用户名: 密码: 验证码:
车辆典型热交换器流动传热微观机制研究及性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代车辆技术的发展要求冷却系统为整车经济性能、排放性能、可靠性和舒适性等指标的全面提升“保驾护航”,即现代车辆冷却系统要求既能各种运行工况下的散热需求,保证关键零部件可靠工作,又要尽量减少能量损失,提高系统热力效率。毫无疑问,冷却系统中各个热交换器的性能优化设计是先进冷却系统设计的基础,而流动传热传质的相关理论及影响机制又是换热器以及系统性能优化设计的重中之重。近年来,尽管各种强化传热技术不断取得进展并付诸应用,但是它们普遍存在一个问题,即以更多的流动阻力增加换取了传热强化的效果。可以认为,研发理想冷却系统的最大瓶颈在于流动传热理论的不完善以及不甚清晰的流动传热微观影响机制。
     本文主要是遵循流动传热细微化和计算精确化这个引导趋势,研究流动传热性能的影响因素并进行机制分析;并实现换热单元温度场分布可视化,以验证本文采用的数值仿真方法。本文的主要研究内容主要有以下几个方面:
     温度场可视化实验搭建流动传热性能研究的数值仿真平台,并设计温度场可视化实验台,实现换热翅片表面传热情况的可视化,以此验证并完善适用于换热单元热力性能计算的数值仿真平台;
     典型换热单元的流动传热分析对车用三种典型换热器的换热单元进行流动传热性能的计算,探索影响性能的微观因素并分析机制,确定相对最优的翅片结构尺寸以及匹配形式;
     换热器整体流动传热分析数值仿真两种车用换热器整体热力性能,探索性能影响机制并进行结构以及性能优化设计,寻求提高换热器性能的方法,并进行了实验验证;
     流动传热性能分析方法在数值仿真流动传热性能的同时,寻求适合于热力性能数据分析的方法。
     通过上述研究工作,本文获得了以下主要结论:
     (1)将红外摄像技术与流动传热性能测试实验相结合,可以实现换热单元温度场的可视化研究,为仿真研究流动传热性能提供了验证手段;
     (2)通过对换热单元进行热力性能仿真,得到了典型换热器中紊流片与散热带的最优化匹配形式,分析了翅片结构等参数对性能的影响机制并进行了参数优化;
     (3)通过对换热器整体热力性能的仿真和实验研究,分析了热力性能的影响因素以及影响机制,可以从冷、热侧出入口位置、流道内翅片排列形式以及冷却工质等角度优化换热器的热力性能;
     (4)将人工神经网络技术、灵敏度分析技术、多目标优化技术等与仿真技术相结合,可以拓展研究思路,提高热力性能分析效率。
     本文采用数值仿真研究方法结合部分实验工作,研究了换热单元以及换热器的热力性能,分析了性能影响因素以及影响机制,并从不同的角度研究了性能优化途径,为车用换热器的优化设计提供了方向指导。
With the development of the modern vehicular technologies, it is required that vehicular cooling system play an escort role for improving the performances of economic, emission, safety and comfort of vehicles.That is, modern vehicular cooling system is demanded to meet the need of heat dissipation under various operation conditions and guarantee the normal operation of key parts, simultaneously, it must reduce energy loss and improve thermodynamic efficiency of vehicluar system.There is no doubt that performance optimal design of heat exchangers in cooling system is the foundation of realizing advanced cooling system, and the principles and performance effecting mechanisms of fluid flow and heat transfer are the key points to performance optimal design of heat exchangers and even systems. Recently, various enhancing heat transfer technologies are developed and applied, however, it must be at the cost of more flow resistance. As a result, the imperfect flow and heat transfer principles and unclear effect micro-mechanisms are the bottlenecks to research and develop ideal cooling systems.
     Following the trend of subtle analysis and precise computation of fluid flow and heat transfer, this thesis investigated the thermodynamic performance effect factors and analyzed the effct mechanisms, and carried out temperature field visualization experiments of heat transfer units to authenticate the numerical methods used in the thesis. The main contents are as follows:
     Temperature contour visualization experiments:establishing a numerical platform for thermodynamic performance simulation, setting up test-rig and carrying out temperature field visualization experiments of heat transfer units to authenticate the numerical simulation method.
     Thermodynamic performance analysis of typical heat transfer units:the thermodynamic performances of three kinds of typical vehicular heat transfer units were investigated, and the performance effect factors and mechanisms were analyzed, the optimal matching of turbulators and fins and were determined and the structural parameters of fins were optimally designed.
     The thermodynamic performance analysis of heat exchangers:the thermodynamic performances of two kinds of vehicular heat exchanges were numerical simulated, the performance effect mechanisms were analyzed and the structure of a heat exchanger was optimally designed. Nanofluid was used as coolant to improve the performance. Experiments were carried out to verify the above simulation results.
     The thermodynamic performance analysis methods:artificial neural networks, parameters sensitivity analysis and multi-objective optimization methods were combined with numerica simulation to analyze the thermodynamic performances.
     The main conclusions were as follows:
     (1) Infrared camera technology was combined with thermodynamic performance experiments to realize the temperature field visualization of heat transfer units which is the authentication of numerical simulations.
     (2) The optimal matching of turbulator and fin was determined by simulating the thermodynamic performances of typical vehicular heat transfer units. The effect mechanisms of structural parameters of fin on performances were analyzed and the parameters were optimized.
     (3) The performance effect factors and mechanisms were investigated by simulating the thermodynamic performances of heat exchangers. The location of inlet and outlet of a heat exchanger, the fin arrangement and coolant were important factors to improve the performance.
     (4) Artificial neural networks, sensitivity analysis and multi-objective optimization methods can be usde in thermodynamic performance analysis combined with numerical simulation results, which can broaden the research ideas and improve the analysis efficiency.
     Numerical simulation method combined with some experiments was used in the thesis to investigate the thermodynamic performance of typical and vehicular heat transfer units and heat exchangers. The work analyzed the performance effect factors and mechanisms and carried out performance optimal design from several different aspects, which will guide the optimal design directon of vehicular heat exchangers.
引文
[1]林宗虎,汪军,李瑞阳,等.强化传热技术[M].北京:化学工业出版社,2006.
    [2]周龙保,等.内燃机学[M].北京:机械工业出版社,1999.
    [3]章慧锦,李仁业,译.车辆冷却系统设计手册[M].北京:国防工业出版社,1984.
    [4]陈家瑞.汽车构造[M].北京:机械工业出版社,2005.
    [5]杨小强,蔡立艮,赵立强,等.热管理技术在工程车辆中的应用研究[J].中国机械工程学报,2006,4(1):61-63.
    [6]Robinson K., Campbell N. A. F., Hawley J. G., et al. A Review of Precision Engine Cooling[C]. SAE Paper 1999-01-0578.
    [7]Couetouse H,Gentile. Cooling System Control in Automotive Engines[C]. SAE Paper 920788,1992.
    [8]Zhigang Yang, Jeffrey Bozeman, Fred Z Shen, et al. CFRM Concept for Vehicle Thermal System[C]. SAE Paper 2002-01-1207.
    [9]Ngy Srun A.P.. A Simple Engine Cooling System Simulation Model[C]. SAE Paper 1999-01-0237.
    [10]Martin W Wambsganss. Thermal Management Concepts for Higher-Efficiency Heavy Vehicles[C]. SAE Paper 1999-01-2240.
    [11]Revereault P., Gessier B., Chanfreau M.. Intelligent vehicle system thermal management in a mild hybrid-diesel vehicle. VTMS6,2003:545-560.
    [12]N. S. Ap, P. Jouanny, M. Potier, J. Genoist. Ultimate cooling TM System for New Generation of Vehicle. SAE Technical Papers 2005-01-2005. Vehicle Thermal Management Systems Conference & Exposition, May 2005, Toronto, ON, CANADA, Session:Cooling Systems.
    [13]过增元,黄素逸著.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [14]国家自然科学基金委员会工程于材料科学部.工程热物理与能源利用[M].北京:科学出版社,2006.
    [15]Guo Z. Y, Li D. Y, Wang B.X., A novel concept for convective heat transfer enhancement.Int.J.Heat Mass Transfer,1998,41 (2):pp.2221—2225.
    [16]J.M. Wu, W.Q. Tao. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B:Parametric study of major influence factors[J]. International Journal of Heat and Mass Transfer 51 (2008) 3683-3692.
    [17]陈颖,邓先和,丁小江,等.强化缩放管内湍流对流换热[J].化工学报,2004,55(9):1528-1531.
    [18]张华,周强泰.光管内插入扭带传热与流动阻力的试验研究[M].节能技术,2005,(2):122-126.
    [19]程林.换热器内流体诱导振动[M].北京:科学出版社,1995.
    [20]李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723
    [21]彭小飞.车用散热器中纳米流体高温传热基础问题研究[D].浙江大学博士学位论文,2007.
    [22]Balram Suman, A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe, International Journal of Heat and Mass Transfer 49 (2006) 3957-3967.
    [23]Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int. J. of Heat and Fluid Flow, 2000,21:58.
    [24]李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46
    [25]李强,宣益民.航天用传热强化工质导热系数和粘度的实验研究[J].宇航学报,2002,23(6):73-76
    [26]Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J]. Experimental heat transfer,1998,11(2):151-170
    [27]Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions [J]. International Journal of Heat Mass Transfer,2004,47:5181-5188.
    [28]Ma, C. F.. Enhanced Heat Transfer of Impinging Liquid Jets with or without Phase Change. Invited Lecture of International Symposium on Multiphase Flow and International Symposium on Multiphase Fluid, Non-Newtonian Fluid and Physico-Chemical Fluid Flows, Beijing,1997.
    [29]Ma, C. F.. Impinging Heat Transfer with Meso-scale Fluid Jets. Proceedings of 12th International Heat Transfer Conference, Vol.1, pp.287-297,2002.
    [30]Webb, B. W. and Ma, C. F.. Single phase liquid jet impinging heat transfer. Advances in Heat Transfer, vol.26, pp.105-217, Academic Press,1995.
    [31]Chen, Y. C., Ma, C. F., Yuan, Z. X., Xia, Z. Z. and Guo, Z. Y. Heat transfer enhancement with impingping free surface liquid jets flowing over heated wall coated by a ferrofluid, Int. J. Heat Mass Transfer, vol.44, pp.499-502,2000.
    [32]辛明道.沸腾传热及其强化[M].重庆:重庆大学出版社,1987.
    [33]Honda H, Wei J J. Enhanced Boiling Heat Transfer from Electronic Component by Use of Surface Microstructrues[J]. Int.J. Experimental Thermal and Fluid Science,2004,28: 159-169.
    [34]魏进家,本田博司.微结构表面上FC-72的强化沸腾换热研究[J].工程热物理学报,2006,27(2):247-250.
    [35]刘启斌,何雅玲,张定才,陶文铨.R123在水平双侧强化管外池沸腾换热[J].化工学报,2006,57(2):251-257.
    [36]崔文智,辛明道,廖全.三维微肋螺旋管内流动沸腾传热强化特性[C].中国工程热物理学会传热传质学2002年学术会议论文集,213-216,2002.
    [37]江军、柯道友.过冷沸腾中的局域气泡和射流的动态行为[J].工程热物理学报,2006,27(suppl.2):65-68.
    [38]王昊,彭晓峰,王补宣,李笃中.汽泡扫荡现象及其机理分析[J].中国科学E辑,33(5):413-419.
    [39]KAYS W M, LONDON A L. Compact Heat Exchangers[M]. New York:McGraw-Hill, 1984.
    [40]SPARROW E M, LIU C H. Heat transfer and pressure drop performance relationships for inline, staggered and continuous plate heat exchangers [J]. International Journal of Heat and Mass Transfer,1979,22:1613-1621.
    [41]Aoki, H., Shinagava, T., Suga, K.. An experimental study of the local heat transfer characteristics in automotive louvered fin [J]. Experimental Thermal and Fluid Science, 1989(2):293-300.
    [42]Manglik R.M.,.Bergles A.E, Heat transfer and pressure drop correlations for rectangular offset strip fin compact heat exchanger[J]. Experimental Thermal and Fluid Science 10 (1995) 171-180.
    [43]Y.J. Chang, C.C. Wang, A generalized heat transfer correlation for louver fin geometry, Int. J. of Heat and Mass Transfer 40 (3) (1997) 533-544.
    [44]C.J. Davenport, Correlation for heat transfer and flow friction characteristics of louvered fin, AIChE Symposium Series 79 (25) (1983) 19-27.
    [45]T. Tanaka, M. Itoh, M. Kudoh, A. Tomita. Improvement of compact heat exchangers with inclined louvered fins, Bulletin of JSME 27 (224) (1984) 219-226.
    [46]Joshi H. M., Webb R. L.. Heat transfer and friction in the offset strip-fin array geometry[J]. Int. J. Heat Mass Transfer,1987,30(1):69-84.
    [47]Achaichia A., Cowell T. A.. A finite difference analysis of fully developed periodic laminar flow in inclined louver arrays[C]. Glasgov:Proc.2nd UK National Heat Transfer Conference, 1988,2:883-888.
    [48]Rush T. A., Newell T. A., Jacobi A. M.. An experimental study of flow and heat transfer in sinusoidal wavy passages[J]. Int. J. Heat Mass Transfer,1987,30(1):69-84.
    [49]J.P. Rugh, J.T. Pearson, S. Ramadhyani, A study of a very compact heat exchanger used for passenger compartment heating in auto mobiles [C]. in:Compact Heat Exchangers for Power and Process Industries, ASME Symp. Ser. HTD-Vol.201 (1992) 15-24.
    [50]Mao-Yu Wen, Ching-Yen Ho. Heat-transfer enhancement in fin-and-tube heat exchanger with improved fin design[J]. Applied Thermal Engineering,2009, (29):1050-1057.
    [51]Lihua Guo, Jiangping Chen, Feng Qin, et al. Empirical correlations for lubricant side heat transfer and friction characteristics of the HPD type steel offset strip fins[J]. International Communications in Heat and Mass Transfer,2008, (35):251-262.
    [52]Junqi Dong, Jiangping Chen, Zhijiu Chen, et al. Air-side thermal hydraulic performance of offset strip fin aluminum heat exchangers [J]. Applied Thermal Engineering,2007, (27): 306-313.
    [53]李建军,陈江平,陈芝久.低雷诺数流动错位翅片传热和压降特性的实验研究[J].能源技术,2004,25(4):147-149.
    [54]S. D. Hwang, I. H. Jang, H. H. Cho.. Experimental study on flow and local heat/mass transfer characteristics inside corrugated duct[J]. International Journal of Heat and Fluid Flow,2006,27:21-32.
    [55]J. H. Ko, M.E. Ewing,Y.G. Guezennec, et al. Development of a low Reynolds number enhanced heat transfer surface using flow visualization techniques [J]. International Journal of Heat and Fluid Flow,2002,23:444-454.
    [56]Francisco Oviedo-Tolentino, Ricardo Romero-Mendez, Abel Hernandez-Guerrero, et al. Use of diverging or converging arrangement of plates for the control of chaotic mixing in symmetric sinusoidal plate channels[J]. Experimental Thermal and Fluid Science,2009,33: 208-214.
    [57]Islam Md. Didarul, Oyakawa Kenyu, Yaga Minoru, et al. Study on heat transfer and fluid flow characteristics with short rectangular plate fin of different pattern[J]. Experimental Thermal and Fluid Science,2007,31:367-379.
    [58]Tomasz P. Bednarz, Chengwang Lei, John C. Patterson, et al. Suppressing Rayleigh-Benard convection in a cube using a strong magnetic field — Experimental heat transfer rate measurements and flow visualization[J]. International Communications in Heat and Mass Transfer,2009,36:97-102.
    [59]A. Lozano, F. Barreras, N. Fueyo, et al. The flow in an oil/water plate heat exchanger for the automotive industry[J]. Applied Thermal Engineering,2008,28:1109-1117.
    [60]M. Kajino, M. Hiramatsu. Research and development of automotive heat exchangers, in: W.J. Wang, Y. Mori (Eds.), Heat Transfer in High Technology and Power Engineering, Hemisphere, Washington, DC,1987,pp.420-432.
    [61]R.L.Webb, P.Trauger. Flow structured in the louvered fin heat exchanger geometry[J]. Experimental Thermal andFluid Science,1991 (4):205-217.
    [62]李红智,罗毓珊,王海军,等.圆弧型与X型开缝翅片空气侧流动与传热特性可视化试验[J].化工学报,2008,59(8):1936-1941.
    [63]Asako Y., Faghri M.. Finite-volume solutions for laminar flow and heat transfer in a corrugated duct[J]. J. Heat Transfer,1987,109:627-634.
    [64]Beamer H. E., Ghosh D., Jacobi A. M., et al. Applied CFD and experiment for automotive compact heat exchanger development J]. SAE Paper 980426.
    [65]Atkinson K. N., Drakulic R., Heikal M. R., et al. Two-and three-dimensional numerical models of flow and heat transfer over louvered fin arrays in compact heat exchangers [J]. International Journal of Heat and Mass Transfer,1998,4(24):4063-4080.
    [66]Rokni M., Gatski T. B.. Predicting trubulent convective heat transfer in fully developed duct flows [J]. International Journal of Heat Fluid Flow,2001,22:381-392.
    [67]E. Carluccio, G. Starace, A. Ficarella, et al. Numerical analysis of a cross-flow compact heat exchanger for vehicle applications [J]. Applied Thermal Engineering,2005,25: 1995-2013.
    [68]V.P. Malapure, Sushanta K. Mitra, A. Bhattacharya. Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger [J]. International Journal ofThermal Sciences,2007 (46):199-211.
    [69]Z.G. Qu, W.Q. Tao, YL. He. Three-dimensional numerical simulation on laminar heat transfer and fluid flow characteristics of strip fin surface with X-arrangement of strips[C]. J. Heat Transfer-Trans. ASME 126 (2004)697-707.
    [70]Y.B. Tao, Y.L. He, J. Huang, et al. Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heatexchangers[J]. International Journal ofThermal Sciences, 2007 (46):768-778.
    [71]Y.B. Tao, Y.L. He, Z.G. Wu. Three-dimensional numerical study and field synergy principle analysis of wavy fin heat exchangers with elliptic tubes[J]. International Journal of Heat and Fluid Flow,2007 (28):1531-1544.
    [72]唐进元,亢文祥,杨相稳.DF7型内燃机车散热器散热特性研究[J].内燃机工程,2006,27(6):51-54.
    [73]张薇.典型换热单元流动与传热问题的数值仿真研究[D].浙江大学硕士学位论文,2007.
    [74]Wang Z. J.. A quadtree based adaptive Cartesian grid flow solver for Navier-Stokes equations[J]. Comput. Fluids,1998,27(4):529-549.
    [75]刘继平,聂建虎,严峻杰,等.复杂区域流动换热问题的一种新的网格处理方法[J].西安交通大学学报,1999,33(5):34-37.
    [76]Prata A. T., Sparrow E. M.. Heat transfer and fluid flow characteristics for an annulus of periodically varying cross section[J]. Numer Heat Transfer,1984,7:285-304.
    [77]He Y.L., Tao W.Q., Song F.Q., et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle[J]. International Journal of Heat and Fluid Flow 26 (2005) 459-473.
    [78]Tao Y.B., He Y.L., Huang J., et al. Three-dimensional numerical study of wavy fin-and-tube heat exchangers and field synergy principle analysis[J]. International Journal of Heat and Mass Transfer 50 (2007) 1163-1175.
    [79]Mi Sandar Mon, Ulrich Gross. Numerical study of fin-spacing effects in annular-finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer 47 (2004) 1953-1964.
    [80]陈海昕,李凤蔚,鄂秦,肖志祥.多段翼型粘性绕流多块网格数值模拟[J].计算物理,2002,19(4):362-366.
    [81]陈雄,朱福亚,鞠玉涛.高速旋转冲压增程弹用进气道复杂流场数值模拟[J].固体火箭技术,2006,29(4):243-246.
    [82]蔡文祥,胡好生,赵坚行.涡流器燃烧室头部两相反应流数值模拟[J].航空动力学报,2006,21(5):837-842.
    [83]Hiroyuki Takahashi, Sigeru Ogino, Takao Nishimura, et al. Experimental analysis for the improvement of radiator cooling air intake and discharge[J]. SAE Paper 920787.
    [84]Charnay L., Angstrom H. E., Andersson L., et al. CFD optimization of an EGR cooler for heavy-duty diesel engines[J]. SAE Transactions,2001,-01-1755:132-144.
    [85]Somchai Wongwises, Yutasak Chokeman. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers [J]. Energy Conversion and Management,2005 (46):2216-2231.
    [86]S. Vithayasai, T. Kiatsiriroat, A. Nuntaphan. Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity [J]. Applied Thermal Engineering,2006 (26):2073-2078.
    [87]周兴华,王玉春,周建和.汽车散热器的一种新型试验方法[J].天津大学学报,2002,35(4):535-540.
    [88]陈吉安,王登峰.管带式车用散热器散热特性的试验研究[J].农业机械学报,2000,31(3):84-87.
    [89]江雪峰,齐放,夏立峰,等.内燃机机油冷却器传热性能自动测试系统[J].内燃机工程,2002,23(3):61-63.
    [90]肖清华.板翅式机油散热器传热性能的试验研究[D].浙江大学硕士学位论文,2002.
    [91]王玉端,俞小莉,夏立峰,等.内燃机水空中冷器传热性能及阻力特性测试系统[J].内燃机工程,2004,25(4):36-38.
    [92]Sahnoun A., Webb R. L.. Prediction of heat transfer and friction for the louvered fin geometry[J]. Journal of Heat Transfer,1992,114(4):893-900.
    [93]D. Ganga Charyulu, Gajendra Singh, J.K. Sharma. Performance evaluation of a radiator in a diesel engine—a case study[J]. Applied Thermal Engineering,1999 (19):625-639.
    [94]C. Oliet, A. Oliva, J. Castro, et al. Parametric studies on automotive radiators[J], Applied Thermal Engineering 27 (2007) 2033-2043.
    [95]张建华,方祖华,张纪鹏,等.车用增压柴油机中冷器模型及其性能预测[J].内燃机学报,1995,13(1):65-70.
    [96]李国祥,顾宏中.车用柴油机气-气中冷器数学模型及应用[J].内燃机学报,1997, 15(3):327-332.
    [97]廖强,朱恂,辛明道.管带式汽车散热器传热与风阻性能研究[J].重庆大学学报,2002,25(8):40-43.
    [98]贾荣光,宣益民.高效紧凑式热交换器的计算机辅助设计[J].中国机械工程,1999,10(7):739-741.
    [99]马虎根,李美玲,李科群.汽车散热器传热及阻力特性的预测方法[J].内燃机工程,2002,23(1):33-36.
    [100]宋俊虓,袁修干,林贵平.某种叉流板翅式热交换器动态性能的计算[J].北京航空航天大学学报,1999,25(5):558-560.
    [101]Cheng P. Heat transfer in geothermal system, Advances in Heat Transfer 14, New York: Academic Press,1978.
    [102]Kaviany M. Principle of heat transfer in porous media[M].2nd ed. New York: Springer-Verlag,1995.
    [103]Nield D. A., Bejan D.. Convection in Porous Media[M]. New York:Springer-Verlag, 1992
    [104]王补宣.多孔介质中单相对流换热分析的流体渗流模式[J].上海交通大学学报,1999,33(8):966-969.
    [105]喻西崇,赵金洲,邬亚玲.地层多孔介质中水合物生成条件的预测[J].天然气工业,2002,22(6):102-105.
    [106]Rosenfeld J. H., North M. T.. Porous media heat exchangers for cooling of high-power optical components [J]. Optical Engineer,1995,34:335-341.
    [107]Huang P. C., Vafai K... Analysis of forced convection enhancement in a channel using porous block[J]. AIAAJ. Thermophys. Heat Transfer,1994,8:563-573.
    [108]Fu W. S., Huang H. C., Liou W. Y. Thermal enhancement in laminar channel flow with a porous block[J]. Int. J. Heat Transfer,1996,39:2165-2175.
    [109]Patankar S. V., Spalding D. B.. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers [M]. In Heat Exchangers Design and Theory Sourcebook, eds. N. M. Afgan and E. U. Schlunder, Hemisphere, Washington D.C.,1976.
    [110]Patankar S. V., Spalding D.B.. Computer Analysis of the three-dimensional flow and heat transfer in a steam generator[J]. Forschung Ing.-Wes..1978,44:47-52.
    [111]Prithiviraj M., Andrews M.J.. Comparision of a three dimensional numerical model with existing methods for prediction of flow in shell-and-tube heat exchangers [J]. Heat Transfer Eng.,1999,20(2):15-19.
    [112]黄兴华,王启杰,陆震.管壳式散热器壳程流动和传热的三维数值模拟[J].化工学报,2000,51(3):297-302.
    [113]邓斌,陶文铨.管壳式散热器壳侧湍流流动的数值模拟和实验研究[J].西安交通大学学报,2003,37(9):889-924.
    [114]郭丽华,覃峰,陈江平,等.板翅式机油冷却器的性能仿真与优化[J].上海交通大学学报,2006,40(2):311-315.
    [115]Woodcock J., Baxendale A., Fish G. An evaluation of the use of CFD for investigating the performance of intercooler assemblies [J]. SAE Paper 971856.
    [116]文键,厉彦忠,周爱民,等.板翅式换热器入口结构的改进[J].吉林大学学报(工学版、,2006,36(2):177-182.
    [117]文键,厉彦忠,周爱民,等.板翅式换热器入口结构内流场的数值模拟[J].华中科 技大学学报(自然科学版),2006,34(7):5-8.
    [118]IslamogluY. A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger-use of an artificial neural network model [J].Applied Thermal Engineering,2003,23:243-249.
    [119]Diaz Gerardo, Sen M, Yang K T,et al. dynamic prediction and control of heat exchangers using neural networks[J].Int J Heat and MassTransfer,001,44:1671-1679.
    [120]胡钦华,李奎山,苏廷弼.基于ANN的空气处理单元换热器的动态性能预测[J].计算机工程与应用,2008,44(3):240-241.
    [121]芮银波,丁国良,吴志刚.翅片管换热器仿真软件精度自适应校正方法[J].上海交通大学学报,2006,40(8):1360-1364.
    [122]吴峰,王秋旺,陈秋炀,等.连续螺旋折流板管壳式换热器动态特性研究及预测[J].热能动力工程,2007,22(2):190-196.
    [123]刘振宇,程惠尔,杨静.一次表面热交换器的优化设计分析[J].上海交通大学学报,2008,42(1):117-121.
    [124]邵宝东,孙兆伟,王丽凤.微槽冷却热沉结构尺寸的优化设计[J].吉林大学学报(工学版),2007,37(2):313-318.
    [125]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社,1997.9-14.
    [126]杨世铭,陶文铨编著.传热学[M](第三版),北京:高等教育出版社,1998.
    [127]李云红,孙晓刚,廉继红.红外热像测温技术及其应用研究[J].现代电子技术,2009,(1):1 12-115.
    [128]陶文铨编著,数值传热学[M](第二版).西安:西安交通大学出版社,2001年.
    [129]吴德铭,郜冶编.使用计算流体力学基础[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [130]韩鹏,陈熙,关于对流-导热耦合问题整体求解方法的讨论[C].陈熙,丁良士遍,全国第七界计算传热学会议论文集:32-37,北京,1997.
    [131]何雅玲,高成名,陈钟颀,等.两种锥形脉管制冷机的数值模拟及其实验验证[J].工程热物理学报,2001,22:5-8.
    [132]Partankar S. V., Spalding D. B.. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer, 1972,15:1787-1806.
    [133]曾敏,陶文铨.密网格下SIMPLE等四种算法的收敛性与健壮性的比较[J].热科学与技术,2003,2(1):90-93.
    [134]试验设计与数据处理,李云雁,胡传荣,化学工业出版社,2004,北京。
    [135]高博青,谢忠良,梁佶, 彭伟贤,拉索对肋环型索穹顶结构的敏感性分析,浙江大学学报(工学版)Vo1.39 No.11,PP:1685-1689。
    [136]王晓萍,孙继洋,金鑫.基于BP神经网络的钱塘江水质指标的预测[J].浙江大学学报:工学版,2007,41(2):361-364.
    [137]陈太聪,韩大建,苏成.参数灵敏度分析的神经网络方法及其工程应用[J].计算力学学报,2004,21(6):752-756.
    [138]赵亮,胡旭晓,潘双夏,等.基于动态模糊神经网络的产品成本估算[J].浙江大学学报:工学版,2006,40(2):304-308.
    [139]Kemal C(?)z M., Masayoshi Tomizuka. Friction modelling and compensation for motion control using hybrid neural network models[J]. Engineering Applications of Artificial Intelligence,2007,20 (7):898-911.
    [140]Adnan Sozen, Tayfun Menlik, Sinan Unvar. Determination of efficiency of flat-plate solar collectors using neural network approach[J]. Expert Systems with Applications,2008,35 (4): 1533-1539.
    [141]Tchaban T, Taylor M J, Griffin A. Establishing impacts of the inputs in a feedforward neural network [J]. Neural Compute Apple,1998,7(4):309-317.
    [142]Fluent Inc,. FLUENT User's Guide.2003.
    [143]Choi U S. Enhancing thermal conductivity of fluids with nanoparticles[G]. In:ASME FED 231,1995,99-103.
    [144]Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks[J]. International Journal of Heat and Mass Transfer,2005,48:2652-2661
    [145]Ma H B, Wilson C, Borgmeyer B, and et al. Effect of nanofluid on the heat transport capability in an oscillating heat pipe[J]. Applied Physics Letters,2008,88:1-3.
    [146]Israeli T, Reddy T A, Cho Y I. Investigation on the use of nanofluids to enhance heat pipe performance [J]. Solar Engineering,2005,24:357-365.
    [147]Heris S Z, Esfahany M N, Etemad S G. Experimental investigation of convective heat transfer of A12O3/water nanofluid in circular tube[J]. International Journal of Heat and Fluid Flow,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700