用户名: 密码: 验证码:
中央空调冷源系统变负荷运行控制机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调系统节能运行是大型公共建筑节能减排的关键所在,其能耗取决于系统设计类型、运行控制方式以及建筑负荷分布特性,中央空调冷源系统变负荷运行控制机理的研究是集中式中央空调系统优化设计与运行的理论基础,本文分别对冷水机组群控、冷冻水泵组群控、冷冻水系统管网变温差控制、冷冻水系统变压差控制进行了理论理论研究和实验验证,在应用研究的基础上开发了中央空调智能优化控制系统。
     冷水机组大部分时间运行在部分负荷条件下,根据承担部分负荷的方式不同,本论文建立了求解单台冷水机组压缩机能效比、蒸发温度、冷凝温度的数学模型,以及多台同型号机组不同并联运行方式的压缩机能效比的数学模型,并对比分析其运行特性。结果表明,离心式冷水机组只有在70%~100%负荷率条件下才能维持较高的能效比,能效比随负荷率的降低急剧降低,多台机组并联运行按总负荷减少量以单台机组额定负荷为限来控制机组启停,可以在很大的负荷区间内将机组群总能效比维持在较高水平。
     大型中央空调冷冻水系统管网水力特性精确计算是研究其优化设计和运行的必要条件,简化模型因计算误差大而无法应用于大型管网拓扑结构的水力计算。以异程布置和同程布置两种典型的冷冻水系统为研究对象,在充分考虑末端支路温度调节阀调节特性的基础上,建立了管网水力特性精确数学模型,提出了虚拟流量的计算机逻辑算法。该计算方法能够确保计算收敛,实现了利用一个逻辑程序计算管网各种水力特性,为异程布置和同程布置的管网水力特性研究提供了很好的参考价值。
     中央空调冷冻水系统末端负荷分布和管网结构是影响其节能潜力的关键因素,而空调系统的非线性、大惯性的热力性能是影响节能运行控制稳定性和可靠性的关键原因。本论文以异程式和同程式冷冻水系统为研究对象,建立管网拓扑结构的水力计算模型、旁通回路水力计算模型、AHU热力模型及水泵变频运行模型,研究冷冻水系统不同流量比的管网阻力特性、能耗特性、管网供回水温差、管网供回水压差、旁通调节阀特性、系统可调性系数等参数的变化规律,探讨了基于温差控制和基于压差控制的冷冻水系统控制机理,为冷冻水系统实现稳定可靠地节能运行调节提供了理论依据。
     大型中央空调冷冻水系统常采用多台水泵并联运行的结构形式,简单地认为水泵变频运行能耗与频率三次成正比是比较普遍的观点,其忽略了旁通回路调节特性和管网水力特性对并联水泵组能耗的影响。本论文建立了基于旁通回路调节特性的冷冻水泵组并联运行特性分析模型,以四台同型号水泵构成的水泵组为研究对象,详细地分析了不同管网供回水压差条件下,工频水泵台数控制、单台水泵变频+工频水泵台数控制、2台水泵同步变频、3台水泵同步变频和4台水泵同步变频等控制策略的运行特性,认为多台水泵同步变频+变频水泵台数控制是最节能的控制策略,提出了单台水泵变频+工频水泵台数控制的运行控制策略更适合于低流量比和高供回水压差的冷冻水系统变流量运行的观点。
     以某实际中央空调冷冻水系统为实验平台进行了大量实验研究,实验结果验证了理论研究的可行性和正确性。在理论研究和实验研究基础上,以图形化编程软件LabVIEW为开发平台,设计开发了中央空调优化控制管理系统,协同优化控制冷冻水温度、冷冻水流量和冷却水流量,实现空调制冷主机群控、冷冻水泵群控、冷却水泵群控和冷却塔群控等节能运行控制,并在多个办公建筑中得到应用。实践证明,该中央空调优化控制管理系统能够稳定可靠运行,并达到较好的节能效果。
Air-conditioning system energy-saving operation is the key problem to large-scale publicbuilding energy-saving and emission-reduction, its energy consumption depends on thesystem design type, the operation control mode, as well as the load distribution characteristics,variable load operation control mechanism of cold-source system is the theoretical basis for acentral air-conditioning system to optimize the design and operation. Chillers group controland chilled water pumps group control, chilled water system pipe network variabletemperature control and chilled water system variable pressure control have been researcheddetailedly in this paper, and the research have been verified by experiment. On the basis ofapplied research a central air-conditioning intelligent-optimize control system has beendeveloped.
     Under the condition of uniformly load distribution, based on the different way of bearingpart load, mathematical model which was used to solve EER of single water chilling unit,evaporating temperature, condenser temperature and the model of EER with multiple units ofthe same type under different way of parallel operation are established, the operatingcharacteristics are compared and analyzed. The result shows that centrifugal water chillingunit can maintain higher EER only under terms at70%-100%load rate, EER decreasessharply with the decrease of load rate, the units’ running are controlled by single unit’s ratedload according to total load reduction, it can keep total EER in high-level on very large loadrange.
     For large central air-conditioning systems the accurate calculation of pipe networkhydraulic characteristics is the necessary condition to research its optimization design andoperation. Simplified Model can’t be applied to hydraulic calculation of large pipe networktopological structure because of large calculation error. In this paper a reverse-return chilledwater system and a direct-return chilled water system are used as the research objects. Basedon fully taking into account the regulating characteristics of terminal branch temperatureregulating valve, an accurate mathematical model of pipe network hydraulic characteristicshas been established and a computer logic algorithm with virtual flow has been put forward.This calculation method can ensure calculation convergence, it not only realizes using onelogical program to calculate various kinds of pipe network hydraulic characteristics, but alsoprovides a very good reference to the research of pipe network hydraulic characteristics forreverse-return chilled water system and direct-return chilled water system.
     Terminal load distribution and pipe network structure are the key factors that affect the energy-saving potential of central air-conditioning chilled water systems, nonlinearthermodynamic performance of an air-conditioning system with large inertia will mainly exertinfluence on the stability and reliability of energy-saving operation control. With adirect-return chilled water system and a reverse-return chilled water system as study object,this paper built a hydraulic calculation model of pipe network topology, bypass loop hydrauliccalculation model, AHU thermodynamic model, and water pump variable frequency operationmodel. Operating frequency of a water pump for different flow ratio, pump power,temperature difference of pipe network supply and return water, pressure difference of pipenetwork supply and return water, bypass control valve characteristics, system adjustabilitycoefficient, and pipe network resistance characteristics of a chilled water system are studied inthis research work, and energy consumption characteristics of constant temperature differencecontrol and variable temperature difference control are also analyzed with comparison. Thecontrol mechanism for variable load operation has been researched detailed based on twodifferent control models of temperature control and pressure control in this paper. The resultscan provide theoretical guidance for the stable and reliable energy-saving operation of achilled water system.
     Pumps parallel operation is the common structure form for large central air-conditioning,in part load conditions. In actual engineering, the more common viewpoint is that the energyconsumption of the pump frequency operation is proportional to the cube of frequency, but itignores that the bypass loop regulation characteristics and pipe network hydrauliccharacteristics have influence on the energy consumption of parallel pump group. In thispaper, the analysis model of chilled water pump group parallel operation characteristics havebeen established based on the bypass loop regulation characteristics, and a pump groupconsisting of four chilled water pumps is for the study. In conditions of different supply andreturn water pressure difference for pipe network, the operating characteristics are analyzed indetail for four control strategies including: power frequency pump quantity control, singlepump variable frequency operation with power frequency pump quantity control, two pumpssynchronous variable frequency control, three pumps synchronous variable frequency controland four pumps synchronous variable frequency control. The paper thinks that pumpssynchronization variable frequency operation with variable frequency pump quantity controlis the most energy-efficient control strategy, and the viewpoint that single pump variablefrequency operation with power frequency pump quantity control is more suitable for chilledwater system variable flow operation in conditions of low flow-ratio and high supply-returnwater pressure difference has been provided.
     A large number of experimental researches have been completed on the experimentalplatform for a real run central air-conditioning chilled water system, and the experimentalresults verify the feasibility and correctness for the theoretical research. On the basis oftheoretical and experimental studies, a central air-conditioning optimize control system isdesigned and developed based on LabVIEW graphical programming software developmentplatform, and chilled water temperature, chilled water flow and cooling water flow can beoptimization coordinated controlled in order to reduce energy consumption, furthermorechillers group control, chilled water pumps group control, cooling water pumps group controland cooling towers group control can be achieved for energy-saving operation, which hasbeen applied in more than one office building. The results show that the optimize controlmanagement system of central air-conditioning can achieve stable and reliable operation, atthe same time it achieves better energy saving effect.
引文
[1]赵廷法,王瑞华,王普. VAV中央空调能耗建模与仿真研究[J].计算机仿真,2010,27(3):326-329
    [2]周洪煜,陈小健,陈孜虎.变水量与变风量的中央空调节能控制策略[J].控制工程,2011,18(3):474-478
    [3]刘金平,刘磊,刘雪峰,邹伟.办公建筑空调制冷系统节能改造分析[J].建筑科学,2012,28(2):23-28
    [4]朱小旺,蒋绍坚.大型公共建筑空调系统的节能控制[J].中南林业科技大学学报,2010,30(10):143-146
    [5]高波,李先庭,韩宗伟,郜义军.地铁通风空调系统节能的新进展[J].暖通空调,2011,41(8):21-26
    [6]於仲义,陈焰华,于世平,王琪伟,郭林.不同控制模式下铁路客站集中空调系统的运行节能[J].暖通空调,2012,42(2):105-108
    [7]杨晓庆,左为恒,李昌春.改进PSO算法在中央空调控制系统中的应用[J].计算机仿真,2011,28(11):201-204
    [8]李申,沈嘉,张学军,郑幼明.恒温恒湿空调系统的优化控制与性能模拟[J].制冷学报,2012,33(1):22-27
    [9]杨助喜,岳献芳,王立.基于蜜蜂进化型遗传算法的中央空调系统能耗优化研究[J].建筑科学,2011,27(6):78-105
    [10]王建玉,任庆昌.中央空调水系统的节能优化[J].西安建筑科技大学学报(自然科学版),2010,42(6):850-855
    [11]蒋小强,龙惟定,李敏.制冷机房冷冻水和冷却水变流量解耦控制策略[J].重庆大学学报,2010,33(6):6-12
    [12]李界家,陈浩,李颖.神经网络解耦控制在中央空调系统中的应用[J].沈阳建筑大学学报(自然科学版),2012,28(1):182-186
    [13]闫军威,康英姿,周璇,高志明.惠州某通信大楼空调系统节能改造[J].暖通空调,2011,41(2):56-59
    [14]罗启平.基于PLC和力控组态软件的中央空调监控系统设计[J].煤炭技术,2012,31(2):53-54
    [15]杨晓庆,左为恒,李昌春.基于Profibus和iFIX的中央空调控制系统[J].煤炭技术,2011,30(6):52-54
    [16]李秀娟,纪赖恩,许晓东.基于粗糙集理论的中央空调节能评测的研究[J].控制工程,2010,17(3):286-289
    [17]王鑫,魏庆芃,江亿.基于能耗数据和指标的空调系统节能诊断方法及应用[J].暖通空调,2010,40(8):22-24
    [18]谢秀颖,邵珠虹,张桂青,汪明,李成栋.基于物联网和数据融合的空调故障诊断系统及方法[J].计算机应用研究,2012,29(2):265-268
    [19]涂壤,李震,刘晓华,田浩,刘芳.基站围护结构性能及空调系统性能优化分析[J].暖通空调,2011,41(12):46-49
    [20]曲凯阳,胡德祥,王连吉,吕凤海.空调冷却水系统最优节能控制策略[J].暖通空调,2010,40(4):110-114
    [21]于晓明,赵建博,石颖,李向东,刘庆堂.空调冷水一次泵变流量系统设计探讨[J].暖通空调,2010,40(4):61-71
    [22]戎卫国,李永安.空调系统节能评价基准的辨析[J].建筑科学,2010,26(10):194-196
    [23]王亮,卢军,陈明,胡磊.空调系统冷水泵并联变频优化运行[J].暖通空调,2011,41(12):114-117
    [24]高鹤,周富强,邹荣,丁成伟,李红民.楼控系统中冷水泵节能优化控制分析[J].工业安全与环保,2011,37(7):5-7
    [25]高亚锋,李百战,陈玉远,刘晓庆,金振星.一次泵空调冷水系统的水力特性与节能分析[J].土木建筑与环境工程,2010,32(6):100-104
    [26] M. Izquierdo, A.M.-R., A. González-Gil, N. García-Hernando. Air conditioning in theregion of Madrid, Spain: An approach to electricity consumption, economics and CO2emissions[J]. Energy,2011,36:1630-1639
    [27] Jin-Long Lin, T.-J.Y., Wei-Yang Hwang. A dynamic switching strategy forair-conditioning systems operated in light-thermal-load conditions[J]. AppliedThermal Engineering,2009,29:2832-2842
    [28] Lun Zhang, X.-H.L., Yi Jiang. A new concept for analyzing the energy efficiency ofair-conditioning systems[J]. Energy and Buildings,2012,44:45-53
    [29] Gongsheng Huang, S.W., Xinhua Xu. A robust model predictive control strategy forimproving the control performance of air-conditioning systems[J]. Energy Conversionand Management,2009,50:2650–2658
    [30] E. T. H. Mohamed, K.N.A. A Simulation Model to Determine Energy Savings in an AirConditioning Office Building[J]. Procedia Engineering,2011,20:298-304
    [31] N.A. Tuan, K.D.H. Airflow circulation cell study of an air-conditioning energy-savingmechanism[J]. Applied Thermal Engineering,2011,31:3956-3962
    [32] J.W. Wan, W.J.Z., W.M. Zhang. An energy-efficient air-conditioning system with anexhaust fan integrated with a supply fan[J]. Energy and Buildings,2009,41:1299-1305
    [33] Jing Pu, G.L., Xiao Feng. Application of the cumulative exergy approach to differentair conditioning systems[J]. Energy and Buildings,2010,42:1999-2004
    [34] M. Mohanraj, S.J., C.Muraleedharan. Applications of artificial neural networks forrefrigeration, air-conditioning and heat pump systems—A review[J].2012,16:1340-1358
    [35] Zhigang Shi, X.L., Songtao Hu. Direct Feedback Linearization Based Control inVariable Air Volume air-conditioning System[J]. Procedia00(201,2012,24:1248-1254
    [36] Archana, T., Amit Patra, Souvik, Bhattacharyya. Feedback linearization based controlof a variable air volume air conditioning system for cooling applications[J]. ISATransactions,2008,47:339-349
    [37] K.F.Fong, T.T.C., C.Li,Z.Lin,L.S.Chan. Effect of neutral temperature on energy savingof centralized air-conditioning systems in subtropical HongKong[J]. Applied ThermalEngineering,2010,30:1659-1665
    [38] R. Parameshwaran, R.K., C. Vinu Raja Kumar, S. Iniyan. Energy conservativebuilding air conditioning system controlled and optimized using fuzzy-geneticalgorithm[J]. Energy and Buildings,2010,42:745-762
    [39] R. Parameshwaran, S.H., S. Kalaiselvam. Energy efficient PCM-based variable airvolume air conditioning system for modern buildings[J]. Energy and Buildings,2010,42:1353-1360
    [40] K.F. Fong, S.Y.Y., C.K. Chow, S.W. Leung. Energy management and design ofcentralized air-conditioning systems through the non-revisiting strategy for heuristicoptimization methods[J]. Applied Energy,2010,87:3494-3506
    [41] Jung-Ho Huh, M.J., Brandemuehl. Optimization of air-conditioning system operatingstrategies for hot and humid climates[J]. Energy and Buildings,2008,40:1202-1213
    [42] Chenchen Chang, J.Z., Neng Zhu. Energy saving effect prediction and post evaluationof air-conditioning system in public buildings[J]. Energy and Buildings,2011,433243-3249
    [43] Xue-Bin Yang, X.-Q.J., Zhi-Min Du, Bo Fan, Xiao-Feng Chai. Evaluation of fourcontrol strategies for building VAV air-conditioning systems[J]. Energy and Buildings,2011,43:414-422
    [44] Ye Yao, J.C. Global optimization of a central air-conditioning system usingdecomposition–coordination method[J]. Energy and Buildings,2010,42:570-583
    [45] Zhao Tianyi, Z.J., Ma Liangdong. On-line optimization control method based onextreme value analysis for parallel variable-frequency hydraulic pumps in centralair-conditioning systems[J]. Building and Environment,2012,47:330-338
    [46]徐剑波,周亚素.空调冷却水系统节能分析[J].中国纺织大学学报,1998,24(6):54-58
    [47]叶剑飞,杜小平,叶向诚.空调系统水泵变频运行特性分析[J].制冷,2001,20(4):68-71
    [48]薛殿华.空气调节[M].北京:清华大学出版社,2007:165-179
    [49]姚行建,孙利生.空气调节用制冷技术(第一版)[M].北京:中国建筑工业出版社,1996:66-80
    [50]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,2003:87-92
    [51]彦启森,徐邦裕.空气调节用制冷技术(第二版)[M].北京:中国建筑工业出版社,1999:60-64,70-87
    [52] Lu Lu, W.C., Lihua Xie, Shujiang Li, Yeng Chai Soh. HVAC systemoptimization—in-building section[J]. Energy and Buildings,2005,37:11-22
    [53]周国逸,黄忠良.广州近35年来的气候变化[J].热带地理,1999,19(3):198-203
    [54]陆耀庆.实用供热空调设计手册[S],1994:988-996
    [55]叶美萍.影响压缩机单位轴功率制冷量的因素[J].制冷,1997,2(59):52-55
    [56]孙金鹏,王树刚.变水量空调冷冻水系统整体特性的模拟研究[J].建筑科学,2008,24(8):90-93
    [57]刘涓娟,李立人,王新,陈宝明.大厦冷冻水系统运行工况下循环压力的理论计算[J].上海理工大学学报,2004,26(6):533-541
    [58]冯小平.供热空调系统运行管网管段阻力数测算新方法[J].建筑热能通风空调,2004,23(4):53-56
    [59]冯小平,龙惟定.供热空调系统水力管网流量调节的计算方法[J].流体机械,2005,33(2):66-69
    [60]余跃进.空调与热水供热管网数值仿真[J].南京师范大学学报(工程技术版),2002,2(2):84-92
    [61]董哲生.空调水系统阻力计算及水泵选型若干问题[J].暖通空调,2006,36(9):45-47
    [62]许淑惠,罗文斌.空调冷冻水和冷却水循环系统水力计算简便方法[J].北京建筑工程学院学报,2004,20(3):1-7
    [63]孙多斌,王树刚,韩俊,赵立东.商业建筑空调水系统中环路阻力分布模拟分析[J].大连大学学报,2006,27(4):92-96
    [64] Yung-Chung Chang, W.-H.C. Optimal chilled water temperature calculation of multiplechiller systems using Hopfield neural network for saving energy[J]. Energy,2009,34:448-456
    [65] F.W. Yu, K.T.C. Optimum load sharing strategy for multiple-chiller systems servingair-conditioned buildings[J]. Building and Environment,2007,42:1581-1593
    [66] Zhenjun Ma, S.W. Energy efficient control of variable speed pumps in complex buildingcentral air-conditioning systems[J]. Energy and Buildings,2009,41:197-205
    [67] Chang, Y.-C. Application of Hopfield Neural Network to the optimal chilled water supplytemperature calculation of air-conditioning systems for saving energy[J]. InternationalJournal of Thermal Sciences,2009,48:1649-1657
    [68] Chen, Y.-C.C.W.-H. Optimal chilled water temperature calculation of multiple chillersystems using Hopfield neural network for saving energy[J]. Energy,2009,34:448-456
    [69] Dian-ce Gao, S.W., Yongjun Sun. A fault-tolerant and energy efficient control strategy forprimary–secondary chilled water systems in buildings[J]. Energy and Buildings,2011,43:3646-3656
    [70]路延魁.空气调节设计手册[S].北京:中国建筑工业出版所,2007:811-814
    [71]陆培文.调节阀实用技术[M].北京:机械工业出版社,2006:126-136
    [72] Xinqiao Jin, Z.D., Xiaokun Xiao. Energy evaluation of optimal control strategies forcentral VWV chiller systems[J]. Applied Thermal Engineering,2007,27:934-941
    [73] J.L. Niu, L.Z.Z., H.G. Zou. Energy savings potential of chilled-ceiling combined withdesiccant cooling in hot and humid climates[J]. Energy and Buildings,2002,34:487-495
    [74] F.W. Yu*, K.T.C. Environmental performance and economic analysis of all-variablespeed chiller systems with load-based speed control[J]. Applied Thermal Engineering,2009,29:1721-1729
    [75] Hartman.T. All-variable speed centrifugal chiller plants[J]. ASHRAE J,2001,49(3):43-53
    [76] F.W. Yu*, K.T.C. Improved energy performance of air cooled centrifugal chillers withvariable chilled water flow[J]. Energy Conversion and Management,2008,49:1595–1611
    [77] B.Costelloe, D.F. Indirect evaporative cooling potential in air-water systems intemperate climates[J]. Energy and Buildings,2003,35:573-591
    [78] Shengwei Wang, J.B. Online adaptive control for optimizing variable-speed pumps ofindirect water-cooled chilling systems[J]. Applied Thermal Engineering,2001,21:1083-1103
    [79] Zhenjun Ma, S.W., Fu Xiao. Online performance evaluation of alternative controlstrategies for building cooling water systems prior to in situ implementation[J].Applied Energy,2009,86:712-721
    [80] Lu L, C.W., Xie LX, Li SJ, Soh YC. HVAC system optimization-condenser waterloop[J]. Energy Conver Manage,2004,45(4):613-630
    [81] Crowther H, F.J. Optimizing chillers&towers[J]. ASHRAE J,2004,46(7):34–44
    [82] Yao Y, L.Z., Hou ZJ, Zhou XJ. Optimal operation of a large cooling system based onempirical model[J]. Appl Therm Eng,2004,24(16):2303-23021
    [83] Sun J, R.A. Optimal control of building HVAC&R systems using completesimulation-based sequential quadratic programming (CSB-SQP)[J]. Build Environ,2005,40(5):657-669
    [84] F.W. Yu*, K.T.C. Optimization of water-cooled chiller system with load-based speedcontrol[J]. Applied Energy,2008,85:931-950
    [85] Shengwei Wang, Z.M., Dian-ce Gao. Performance enhancement of a complex chilledwater system using a check valve: Experimental validation[J].,Applied ThermalEngineering,2010,34:1-6
    [86] Yao-Wen Wang, W.-J.C., Yeng-Chai Soh, Shu-Jiang Li, Lu Lu, Lihua Xie. A simplifiedmodeling of cooling coils for control and optimization of HVAC systems[J]. EnergyConversion and Management,2004,45:2915-2930.
    [87]李宜浩,梁启双.变流量水系统压差旁通控制系统设计[J].暖通空调,2007,32(12):73-76
    [88]梅奎,梁彩华,张小松.变流量对表冷器性能的影响变流量对表冷器性能的影响[J].化工学报,2008,59(s2):109-113
    [89]赵天怡,张吉礼,孙德兴.空调系统并联变频水泵台数在线优化配置方法[J].天津大学学报,2011,44(3):221-226
    [90]何湘勇.空调水系统变流量节能控制分析[J].暖通空调,2007,37(1):113-115
    [91]李苏泷.一次泵系统冷水变流量节能控制研究[J].暖通空调,2006,36(7):72-75
    [92]孙宗宇,贾琨,杨纯华.定流量与变流量系统冷水温度节能控制策略[J].暖通空调,2009,39(8):66-69
    [93]高腾野,孟庆安.关于一次泵变流量系统设计的几点看法[J].暖通空调,2009,39(12):62-63
    [94]蒋小强,龙惟定,王民,谢爱霞.空调水系统变流量的运行特性[J].流体机械,2010,38(3):71-75
    [95]江亿.管网可调性和稳定性的定量分析[J].暖通空调,1997,27(3):1-7
    [96]彭昌勇,熊.,孔范增.基于冷负荷需求的空调节能控制模型[J].数学的实践与认识,2009,39(16):201-212
    [97]刘金平,邹伟,刘雪峰.采用旁通阀定压差控制的冷水泵功耗特性试验研究[J].土木建筑与环境工程,2010,32(6):80-85
    [98]于晓明,赵建博,石颖,李向东,刘庆堂.空调冷水一次泵变流量系统设计探讨[J].暖通空调,2010,40(4):67-70
    [99]高亚锋,李百战,陈玉远,刘晓庆,金振星.一次泵空调冷水系统的水力特性与节能分析[J].土木建筑与环境工程,2010,32(6):100-104
    [100] Qun Chen, Y.-C.X. An entransy dissipation-based optimization principle for buildingcentral chilled water systems[J]. Energy,2012,37:571-579
    [101] Zhenjun Ma, S.W. An optimal control strategy for complex building central chilledwater systems for practical and real-time applications[J]. Building and Environment,2009,44:1188-1198
    [102] Zhenjun Ma, S.W. Enhancing the performance of large primary-secondary chilled watersystems by using bypass check valve[J]. Energy,2011,36:268-276
    [103] Shizhong Yang, Q.R. Intelligent Control Technology for Frequency Conversion Pumpin Air Conditioning Systems[J]. Energy Procedia,2011,11:1822-1866
    [104] Liu Xue-feng, L.J.-P., Liu Lei, Zou Wei. The design and application of the optimizecontrol management system to the central air-conditioning based on intelligentbuilding technology[J].2011International Conference on Electric Technology andCivil Engineering,2011:1676-1679
    [105] A. Capuano, M.D.I., N. Massarotti, L. Vanoli. A metrological analysis of a DirectDigital Control DDC-based air conditioning system[J]. Energy and Buildings,1999,29:155-166
    [106] Zheng Lia, S.D. A DDC-based capacity controller of a direct expansion (DX) airconditioning (A/C) unit for simultaneous indoor air temperature and humidity controle Part I: Controlalgorithms and preliminary ontrollability tests[J]. International Journalof Refrigeration,2007,30:113-123
    [107] Michael Anderson, M.B., Peter Young,Douglas Hittle,Charles Anderson, Jilin Tu,David Hodgson. An experimental system for advanced heating, ventilating andairconditioning (HVAC) control[J]. Energy and Buildings,2007,39:136-147
    [108] M.J. Poort, C.W.B. Applications and control of air conditioning systemsusing rapidcycling to modulate capacity[J]. International Journal of Refrigeration,2006,29:683-691
    [109] T.-J. Yeh, Y.-H.C., Jin-Long Lin. Control of air-conditioning systems in heating modeto enhance transient performance and steady-state efficiency[J]. Energy and Buildings,2009,41:1391-1400
    [110] Xiong-Fu Liu, A.D. Fault-tolerant supervisory control of VAV air-conditioning
    [111] Lsystems[J]. Energy and Buildings,2001,33:379-389l.o Gadose lc o, nQs.iWde.r,i nPge nngo Wdaal nrge.l iFaubzilzityy locghiacr-abcateserids tdicisre cint lroeasdtr uccotnutrreodl opfo awire rc osnydstietimons[inJ]g.Electric Power Systems Research,2010,80:98-107
    [112] J.M. Sousa*, R.B.a.H.B.V. FUZZY PREDICTIVE CONTROL APPLIED TO ANAIR-CONDITIONING SYSTEM[J]. ControlEng. Practice,1997,5:1395-1406
    [113] Jin-Long Lin, T.-J.Y. Modeling, identification and control of air-conditioning systems[J].International Journal of Refrigeration,2007,30:209-220.
    [114] M. Mossolly, K.G., N.Ghaddar. Optimal control strategy fo ra multi-zone airconditioning system using a genetical gorithm[J]. Energy,2009,34:58-66
    [115] KulkarniMR, H.F. Energy optimal control of a residential space-conditioning systembased on sensible heat transfer modeling[J]. Build Environ,2004,39:31-38
    [116]郭永吉,王兴贵. PLC在中央空调改造系统中的应用[J].电气自动化,2007,29(5):74-76
    [117]周名侦,叶翠安,卢晓春.船舶中央空调的组态与PLC监控系统设计[J].制造业自动化,2010,32(1):81-83
    [118]刘钢,焦.,贾书洪.模糊PID控制在中央空调变流量节能中的应用[J].电力电子技术,2007,41(11):66-67
    [119]林利瓦,徐小勇,张军,张侃谕.中央空调变流量PLC控制系统设计[J].自动化仪表,2009,30(9):56-61
    [120]周洪煜,陈孜虎,高鹏飞.中央空调系统节能运行改造的控制策略与方案[J].计算机测量与控制,2009,17(10):1977-1980
    [121]廖金宝,刘甫,孙帅帅.中央空调系统节能控制的全局优化模型[J].数学的实践与认识,2009,39(16):220-225
    [122]韩希超,刘鸿雁,严明,李文松.中央空调系统节能设计与运行控制策略研究[J].数学的实践与认识,2009,39(16):192-200
    [123]郭莉莉.建筑能耗现状及节能潜力[J].铁道工程学报,2006,27(6):75-78
    [124]刘雪峰,刘金平.均匀负荷分配的冷水机组并联运行特性分析[J].制冷学报,2006,4(94):43-47
    [125]刘金平,麦粤帮,刘雪峰.中央空调系统变水温和变水量协调优化控制研究[J].建筑科学,2007,23(6):12-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700