collagen and Other Extracellular Matrix Molecules. J Biol Chem.1996; 271: 26110-26116.
    51. Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes. 2004; 53:2101-2109.
    52. Dlugosz JA, Munk S, Ispanovic E, et al. Mesangial cell filamentous actin disassembly and hypocontractility in high glucose are mediated by PKC- . Am J Physiol Renal Physiol. 2002; 282: F151-F163.
    53. Makagiansar IT, Williams S, Dahlin-Huppe K, et al. Phosphorylation of NG2 proteoglycan by protein kinase C-αregulates polarized membrane distribution and cell motility. J Biol Chem. 2004; 279: 55262-55270.
    1. Ng L, Grodzinsky AJ, Patwari P, et al. J Struct Biol. 2003; 143: 242-257.
    2. Todd BA, Rammohan J, Eppell SJ. Biophys J. 2003; 84: 3982-3991.
    3. Dean D, Han L, Grodzinsky AJ, et al. J Biomech. 2006; 39: 2555-2565.
    4. Mazzucato M, Cozzi MR, Pradella P, et al. FASEB J. 2002; 16: 1903-1916.
    5. Hirakawa S, Oohashi T, Su WD, et al. Biochem Biophys Res Commun. 2000; 276: 982-989.
    6. Olin AI, Morgelin M, Sasaki T, et al. J Biol Chem. 2001; 276: 1253-1261.
    7. Day JM, Olin AI, Canfield A, et al. J Biol Chem. 2004; 279: 12511-12518.
    8. Strom A, Olin AI, Aspberg A, et al. Cardiovasc Res. 2006; 69: 755-763.
    9. Lundell A, Olin AI, Morgelin M, et al. Structure. 2004; 12: 1495-1506.
    10. Ney A, Booms P, Epple G, et al. Int J Biochem Cell Biol. 2006; 38: 23-29.
    11. Bruckner G, Grosche J, Schmidt S, et al. J Comp Neurol. 2000; 428: 616-629.
    12. Isogai Z, Aspberg A, Keene DR, et al. J Biol Chem. 2002; 277: 4565-4572.
    13. Trask BC, Trask TM, Broekelmann T, et al. Mol Biol Cell. 2000; 11: 1499-1507.
    14. Reinboth B, Hanssen E, Cleary EG, et al. J Biol Chem. 2002; 277: 3950-3957.
    15. Merrilees MJ, Lemire JM, Fisher JW, et al. Circ Res. 2002; 90: 481-487.
    16. Graham H, Holmes DF, Watson RB, et al. J MolecuLar Biol. 2000; 295: 891-902.
    17. Keene DR, San Antonio JD, Mayne R, et al. J Biol Chem. 2000; 275: 21801- 21804.
    18. Zhang G, Ezura Y, Chervoneva I, et al. J Cell Biochem. 2006; 98: 1436-1449.
    19. Ezura Y, Chakravarti S, Oldberg A, et al. J Cell Biol. 2000; 151: 779-788.
    20. Bi Y, Stuelten CH, Kilts T, et al. J Biol Chem. 2005; 280: 30481-30489.
    21. Wiberg C, Heinegard D, Wenglen C, et al. J Biol Chem. 2002; 277: 49120- 49126.
    22. Wiberg C, Klatt AR, Wagener R, et al. J Biol Chem. 2003; 278: 37698-37704.
    23. Bowe MA, Mendis DB, Fallon JR. J Cell Biol. 2000; 148: 801-810.
    24. Klezovitch O, Formato M, Cerchi GM, et al. J Biol Chem. 2000; 275: 18913- 18918.
    25. Pentikainen M, Oorni K, Kovanen PT. J Biol Chem. 2000; 275: 5694-5701.
    26. Fuki IV, Iozzo RV, Williams KJ. J Biol Chem. 2000; 275: 25742-25750.
    27. Vikramadithyan RK, Kako Y, Chen G, et al. J Lipid Res. 2004; 45: 1806-1812.
    28. Mongiat M, Otto J, Oldershaw R, et al. J Biol Chem. 2001; 276: 10263-10271.
    29. Sher I, Zisman-Rozen S, Eliahu L, et al. J Biol Chem. 2006; 281: 5178-5187.
    30. Trowbridge JM, Rudisill JA, Ron D, et al. J Biol Chem. 2002; 277: 42815-42820.
    31. Taylor KR, Rudisill JA, Gallo RL. J Biol Chem. 2005; 280: 5300-5306.
    32. Perissinotto D, Iacopetti P, Bellina I, et al. Development. 2000; 127: 2823-2842.
    33. Kanagawa M, Michele DE, Satz JS, et al. FEBS Lett. 2005; 579: 4792-4796.
    34. Jones JC, Lane K, Hopkinson SB, et al. J Cell Sci. 2005; 118: 2557-2566.
    35. Bix G, Fu J, Gonzalez EM, et al. J Cell Biol. 2004; 166: 97-109.
    36. Bix G, Iozzo RV. Trends Cell Biol. 2005; 15: 52-60.
    37. Santra M, Reed CC, Iozzo RV. J Biol Chem. 2002; 277: 35671-35681.
    38. Csordas G, Santra M, Reed CC, et al. J Biol Chem. 2000; 275: 32879-32887.
    39. Santra M, Eichstetter I, Iozzo RV. J Biol Chem. 2000, 275, 35153-35161.
    40. Schonherr E, Sunderkotter CC, Iozzo RV, et al. J Biol Chem. 2005; 280: 15767- 15772.
    41. Reed CC, GauLdie J, Iozzo RV. Oncogene. 2002; 21: 3688-3695.
    42. Grant DS, Yesney C, Rose RW, et al. Oncogene. 2002; 21: 4765-4777.
    43. Zhu JX, Goldoni S, Bix G, et al. J Biol Chem. 2005; 280: 32468-32479.
    44. Sjoberg A, Onnefjord P, Morgelin M, et al. J Biol Chem. 2005; 280: 32301- 32308.
    45. Keiser N, Venkataraman G, Shriver Z, et al. Nat Med. 2001; 7: 123-128.
    46. Kreuger J, Salmivirta M, Sturiale L, et al. J Biol Chem. 2001; 276: 30744-30752.
    47. Robinson CJ, Harmer NJ, Goodger SJ, et al. J Biol Chem. 2005; 280: 42274- 42282.
    48. Harmer NJ, Robinson CJ, Adam LE, et al. Biochem J. 2006; 393: 741-748.
    49. Taylor KR, Gallo RL. FASEB J. 2006; 20: 9-22.
    50. Lander AD, Selleck SB. J Cell Biol. 2000; 148: 227-232.
    51. Fuki IV, Meyer ME, Williams KJ. Biochem J. 2000; 351: 607-612.
    52. Belenkaya TY, Han C, Yan D, et al. Cell. 2004; 119: 231-244.
    53. Marois E, Mahmoud A, Eaton S. Development. 2006; 133: 307-317.
    54. Lin X. Development. 2004; 131: 6009-6021.
    55. Li Q, Loeb JA. J Biol Chem. 2001; 276: 38068-38075.
    56. Tkachenko E, Rhodes JM, Simons M. Circ Res. 2005; 96: 488-500.
    57. Tkachenko E, Ltgens E, Stan RV, et al. J Cell Sci. 2004; 117: 3189-3199.
    58. Hsia E, Richardson TP, Nugent MA. J Cell Biochem. 2003; 88: 1214-1225.
    59. Chua CC, Rahimi N, Forsten-Williams K, et al. Circ. Res. 2004; 94: 316-323.
    60. Deepa SS, Yamada S, Zako M, et al. J Biol Chem. 2004; 279: 37368-37376.
    61. Fitzgerald ML, Wang Z, Park PW, et al. J Cell Biol. 2000; 148: 811-824.
    62. Ding K, Lopez-Burks M, Sanchez-Duran JA, et al. J Cell Biol. 2005; 21: 729- 738.
    63. Uhrbom L, Hesselager G, Ostman A, et al. Int J Cancer. 2000; 85: 398-406.
    64. Fukushi J, Makagiansar IT, Stallcup WB et al. Mol Biol Cell. 2004; 15: 3580- 3590.
    65. Wen Y, Makagiansar IT, Fukushi J, et al. J Cell Biochem. 2006; 98: 115-127.
    66. Goretzki L, Lombardo CR, Stallcup WB. J Biol Chem. 2000; 275: 28625-28633.
    67. Chekenya M, Hjelstuen M, Enger P, et al. FASEB J. 2002; 16: 586-588.
    68. Iida J, Pei D, Kang T, et al. J Biol Chem. 2001; 276: 18786-18794.
    69. Tillet E, Gential B, Garrone R, et al. J Cell Biochem. 2002; 86: 726-736.
    70. Eisenmann KM, McCarthy JB, Simpson MA, et al. Nat Cell Biol. 1999; 1: 507- 513.
    71. Majumdar M, Vuori K, Stallcup WB. Cell Signal. 2003; 15: 79-84.
    72. Yang J, Price MA, Neudauer CL, et al. J Cell Biol. 2004; 165: 881-891.
    73. Gallay P. Microbes Infect. 2004; 6: 617-622.
    74. Jones KS, Petrow-Sadowski C, Bertolette DC, et al. J Virol. 2005; 79: 12692- 12702.
    75. Park PW, Pier GB, Hinkes MT, et al. Nature. 2001; 411: 98-102.
    76. Tyagi M, Rusnati M, Presta M, et al. J Biol Chem. 2001; 276: 3254-3261.
    77. Esko JD, Selleck SB. Annu Rev Biochem. 2002; 71: 435-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700