用户名: 密码: 验证码:
基于无线热释电传感器网络的人体目标跟踪系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体跟踪指的是在特定的跟踪系统中,根据探测输出信号,从而确定人体是否存在以及当前所处位置的过程。人体跟踪技术广泛应用于各种环境监测系统、安全系统、智能辅助系统中,其往往涉及人身安全、紧急救援或贵重物品的保护,等等,具有重大的科学意义和市场前景。论文依托国家自然科学基金项目,完整地构建了基于无线热释电传感器网络的人体目标跟踪系统。系统硬件采用了专门设计的辅以菲涅尔阵列的热释电传感器网络,实现人体目标运动检测;系统软件包含了多目标跟踪算法和系统校准算法两个部分。
     在本文系统的设计中,面临着如下的问题和挑战:(1)热释电传感器硬件结构设计,包括如何提高感测解析度、优化视觉域调节,和设计菲涅尔透镜阵列;(2)传感器节点的CPU容量限制以及严重受限的的网络通信带宽;(3)针对多人跟踪应用设计优化的、低时空复杂度的、易于实际系统实施的分布式推理与学习算法;(4)建立准确的、可拓展的分布式热释电传感器网络仿真系统平台,并构建实际场景中的系统测试平台。针对这些问题,本文所做的的主要工作为:
     首先,通过对热释电传感器工作原理的研究,设计适用于人体目标跟踪的热释电传感器。在此基础上,构建热释电传感器节点并根据节点特性提出目标定位方法以及传感器网络的整体架构。
     其次,提出了目标跟踪问题的数学模型,并根据此数学模型提出目标跟踪的数学表达公式,为跟踪算法指明研究方向;利用信号处理技术以及热释电传感器网络的结构和特点,提取目标检测结果,获得事件序列信号,利用网络节点的几何参数,为运动目标提供初步的定位结果。
     第三,基于系统硬件特性,设计分布式多目标跟踪算法。其算法的设计主要包括两个部分,即数据-目标关联和运动滤波。在本文系统中,不同的目标极有可能在传感器的视角域内相互遮挡,从而造成对传感数据的解释模糊,使系统精确度下降。为了解决这一问题,数据-目标关联必不可少。而运动滤波对不同的目标的检测数据进行处理,消除检测数据中的噪声,并预测目标的下一步位置坐标,实现目标跟踪。本系统借鉴将目标假设为刚性的数据关联算法JPDA和对系统资源消耗较小的卡尔曼滤波算法对目标原始数据进行处理。此外,针对分布式的网络环境,将JPDA算法与分布式卡尔曼滤波结合,构建完整的分布式目标跟踪算法方案,延长整个网络的生存周期。
     最后,根据传感器节点的检测特性,设计系统校准方案。人体目标跟踪系统在实际环境中运行时,往往受到环境噪声和硬件参数误差的影响,导致实际跟踪结果与仿真结果误差较大,因此需要校准算法进行调节。为了保证校准算法的简便,规定在校准时,校准目标的轨迹只需要保证为直线即可,不需要附加任何硬件设备。算法利用KL距离构建目标方程,并通过信息投影技术进行方程优化,从而获得新的网络节点参数。此外,在构建优化算法时,利用置信传播架构改造算法,获得分布式校准方案,为整个网络系统服务,以实现系统通过参数校准提高跟踪结果精度的目的。
     基于上述研究工作,本文的创新工作主要体现在以下三个方面:
     (1)根据系统硬件开发的基于分布式卡尔曼滤波器的多目标人体跟踪算法。本系统采用JPDA算法与分布式卡尔曼滤波器相结合的跟踪算法进行人体跟踪,算法的融合方案仅仅涉及节点测量协方差和测量数据的计算,保证计算复杂度较低,节点间通信量维持在较低的水平。
     (2)基于信息投影技术优化校准目标方程。根据数学推导,确定传感器节点方向角度与节点位置参数在优化时分别对于m投影和e投影收敛,因此系统设计两级迭代优化算法来确定新的节点参数。基于信息投影的优化算法充分利用了多项式分布的特性,以及节点的硬件架构,同时保证优化过程的收敛性。
     (3)利用高斯置信传播架构,设计分布式校准算法。利用置信传播架构是分布式学习中的有效方法,但是其本身计算较为复杂,不适用于廉价的无线传感器网络。因此,利用特殊的高斯置信传播架构,配合节点本地校准算法,设计分布式校准算法成为有力的选择。高斯置信传播能同时降低计算复杂度和通信消耗,同时保证在网络中实现分布式校准算法,完成整体系统。
Human tracking is the procedure which makes sure whether there exists human body and obtains positions of concerned human targets according to the detection signals in tracking system. The human tracking technology can be widely used in kinds of environment surveillance, security and intelligent assistant systems which relate to person security, emergency rescue, protection of valuables and so on. Therefore, the technology has wonderful science significance and market prospective. This thesis is supported by the National Natural Science Foundation and constructs the whole human tracking system based on wireless pyroelectric sensor network. The system hardware uses the pyroelectric sensor network with the Fresenel lens array to realize human movement detection and the system software includes multi-target tracking algorithm and system calibration algorithm.
     The design of the human system has to deal with following problems and challenges:(1) The design of the structure of pyroelectric sensor hardware, which contains how to improve the detection resolution and optimize the field of view (FOV) of sensor, and the Fresenel lens array.(2) The CPU capacity of sensor node is limited and the network communication bandwidth is severely restricted.(3) The realization of distributed learning algorithm which is designed for multi-human tracking application and is easy for implement of real system and has low complexity.(4) The establishment of exact and extensible simulation platform of distributed pyroelectric sensor network and system testing platform in real environment. The main work of this thesis in allusion to these problems is:
     First, the thesis designs the pyroecectric sensor which is suitable for human targets tracking after the research of the pyroecectric theory. Then, the thesis constructs the sensor node and gives the target positioning method and network structure in term of the characters of pyroecectric sensor.
     Second, the thesis gives the mathematic model of target tracking problem and the corresponding mathematic formula for tracking algorithm. At the same time, the tracking system uses the signal processing technology and the structure characters of pyroelectric sensor network to distill the target detecting results for obtaining event sequence signal which provides the original positioning results with the assistance of geometric parameters of network nodes.
     Third, the distributed multi-target tracking algorithm is based on the system hardware. The procedure of algorithm design contains two parts, namely the data-to-target association and motion filter. For this system, different targets may blot out others in the FOV of sensors, and this situation causes the blur explanation of sensing data and decreases the precision of tracking system. In order to solve this weakness, the data-to-target association is necessary. The motion filter can deal with the detecting data of different targets, eliminate the noise and forecast the next positions of targets to realize target tracking. The system uses the data-to-target association algorithm JPDA which supposes the target as rigidity one and the Kalman filtering consuming less resource to cope with original target data. Moreover, the paper combines the JPDA with distributed Kalman filter for the distributed environment to construct the whole distributed tracking algorithm which prolongs the life cycle of the whole network.
     Finally, the thesis designs the system calibration scheme in terms of detecting characters of sensor node. When the human target tracking system works in the real environment, it is affected by the environmental noise and hardware parameters'error. It leads to the increase of tracking error in comparison with the simulation situation. So, the calibration algorithm is needed. This scheme requires the calibrating target moves through the line trajectory and does not need any additional equipment for convenience. The calibration utilizes KL divergence to build objective function and information projection to optimize the function to get new node parameters. In addition, the belief propagation is used to obtain distributed calibration scheme which serves the network and improves the tracking results by optimizing node parameters.
     Based on the above research work, the novelty of this thesis includes three points:
     (1) The multi-target human tracking algorithm based on the distributed Kalman filter is developed for the system hardware. In this system, the algorithm is the combination of JPDA and distributed Kalman filter for the lower computation and communication cost and this is because it only use the measure covariance and measure data.
     (2) The calibration objective function is optimized by the information projection technology. According to the mathematic analysis, the node orientation and node position are convergent for m-projection and e-projection respectively, therefore two-step iterative optimization algorithm is developed. This algorithm takes full advantage of multi-nominal distribution and node hardware structure, and guarantees the convergence during the whole procedure.
     (3) The distributed calibration algorithm is designed by using Gaussian belief propagation. The belief propagation is an effective method of distributed learning, but it is complicated and thus not very suitable for low-cost wireless sensor networks. Therefore the Gaussian belief propagation is the better choice and it is used to build distributed calibration scheme with the help of local calibration. The Gaussian belief propagation can reduce the cost of computation and communication, and meanwhile realizes the distributed calibration in the network.
引文
[1]R. Bodor, B. Jackson, and N. Papanikolopoulos. Vision-based Human Tracking and Activity Recognition[C]. Proc. of the 11th Mediterranean Conf. on Control and Automation, 2003.
    [2]Ying Wu, and T. S. Huang. Nonstationary Color Tracking for Vision-Based Human-Computer Interaction[J]. IEEE Transactions on Neural Networks,2002,13(4): 948-960.
    [3]Fengliang Xu, Xia Liu, and K. Fujimura. Pedestrian Detection and Tracking with Night Vision[J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(1):63-71.
    [4]Q. Cai, and J. K. Aggarwal. Tracking human motion in structured environments using a distributed-camera system [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(11):1241-1247.
    [5]S. B. Lang. Pyroelectricity:From Ancient Curiosity to Modern Imaging Tool[J]. Physics Today,2005,58(8):31-35.
    [6]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1281-1291.
    [7]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor Networks: A Survey[J]. Computer Networks,2002,38:393-422.
    [8]D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. Detection, Classification, and Tracking of Targets [J]. IEEE Signal Processing Mag.,2002,19(2):17-29.
    [9]F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative Signal and Information Processing:An Information-Directed Approach[J]. Proceedings of the IEEE,2003,91(8): 1199-1209.
    [10]J. C. Chen, K. Yao, and R. E. Hudson. Source Localization and Beamforming[J]. IEEE Signal Processing Mag.,2002,19(2):30-39.
    [11]A. S. Sekmen, M. Wilkes, and K. Kawamura. An Application of Passive Human-Robot Interaction:Human Tracking based on Attention Distraction[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2002,32(2):248-259.
    [12]A. Hossain, and M. H. Rashid. Pyroelectric Detectors and Their Applications[J]. IEEE Transactions on Industry Applications,1991,27(5):824-829.
    [13]Mohan Shankar, John B. Burchett, Qi Hao, Bob D. Guenther, and David J. Brady. Human-Tracking Systems Using Pyroelectric Infrared Detectors[J]. Optical Engineering. 2006,45(10):1-10.
    [14]A. Hossain and M. H. Rashid. Pyroelectric Detectors and Their Applications [J]. IEEE Transactions on Industry Applications,1991,27(5):824-829.
    [15]S. J. Kang, V. B. Samoilov, and Y. S. Yoon. Low-Frequency Response of Pyroelectric Sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1998, 45(5):1255-1260.
    [16](2005) Infrared parts manual [Online]. G. Corporation. http://www.glolab.com/pirparts/infrared.html.
    [17]于海斌,曾鹏,王忠锋,梁英,尚志军.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10):102-110.
    [18]R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed Target Classification and Tracking in Sensor Networks[J]. Proceedings of the IEEE,2003,91(8):1163-1171.
    [19]YE W, HEIDEMANN J, ESTRIN D. An energy-efficient MAC protocol for wireless sensor networks[C]. Proc of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies,2002,3:1567-1576.
    [20]Rahimi, A., Dunagan, B., and Darrell, T. Simultaneous calibration and tracking with a network of non-overlapping sensors[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004. CVPR 2004,2004, 1:187-194.
    [21]Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association[M]. CA:Academic Press,1988.
    [22]R. Tan, G. Xing, X. Liu, J. Yao, and Z. Yuan. Adaptive Calibration for Fusion-Based Wireless Sensor Networks[C].2010 Proceedings IEEE INFORCOM,2010:1-9.
    [23]M. M. Trivedi, K. S. Huang, and I. Mikic. Dynamic Context Capture and Distributed Video Arrays for Intelligent Spaces[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2005,35(1):145-163.
    [24]T. Zhao and R. Nevatia. Tracking Multiple Humans in Complex Situations. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1208-1221.
    [25]W. Hu, T. Tan, L. Wang, and S. Maybank. A Survey on Visual Surveillance of Object Motion and Behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews,2004,34(3):334-352.
    [26]D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Object Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
    [27]I. Haritaoglu, D. Harwood, and L. S. Davis. Real-time Surveillance of People and Their Activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8): 809-830.
    [28]Liyuan Li, Weimin Huang, Irene Yu-Hua Gu, and Qi Tian. Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J]. IEEE Transactions on Image Processing, 2004,13(11):1459-1472.
    [29]Yong Fan. A Real-time Algorithm of Dynamic Background Extraction in Image Sequence[C]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics,2005,8:4997-5000.
    [30]A. J. Lipton, H. Fujiyoshi, R. S. Patil. Moving Target Classification and Tracking From Real-Time Video[C]. Fourth IEEE Workshop on Applications of Computer Vision,1998: 8-14.
    [31]陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207.
    [32]Yang J., Lu W., Waibel A.. Skin Color Modeling and Adaptation[C]. Proceedings of the 3rd Asian Conference on Computer Vision,1998:687-694.
    [33]Strring M., Andersen H., Granum E. Physics-Based Modeling of Human Skin Under Mixed Illuminants[J]. Journal of Robotics and Autonomous Systems,2001,35(3-4):131-142.
    [34]D. Meyer, J. Denzler, and H. Niemann. Model Based Extraction of Articulated Objects in Image Sequences for Gait Analysis[C]. International Conference on Image Processing, 1997,3:78-81.
    [35]Liangyin Yu, and C. R. Dyer. Observer Motion Estimation and Control From Optical Flow[C].2001 International Conference on Image Processing,2001,2:941-944.
    [36]刘英霞.人体跟踪理论及算法研究[D].山东大学博士学位论文.2007.
    [37]Zappi P, Farella E, and Benini L Enhancing the Spatial Resolution of Presence Detection in a PIR Based Wireless Surveillance Network[C].2007 IEEE Conf. on Advanced Video and Signal Based Surveillance,2007:295-300.
    [38]Xiaomu Luo, Baihua Shen, Xuemei Guo, Guocai Luo, and Guoli Wang. Human Tracking Using Ceiling Pyroelectric Infrared Sensors[C]. IEEE International Conference on Control and Automation,2009:1716-1721.
    [39]R. Singer, R. Sea, K. Housewright. Derivation and Evaluation of Improved Tracking Filter for Use in Dense Multitarget Environments[J]. IEEE Transactions on Information Theory, 1974,20(4):423-432.
    [40]T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association[J]. IEEE Journal of Ocean Engineering,1983,8(3): 173-184.
    [41]Kuo-Chu Chang, Chee-Yee Chong, and Y. Bar-Shalom. Joint Probabilistic Data Association in Distributed Sensor Networks[J]. IEEE Transactions on Automatic Control, 1986,31(10):889-897.
    [42]T. Vercauteren, D. Guo, and X. Wang. Joint Multiple Target Tracking and Classification in Collaborative Sensor Networks[J]. IEEE Journal on Selected Areas in Communications, 2005,23(4):714-723.
    [43]Streit R E, and Luginbuhl T E. Probabilistic Multi-Hypothesis Tracking[J]. Technical Report. NLIWC-NPT,1995.
    [44]p. Willett, Y. Ruan, and R. Streit. PMHT:Problems and Some Solutions[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):738-754.
    [45]D. T. Dunham. PMHT with the true association probability[C].2007 IEEE Aerospace Conference,2007:1-7.
    [46]C. Rago, P. Willett, and R. Streit. Direct Data Fusion Using the PMHT[C]. Proceedings of the American Control Conference,1995,3:1698-1702.
    [47]D. Dunham, and R. Hutchins. Tracking Multiple Targets in Cluttered Environments with A Probabilistic Multi-Hypothesis Tracker[C]. Proceedings of SPIE Conference,1997, 284-295.
    [48]H. Gauvrit, J-P. LeCadre, and C. Jauffret. A Formulation of Multitarget Tracking as an Incomplete Data Problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997,33(4):1242-1257.
    [49]E. Giannopoulos, R. Streit, and P. Swaszek. Probabilistic Multi-Hypothesis Tracking in a Multi-Sensor, Multi-Target Environment[C]. First Australian Data Fusion Symposium, 1996:184-189.
    [50]M. Krieg, and D. Gray. Multi-Sensor Probabilistic Multi-Hypothesis Tracking Using Dissimilar Sensors[C]. Proceedings of SPIE Conference,1997,129-138.
    [51]T. Basar. A New Approach to Linear Filtering and Prediction Problems[M]. Control Theory:Twenty-Five Seminal Papers (1932-1981), Wiley-IEEE Press:167-179.
    [52]V. Sastry. Decomposition of the Extended Kalman Filter[J]. IEEE Transactions On Automation Control,1971,16(3):260-261.
    [53]R. Olfati-Saber. Distributed Kalman Filtering with Embedded Consensus Filters [C]. IEEE Conference on Decision and Control,2005:8179-8184.
    [54]R. Olfati-Saber. Distributed Kalman Filtering for Sensor Networks[C]. IEEE Conference on Decision and Control,2007:5492-5498.
    [55]M. Orton and W. Fitzgerald. A Bayesian Approach to Tracking Multiple Targets Using Sensor Arrays and Particle Flters[J]. IEEE Transactions on Signal Process,2002,50(2): 216-223.
    [56]J. Feng, S. Megerian, and M. Potkonjak. Model-Based Calibration for Sensor Networks[J]. Proceedings of IEEE Sensors,2003,2:737-742.
    [57]J. Feng, G. Qu, and M. Potkonjak. Actuator-Based Infield Sensor Calibration[J]. IEEE Sensors Journal,2006,6(6):1571-1579.
    [58]F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. Error Models for Light Sensors by Statistical Analysis of Raw Sensor Measurement[J]. Proceedings of IEEE Sensors,2004,3:1472-1475.
    [59]R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods[M]. Philadelphia:SIAM Press,1993.
    [60]A. Frommer and B. Szyld. On Asynchronous Iterations[J]. J. Comput. Appl. Math.,2000, 123:201-216.
    [61]K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor Networks[C]. Proceedings, of the 1 st ACM international workshop on Wireless sensor networks and applications,2002:59-67.
    [62]L. Balzano and R. Nowak. Blind Calibration of Sensor Networks[C].6th International Symposium on Information Processing in Sensor Networks,2007:79-88.
    [63]S. Bolognani, S. D. Favero, L. Schenato, and D. Varagnolo. Consensus-Based Distributed Sensor Calibration and Least-Square Parameter Estimation in WSNs[J]. International Journal of Robust and Nonlinear Control,2010,20(2):176-193.
    [64]V. D. Aksenenko, and S. I. Matveyev. Digital Angel Sensor Self-Calibration:Two Approaches to Accuracy Increasing[C]. Proceedings of the IEEE Instrumentation and Measurement Technology Conference,2005:543-547.
    [65]Emiliano Miluzzo, Nicholas D. Lane, Andrew T. Campbell, and Reza Olfati-saber. CaliBree:a Self-Calibration System for Mobile Sensor Networks[C]. Proceedings of IEEE 4th International Conference on Distributed Computing in Sensor Networks,2009: 314-331.
    [66]V. Mehta, and Weihua Sheng. Distributed Calibration of a Camera Sensor Network[C]. IEEE International Conference on Robotics and Biomimetics,2008:1974-1979.
    [67]E. Elhamifar, and R. Vidal. Distributed Calibration of Camera Sensor Networks[C]. Third ACM/IEEE International Conference on Distributed Smart Cameras,2009:1-7.
    [68]T. Yokoya, T. Hasegawa, and R. Kurazume. Calibration of Distributed Vision Network in Unified Coordinate System by Mobile Robots[C]. IEEE International Conference on Robotics and Automation,2008:1412-1417.
    [69]D. Baron, S. Sarvotham, and R. G. Baraniuk. Bayesian Compressive Sensing via Belief Propagation[J]. IEEE Transactions on Signal Processing,2010,58(1):269-280.
    [70]J. B. Predd, S. R. Kularni, and H. V. Poor. Distributed Learning in Wireless Sensor Networks[J]. IEEE Signal Processing Magazine.2006,23(4):56-69.
    [71]B. Predd, S. R. Kularni, and H. V. Poor. A Collaborative Training Algorithm for Distributed Learning[J]. IEEE Transactions on Information Theory,2009,59(4):1856-1871.
    [72]J. Choi, S. Oh, and R. Horowitz. Distributed Learning and Cooperative Control for Multi-Agent Systems [J]. AUTOMATIC A,2009,45(12):2802-2814.
    [73]Liu Hong,Yu Ze, Zha Hongbin, Zou Yuexian, and Zhang Lin. Robust Human Tracking Based on Multi-Cue Integration and Mean-Shift[J]. Pattern Recognition Letters,2009, 30(9):827-837.
    [74]P. Zappi, E. Farella, and L. Benini. Tracking Motion Direction and Distance with Pyroelectric IR Sensors[J]. IEEE Sensors Journal,2010,10(9):1486-1494.
    [75]B. Song, H. Choi, and H. S. Lee. Surveillance Tracking System Using Passive Infrared Motion Sensors in Wireless Sensor Network[C]. International Conference on Information Networking,2008:1-5.
    [76]李景德,雷德铭,沈文彬.热释电系数及其精确测量方法[J].物理,1984,13(7):407.
    [77]侯识华,宋世庚,陶明德.热释电材料及其应用[J].电子元件与材料,2000,19(6):26-41.
    [78]张敏.基于热释电红外传感器的无线监控报警系统设计[J].安防科技,2008,1:42-44;63.
    [79]闫军,庄乾章.热释电红外传感器的类别特性及应用[J].长春大学学报,2004,14(6):22-24.
    [80]刘芸,张良莹,姚熹.钛酸铅系薄膜的热释电性能及其应用[J].压电与声光,1996,18(3):194-200.
    [81]张德银.热释电钽酸锂薄膜红外探测器原理和制备研究[D].电子科技大学博士学位论文.2008.
    [82]彭丽静,宫世宽,李丽静.热释电红外传感器原理及应用[J].煤炭技术,2005,24(3):113-114.
    [83]Takanori Kitao. New Techniques Enable Pyroelectric IR Sensors to Perform Multiple Functions[J]. JEE J ELECTRON ENG,1992,29(308):64-67.
    [84]D. J. Brady. Multiplex Sensors and the Constant Radiance Theorem[J]. Optical Letter,2002, 27(1):16-18.
    [85]D. J. Brady, N. P. Pitsianis, and X. Sun. Reference Structure Tomography [J]. J. Opt. Soc. Amer. A, Opt. Image Sci.,2004,21(7):1140-1147.
    [86]U. Gopinathan, D. J. Brady, and N. P. Pitsianis. Coded Apertures for Efficient Pyroelectric Motion Tracking[J]. Opt. Exp.,2003,11(18):2142-2152.
    [87]Fresnel Technologies Inc., http://www.fresneltech.com/arrays.html.
    [88]Mingbo Xu. Coded Spatial and Temporal Response on Pyroelectric Sensor Systems[M]. Duke University,2004.
    [89]Taylor, C., Rahimi, A., Bachrach, J., Shrobe, H., and Grue, A. Simultaneous Localization, Calibration, and Tracking in an ad Hoc Sensor Network[C]. The fifth Internstional Conference on information Processing in Sensor Networks,2006. IPSN 2006,2006,27-33.
    [90]C. Stiller and J. Konrad. Estimating Motion in Image Sequences[J]. IEEE Signal Processing Magazine,1999,16(4):70-91.
    [91]Frank Dellaert. The Expectation Maximization Algorithm[J]. Technical Report. GIT-GVU-02-20,2002.
    [92]Christopher M. Bishop. Pattern Recognition and Machine LearningfM]. Springer,2006.
    [93]T. M. Cover, and J. A. Thomas. Elements of Information Theory[M]. New York:Wiley, 1991.
    [94]A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,1977,39(1):1-38.
    [95]Jaechan Lim. The Joint Probabilistic Data Association Filter (JPDAF) for Multi-Target Tracking[J]. CEAS Technical Report 826.2006.
    [96]M. S. Arulampalam, S. Maskell, N. Gordon,T. Clapp.A Tutorial on Particle Filters for Online Nonlinear/Nongaussian Bayesian Tracking[J]. IEEE Transaction on Signal Processing,2002,50(20):174-188.
    [97]KOTECHA J H. Sequential Monte Carlo Methods for Dynamic State Space Models with Applications to Communications [D]. New York:State University of New York,2001.
    [98]李益敏.改进粒子滤波算法及其在目标跟踪中应用研究[D].合肥工业大学大学硕士学位论文.2011.
    [99]R. Olfati-Saber and J. S. Shamma. Consensus Filters for Sensor Networks and Distributed Sensor Fusion[C]. Proceedings of the 44th Conference on Decision and Control,2005: 6698-6703.
    [100]S.-I. Amari. Information geometry on hierarchy of probability distributions[J]. IEEE Transaction on Information Theory,2001,47(5):1701-1711.
    [101]Shun-ichi Amari, Shiro Ikeda, and Hidetoshi Shimokawa. Information Geometry of a-Projection in Mean Field Approximation[M]. In Recent Developments of Mean Field Approximation, M. Opper and D. Saad, Eds. Cambridge, MA:MIT Press,2000.
    [102]Danny Bickson. Gaussian Belief Propagation:Theory and Application[D]. Thesis for the degree of Doctor of Philosophy of the Hebrew University of Jerusalem.2009.
    [103]J. Pearl. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M]. San Francisco:Morgan Kaufmann,1988.
    [104]Ori Shental, Paul H. Siegel, Jack K. Wolf, Danny Bickson, and Danny Dolev. Gaussian Belief Propagation Solver for Systems of Linear Equations[C]. IEEE International Symposium on Information Theory,2008:1863-1867.
    [105]G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of Dynamics Systems[M]. Reading, CA:Addison-Wesley,1998.
    [106]Code Composer Studio[Online]. http://www.ti.com/tool/ccstudio.
    [107]徐忠,刘贤德.智能大楼系统的构成与实现[J].自动化博览,1996,3期:22-24.
    [108]智能楼宇[Online], http://www.hanke.com.cn/hanzhi.htm.
    [109]曾波,苏晓燕.我国能源消费和环境质量的灰色关联分析[J].呼北生态工程职业技术学院学报,2006,4(2):4-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700