用户名: 密码: 验证码:
马褂木遗传多样性及系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马褂木(鹅掌楸)(Liriodendron chinense (Hemsl.) Sarg.)是我国特有的珍稀濒危第三纪孑遗树种,也是典型的东亚-北美间断分布种,对古植物学、植物系统学和植物地理学研究具有重要的科学价值;马褂木也是优良的用材、绿化和园林观赏树种,具有重要的经济价值和生态价值。本研究以马褂木全分布区有代表性的群体为材料,从叶、花器官、花粉、种实的形态、光合特性、种子与花粉活力、核DNA及叶绿体DNA等方面进行了遗传多样性的研究,并对其系统地理学进行了探讨。主要结果如下:
     1.表型水平上,马褂木的种实性状、叶型、光合特性、花器官均存在显著的群体变异,种实性状存在显著的海拔梯度变异规律,聚合果宽度随海拔的升高有变窄的趋势;叶型及花器官大小呈现出显著的径向地理变异规律,东部群体叶片侧裂凹陷及前裂凹陷程度均比西部群体明显,东部群体花朵明显小于西部;净光合速率最高的群体为最低的2.36倍;群体间显著分化。
     2.花粉在群体间存在明显的多态性。花粉形态、大小、外壁纹饰及超微结构均存在显著的经向地理变异,西部花粉类型相对较为原始,东部则较为进化,东西部之间存在渐变进化类型,马褂木花粉在木兰科中属于较为进化的类型。
     3.马褂木的遗传多样性处于较低水平(Nei(h)=0.5577),一定程度上反映了其濒危现状;西部和中南部群体的遗传多样性有高于东部群体的趋势,东、西部群体间存在高水平地理分化(Fst=0.3018)。其群体分化较大的原因可能为:星散岛状分布的地理隔离效应,加上大部分群体规模很小,限制了群体间的基因流,产生了明显的遗传漂变。各群体均存在显著的连锁不平衡,研究表明不平衡主要是一些随机漂变或人为干扰等因素引起的。
     4.马褂木cpDNA单倍型呈显著的东、西部地理分布格局。东部以福建与浙江交界的武夷山北麓的中山地带为单倍型分布中心,西部以重庆、贵州、湖南、湖北交界的中山地带为单倍型分布中心。多数单倍型为东、西部的区域内共有,推测东、西部的马褂木可能起源于不同的避难所。西部区域的避难所可能为云贵高原和四川南部,东部区域的避难所可能为武夷山脉南麓。冰期后,推测东、西部避难所马褂木可能向北方的不同方向扩散,在重庆、贵州、湖南、湖北交界的地带交汇,导致该地区存在有丰富的单倍型。
     5.无论在形态还是分子水平上,马褂木遗传变异均存在显著的东、西部地理分化,西部群体的遗传多样性高于东部,因此应优先对遗传多样高的地区进行原地保护,同时也可考虑迁地保护;进行杂交育种的亲本选配时,重视种群选择是提高育种效率的重要途径。
Liriodendron Chinense is an endangered deciduous perennial xylophyta, one of the genera with a East Asia-North American disjunctio. It has important scientific value for study on paleobotany, genealogy and geobotany. As a, relic species from the tertiary, mainly occurs in subtropical China. It has high economic and ecological value. In this research, the genetic diversity and phylogeography of L.Chinense were studied.
     The main results as follows:
     1. Morphological diversities among populations were discussed on the basis of traits such as the leaf, the seed, the aggregate fruit, the floral organs, the pollen. The above traits were significantly difference among populations. The mean germinations of most seed sources studied were at 3% to 5%. Leaf shape and floral organ size had significantly geographic variation along the longitude. Side sinus depth and top sinus depth in eastern region were deeper than in western region. Eastern flower was smaller than western's. The net photosynthetic rate of the highest provenance was 2.36 times the lowest.
     2. Pollen had significant polymorphism among populations. Pollen morphology and ultrastructure were significant geographic variations. Pollen type of western region was more primitive relatively than eastern region. L. Chinense pollen was a more evolutionary type in the Magnoliaceae.
     3. In this study,20 SSR primers were used to reveal the genetic diversity of 22 populations, low genetic diversity (Nei(h)=0.5577)was found. Genetic diversity has higher geographic differentiation between eastern and western (Fst=0.3018). It maybe caused by significant genetic drift which was due to geographical isolation, little gene flow and small population scale. Each population exited significant linkage disequilibria, implied that the stochastic causes such as genetic drift might be the main reason of linkage disequilibria.
     4. Significant geographic structure of haplotype was detected. Populations of western and eastern ranges had own unique haplotypes, which implied that eastern and western range had different origins. Two contrasting glacial refugia were found in eastern and western distribution regions. Yunnan-Guizhou plateau and southern Sichuan maybe provided refugium for western region; Southren Wuyi-mountain maybe served the other one for eastern region. After ice age, we speculated that L.Chinenese in eastern and western refugia maybe spreaded in different directions to the north. Populations survived in eastern and western refugia migrated and then mixed in border zone intersection of Chongqing, Guizhou, Hunan and Hubei, resulting in that the region is rich in haplotypes.
     5. Morphologic and molecular levels, L.Chinense, genetic variation had significant geographic disintegration in the East and West of China. The genetic diversity of western populations was higher than the eastern's. Therefore, high genetic diversity populations should have the priority in situ conservation, but also to consider the ex-situ conservation. For hybrid breeding of parent selection, the emphasis on provenance selection is an important way to improve breeding efficiency.
引文
[1]陈灵芝(ed).遗传多样性[M].北京:科学出版社,1993.
    [2]钱迎倩,马克平(eds).生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    [3]王伯荪,彭少麟.植被生态学--群落与生态系统[M].北京:中国环境科学技术出版社,1997.
    [4]段彪,张泽君.生物多样性及研究现状[J].四川畜牧兽医学院学报,2001,15(2):52-57.
    [5]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [6]潘莹,赵桂仿.分子水平的遗传多样性及其测量方法[J].西北植物学报,1998,18(4):645-653.
    [7]解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地,2000,(6):51-59.
    [8]徐小林.栓皮栎群体遗传结构研究[D].南京:南京林业大学,2003.
    [9]李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002.
    [10]李力,王仁卿,王中仁,等.青岛耐冬山茶的多样性Ⅱ-群体的遗传多样性分析[J].生物多样性,1996,4(1):1-6.
    [11]葛颂.植物群体遗传结构研究的回顾和展望.In:李承森(ed).植物科学进展(第Ⅰ卷)[M].北京:高等教育出版社,1997:1-15.
    [12]汪小全,邹喻苹.RAPD应用于遗传多样性和系统学研究中的问题[J].植物学报:英文版,1996,38(12):954-962.
    [13]宿兵,王文,蒋学龙,等.中国黑冠长臂猿的遗传多样性及其分子系统学研究-非损伤取样DNA序列分析[J].中国科学(C辑),1996,26(5):414-419.
    [14]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic acids research,1995, 23(21):4407.
    [15]张峰,宋文芹.AFLP-银染法检测植物基因组多态性[J].细胞生物学杂志,1999,21(2):98-100.
    [16]徐立安,李新军,潘惠新,等.用SSR研究栲树群体遗传结构[J].植物学报,2001,43(4):409-412.
    [17]徐小林,徐立安,黄敏仁,等.栓皮栎天然群体SSR遗传多样性研究[J].遗传,2004,26(5):683-688.
    [18]王静,李明,魏辅文,等.分子系统地理学及其应用[J].动物分类学报,2001,26(4):431-440.
    [19]Avise JC. Toward a regional conservation genetic perspective:phylogeography of faunas in t he sout heastern United States[M]. NewYork:Chapman&Hall,1996.
    [20]Avise JC. The history and purview of phylogeography:a personal reflection[J]. Molecular Ecology,1998,7:371-379.
    [21]Avise JC. Phylogegraphy:The History and formation of species[M]. Boston:Cambridge Harvard University Press,2000.
    [22]李婧,潘玉春,李亦学,等.人类基因组单核苷酸多态性和单体型的分析及应用[J].遗传学报,2005,32(8):879-889.
    [23]邹喻苹,葛颂.新一代分子标记-SNPs及其应用[J].生物多样性,2003,11(5):370-382.
    [24]Avise JC, Arnold J, Ball RM, et al. Intraspecific Phylogeography:The Mitochondrial DNA Bridge Between Population Genetics and Systematics[J]. Annual Review of Ecology and Systematics,1987,18:489-522.
    [25]刘宇.栓皮栎群体cpSSR遗传分析[D].南京:南京林业大学,2007.
    [26]Palmer JD. Choroplast DNA and phylogenetic relationsbip in DNA Systematics[J]. Plant,1986,2:76-98.
    [27]Newton AC. Molecular phylogeography intraspecific variation and the conservation of tree species[J]. Tree Col,2000, 14(4):140-145.
    [28]Sinclair WT, Morman JD. Ennos R A. Multiple origins for Scots pine (Pinus sylvestrisL.) in Scotland:evidence from mito-chondrial DNA variation [J]. Heredity,1998,80:233-240.
    [29]Sinclair WT, Morman JD. Ennos R A. The postglacial history of scots pine (Pinus sylvestrisL.) in Western Europe:evidence from mitochondrial DNA variation[J]. Molecular Ecology,1999,8:83-88.
    [30]Desplanque B, Viard F. Bernard J et al. The linkage disequilibrium between chloroplast DNA and mitochondrial DNA haplotypes inBeta vulgaris(L) ssp.maritima:The usefulness of both genomes for population genetics studies[J]. Molecular Ecology,2000,9:141-154.
    [31]Mitton JB, Kreiser BR, Lattar G. Glacial refugia of limber pine (Pinus flexilisJames) inferred from the population structure of mitochondrial DNA[J]. Molecular Ecology,2000,9:91-97.
    [32]Harris EE, Hey JX. Chromosome evidence for ancient human histories[J]. ProcNatlSclUSA,1999,6:3320-3324.
    [33]Olsen KM, Schaal BA. Evidence on the origin of cassava:phylogeography of Manihot esculenta[J]. ProcNatlAcadSciUSA, 1999,96:5586-5591.
    [34]Carbone I, Kohnl M. A microbial population-species interface:nested cladistic and coalescent inference with multilocus data [J]. Molecular Ecology,2001,10:947-964.
    [35]Schaal BA. Phylogeography studies in plants:problems and prospects[J]. Molecular Ecology,1998,7:465-474.
    [36]Hamrick JK. Correlation between species traits and allozyme diversity:implications for conservation biology. In Geneticsand Conservation of Rare Plants (Falk, D. A. and Holsinger, K. E., eds) [M]. Oxford:Oxford University Press,1991.
    [37]Moritz C. Applications of mitochondrial DNA analysis in conservation:a critical review [J]. Molecular Ecology,1994, 3:401-411.
    [38]Crawford DJ, Ornduff R, Vasey MC. Allozyme variation within and between Lasthenia minorand its derivative species L.maritimea(Asteraceae)[J]. American Journal of Botany,1985,72:1177-1184.
    [39]Parks CR, Wendel JF, Sewell MM. The significance of allozyme variation and introgression in the Liriodendron tulipifera Complex(Magnoliaceae)[J]. American Journal of Botany,1994,81(7):878-889.
    [40]Lagercrantz U, Ryman N. Genetic structure of Norway spruce(Picea abies):concordance of morphologyical and allozymic variation[J]. Evolution,1990,44:38-53.
    [41]Cwynar LC, Macdonald GM. Geographical variation of lodgepole pine in relation to population history[J]. AmNat,1987, 129:463-469.
    [42]Lecorre V, Dumolin-LAPeGUE S, Kremer A. Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea(Matt.)Liebl.:the role of history and geography[J]. Molecular Ecology,1997,6:519-529.
    [43]Taberlet P, Bouvet J. Mitochondrial DNA polymorpnism, phylogeography and conservation genetics the brow bear (Ursusarctos) in Europe [J]. ProcRSocLandB,1994,255:195-200.
    [44]Roderick GK, Gillespie R, G. Speciation and phylogeography of Hawaiin terrestrial arthropods[J]. Molecular Ecology,1998, 7:519-531.
    [45]Trevino SE, Dizon AE. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondria and microsatellite DNA analyses[J]. Molecular Ecology,2000,9:1049-1060.
    [46]Parkinson CL, Zamudio KR, Greene HW. Phylogeography of the pitviper clade Agkistrodon:historical ecology, species status, and conservation of cantils[J]. Molecular Ecology,2000,9:411-420.
    [47]Taberlet P, Fumagalli L, Wust-Saucy A. Comparative phylogeography and postglacial colonization routes in Europe[J]. Molecular Ecology,1998,7:453-464.
    [48]Fermando P, Pfrender ME, Encalada SE. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant[J]. Heredity,2000,3:362-372.
    [49]刘克凤.叶绿体DNA在植物种内的变异及其在植物地理学上的应用[J].生物学杂志,1996,70(2):12-13.
    [50]Petit RJ, Kremer A, Wagner DB. Geographic structure of chloroplast DNA polymorphisms in European oaks[J]. TheorApplGenet,1993,87:122-128.
    [51]Ferrisc. Native oak chloroplasts revealed an ancient dividea cross Europe[J]. Mol Ecol,1993,2:337-344.
    [52]Dumolin-Lapegue S. Phylogeographic structure of white oaks throughout the European continent[J]. Genetics,1997, 146:1475-1487.
    [53]King RA, Ferris C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn[J]. Molecular Ecology,1998, 7:1151-1163.
    [54]Ferris C. Chloroplast DNA recognizes three refugial sources of Europe oaks and suggests independent eastern and western immigrations to Finland[J]. Heredity,1998,80:584-594.
    [55]Sewell MM, Parks CR. Chase M W.Intraspecific chloroplast DNA variation and biogeography of north American Liriodendron L.(Magnoliaceae)[J]. Evolution,1996,50:1147-1154.
    [56]Abbott RJ, Smith LC, Milne RI, et al. Molecular analysis of Plant migration and refugia int he Arctic[J]. Science,2000, 289:1343-1346.
    [57]Bueei G Detection of haplotypic variation and natural hybridi zation in Halepensis complex pine species using chloroplast simple sequence repeat (SSR) markers[J]. Molecular Ecology,1998,7:1633-1643.
    [58]Walter R, Epperson BK. Geographic Pattern of genetic variation in Pinus resinosa:area of greatest diversity is not the origin of postglacial populations[J]. American Journal of Botany,2001,10:103-111.
    [59]Rehardson BA, Brunsfeld SJ, Klopfenstein NB. DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial coloinzation and population genetic structure of whitebark pine (Pinue albicaulis) [J]. MolEeol, 2002,11:215-227.
    [60]Lira CF, Cardoso SRS, Ferreira PCC, et al. Longterm Population isolation in the endangered tropical tree species Caesalpinia echinata Lam. revealed by chloroplast microsatellites[J]. Molecular Ecology,2003,12:3219-3225.
    [61]李思发,吕国庆,贝纳切兹.长江中下游鲢鳙草青四大家鱼线粒体dna多样性分析[J].动物学报,1998,44(1):82-93.
    [62]李明,饶刚,魏辅文,等.小熊猫种群遗传结构和地理分化[J].动物学报,2002,48(4):480-486.
    [63]李明,蒙世杰,魏辅文,等.羚牛的遗传多样性及其种群遗传结构分析[J].兽类学报,2003,23(1):10-16.
    [64]黄族豪,刘袍发.陇东黄土高原石鸡的分子系统地理结构(英文)[J].动物学报,2004,50(4):576-582.
    [65]杨玉慧,张德兴,李义明,等.中国黑斑蛙种群的线粒体dna多样性和生物地理演化过程的初探[J].动物学报,2004,50(2):193-201.
    [66]Tan YZ. AFLP genetic variation of Cunninghamia konishii Hay. and C. lanceolata Hook[D]. Taiwan:Chinese Culture University,2000.
    [67]R(陈致仁) CZ. The phylogeographic study of Yushania niitakayamensis[D]. Taiwan:National Taiwan Normal University, 2002.
    [68]苏应娟,王艇,陈国培,等.基于cpDNA trnL-F序列数据分析海南陆均松种群的冰期后扩张[J].中山大学学报(自然科学版),2005,44(5):70-74.
    [69]樊小霞.银杏(Ginkgo biloba)叶绿体DNA系统地理学研究[D].上海:华东师范大学,2005.
    [70]王炜玲.七筋姑植物遗传多样性与分子地理学研究[D].西安:西北大学,2006.
    [71]郭晶.东亚七筋姑的遗传多样性及遗传分化-基于cpSSR标记[D].西安:西北大学,2007.
    [72]李珊.金钱槭属植物的保护遗传学与分子亲缘地理学研究[D].西安:西北大学,2004.
    [73]颜海飞,王小兰,胡启明,等.鄂报春(Primula obconica Hance)亲缘地理学的初步研究[J].热带亚热带植物学报,2005,13(6):526-532.
    [74]樊晓霞.银杏(Ginkgo biloba)叶绿体DNA系统地理学研究[D].上海:华东师范大学,2005.
    [75]曹东伟.李属樱亚属分子亲缘地理学研究[D].西安:西北大学,2006.
    [76]高大伟.樟科植物DNA Barcode及香樟系统地理学研究[D].上海:华东师范大学2008.
    [77]刘美华.长柄水青冈种群遗传结构和系统地理学研究[D].上海:华东师范大学,2008.
    [78]李欣.东亚七筋姑分子系统发育地理学研究--基于cpDNA PCR-RFLP标记及序列分析[D].西安:西北大学,2008.
    [79]王翀.绞股蓝属遗传多样性与亲缘地理学研究[D].西安:西北大学,2008.
    [80]王世春.栓皮栎种苗及cpDNA地理种群变异研究[D].南京:南京林业大学,2008.
    [81]王炜玲,郭元涛,钱增强,等.植物分子系统地理学及其研究进展[J].西北植物学报,2005,25(6):1250-1258.
    [82]Avise JC. The history and preview of phylogeograhy:a personal reflection[J]. Molecular Ecology,1998,7:371-379.
    [83]王明庥主编.林木遗传育种学[M].北京:中国林业出版社,2001.
    [84]王章荣主编.鹅掌楸属树种杂交育种与利用[M].北京:中国林业出版社,2005.
    [85]傅立国.中国植物红皮书(第一册)[M].北京:科学出版社,1992.
    [86]Kellison, Rotert, Clay. Phenothypic and genotypic variation of yellow-poplar(Liriodendron Tulipifera L.)[D]. Raleigh:North Carolina State University,1970.
    [87]郝日明,贺善安,汤诗杰,等.鹅掌楸在中国的自然分布及其特点[J].植物资源与环境学报,1995,4(1):1-6.
    [88]贺善安,郝日明.中国鹅掌楸自然种群动态及其致危生境的研究[J].植物生态学报,1999,23(1):88-96.
    [89]方炎明.中国鹅掌楸的地理分布与空间格局[J].南京林业大学学报,1994,18(2):13-18.
    [90]尹增芳,樊汝汶.鹅掌楸花粉败育过程的超微结构观察[J].植物资源与环境,1997,6(2):1-7.
    [91]樊汝汶,周坚,黄金生.鹅掌楸属植物花粉萌发前后壁的超微结构[J].云南植物研究,1995,17(4):427-431.
    [92]樊汝汶,尹增芳.中国鹅掌楸花粉母细胞减数分裂的超微结构观察[J].南京林业大学学报(自然科学版),1992,16(2):31-36.
    [93]黄双全,郭友好,陈家宽.渐危植物鹅掌楸的授粉率及花粉管生长[J].植物分类学报,1998,36(4):23-29.
    [94]方炎明,尤录祥,樊汝汶.中国鹅掌楸天然群体与人工群体的生育力[J].植物资源与环境学报,1994,3(3):9-13.
    [95]黄双全,郭友好,吴艳,等.鹅掌楸的花部数量变异与结实率[J].Acta Botanica Sinica,1998,40(1):27-32.
    [96]李周岐,王章荣.用rapd标记检测鹅掌楸属种间杂交的花粉污染[J].植物学报,2001,43(12):1271-1274.
    [97]孙亚光,李火根.利用SSR分子标记检测鹅掌楸雄性繁殖适合度与性选择[J].分子植物育种,2008,6(1):79-84.
    [98]李锡泉,罗东湖,董春英,等.马褂木属地理种源试验苗期初步研究[J].湖南林业科技,1997,24(1):4-7.
    [99]董纯,谭德仁,汪长江,等.马褂木(鹅掌楸)地理种源试验研究报告[J].湖北林业科技,1999,1(107):3-10.
    [100]李斌,顾万春,夏良放,等.鹅掌楸种源遗传变异和选择评价[J].林业科学研究,2001,14(3):237-244.
    [101]朱晓琴,马建霞,姚青菊,等.鹅掌楸(Liriodendron chinense)遗传多样性的等位酶论证[J].植物资源与环境学报,1995,4(3):9-14.
    [102]刘丹,顾万春,杨传平.中国鹅掌楸遗传多样性研究[J].林业科学,2006,42(2):116-119.
    [103]罗光佐,施季森,尹佟明,等.利用rapd标记分析北美鹅掌楸与鹅掌楸种间遗传多样性[J].植物资源与环境学报,2000,9(2):9-13.
    [104]李建民,周志春,吴开云,等.RAPD标记研究马褂木地理种群的遗传分化[J].林业科学,2002,38(4):61-66.
    [105]陈龙.利用SSR分子标记研究鹅掌楸天然群体遗传结构[D].南京:南京林业大学,2008.
    [106]韩丽娟,林月惠.不同纬度对鹅掌楸次生木质部结构的影响[J].植物学通报,2001,18(3):375-377.
    [107]李斌,顾万春,谭德仁,等.鹅掌楸种源材性遗传变异与选择[J].林业科学,2001,37(2):42-50.
    [108]李斌,顾万春.鹅掌楸主要木材性状早期选择可行性研究(英文)[J].林业科学,2002,38(6):43-48.
    [109]季孔庶,王章荣,温小荣.杂交鹅掌楸生长表现及其木材胶合板性能[J].南京林业大学学报,2005,20(1):71-74.
    [110]王章荣.中国马褂木遗传资源的保存与杂交育种前景[J].林业科技通讯,1997,9:8-10.
    [111]王章荣.鹅掌楸属(Liriodendron)杂交育种回顾与展望[J].南京林业大学学报(自然科学版),2003,27(3):76-78.
    [112]陈金慧,施季森,诸葛强.杂交鹅掌楸的不定芽诱导及植株再生[J].植物生理学通讯,2002,38(5):459-459.
    [113]陈志,陈金慧,边黎明,等.杂交鹅掌楸胚性细胞悬浮系的建立[J].分子植物育种,2007,5(1):137-140.
    [114]叶金山,季孔庶.杂种马褂木无性系插条生根能力的遗传变异[J].南京林业大学学报:自然科学版,1998,22(2):71-74.
    [115]郝日明,贺善安,汤诗杰,伍寿彭.鹅掌楸在中国的自然分布及其特点[J].植物资源与环境学报,1995,4(01):1-6.
    [116]贺善安,郝日明.中国鹅掌楸自然种群动态及其致危生境的研究[J].植物生态学报,1999,23(01):88-96.
    [117]李锡泉,罗东湖.马褂木属地理种源试验苗期初步研究[J].湖南林业科技,1997,24(01):4-7.
    [118]程忠生,毛根松.马褂木种子发芽试验简报[J].浙江林业科技,1997,17(3):20-25.
    [119]王章荣主编.鹅掌楸属杂交育种与利用[M].北京:中国林业出版社,2005.
    [120]张琰.鹅掌楸实生苗生长规律研究[J].福建林业科技,2007,34(2):155-158.
    [121]俞良亮,季孔庶,王章荣.不同种源鹅掌楸一年生播种苗的年生长规律[J].林业科技开发,2008,22(3):23-25.
    [122]王章荣主编.鹅掌楸属树种杂交育种与利用[M].北京:中国林业出版社,2004.
    [123]许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-10.
    [124]杨秀艳,季孔庶,王章荣,等.杂交鹅掌楸苗期光合特性的研究[J].西北林学院学报,2005,20(2):39-43.
    [125]郭志华,张宏达,李志安,等.鹅掌楸(Liriodendron chinense)苗期光合特性的研究[J].生态学报,1999,19(2):22-27.
    [126]贺善安,刘友良,郝日明,等.鹅掌楸种群间光生态适应性的分化[J].植物生态学报,1999,23(1):41-47.
    [127]龚榜初,谢碧霞,吴连海,等.锥栗种内表型性状变异的研究[J].江西农业大学学报,2006,28(5):706-712.
    [128]李文英,顾万春.蒙古栎天然群体表型多样性研究[J].林业科学,2005,41(1):49-56.
    [129]程诗明,顾万春.苦楝表型性状梯度变异的研究[J].林业科学,2006,42(5):29-35.
    [130]王启和,孙鹏,刘志斌,等.花叶海棠表型性状变异的研究[J].林业科技开发,2006,20(3):17-20.
    [131]杨玲,沈海龙,梁立东,等.不同产区野生花楸果实和种子的表型多样性[J].东北林业大学学报,2009,37(2):8-10.
    [132]赵翾,赵树进.白木香群体的表型多样性分析[J].华南理工大学学报(自然科学版),2007,35(4):117-123+133.
    [133]肖海峻,徐柱,李临杭,等.鹅观草表型性状变异与生境间的相关性[J].中国草地学报,2007,29(5):22-30.
    [134]解新明,云锦凤,卢小良,等.蒙古冰草表型数量性状的变异与生境间的相关性[J].生态学杂志,2003,22(4):31-36.
    [135]何文利,陈丽,苏雅拉.紫花苜蓿不同品种(系)形态学性状变异的研究[J].内蒙古科技与经济,2004,(21):46-47.
    [136]Kellison RC. A Geographic Variation Study of Yellow-poplar (Liriodendron Tulipifera) Within North Carolina[D]. Raleigh:North Carolina State University,1967.
    [137]竺利波,顾万春,李斌.紫荆群体表型性状多样性研究[J].中国农学通报,2007,23(3):138-145.
    [138]赵志刚,郭俊杰,沙二,等.我国格木的地理分布与种实表型变异[J].植物学报,2009,44(3):338-344.
    [139]黄双全,郭友好,潘明清,等.鹅掌楸的花部综合特征与虫媒传粉[J].植物学报,1999,41(3):241-248.
    [140]李周岐,王章荣.鹅掌楸属种间杂种f_1与亲本花果数量性状的遗传变异分析[J].林业科学研究,2000,13(3):290-294.
    [141]徐进,王章荣.杂种鹅掌楸及其亲本花部形态和花粉活力的遗传变异[J].植物资源与环境学报,2001,10(2):31-34.
    [142]唐芸.鹅掌楸属植物花粉生活力的检测[J].广西林业科学,2002,31(2):80-82.
    [143]韦仲新,吴征镒.鹅掌楸属花粉的超微结构研究及系统学意义[J].云南植物研究,1993,15(2):163-166.
    [144]徐进,王章荣.鹅掌楸属种间杂种与亲本花粉壁的超微结构的比较观察[J].植物学通报,2005,22(1):35-38.
    [145]Walker JW. Evolutionary significance of the exine in the pollen of primitive angiosperms[M]. Royal Botanic Gardens Kew:Academic Press,1976.
    [146]Walker JW. Evolution of exine structure in the pollen of primitive angiosperms[J]. American Journal of Botany,1974a, 61(8):891-902.
    [147]Agababian VS. Pollen morphology of the family Magnoliaceae [J]. Grana,1972, (12):166-176.
    [148]Praglowski J. World Pollen and Spore Flora[M]. Stockholm:Almquist & Wisksell,1974.
    [149]徐凤霞.几种含笑属(木兰科)植物的花粉形态[J].武汉植物学研究,1999,17(4):303-306+389.
    [150]徐凤霞,胡晓颖.木莲属(木兰科)5种植物的花粉形态[J].热带亚热带植物学报,2004,12(4):313-317.
    [151]徐凤霞,徐信兰.五种木兰属植物的花粉形态[J].云南植物研究,2004,26(1):83-88.
    [152]Wodehouse RP. Pollen Grains [M]. NewYork:Mc Graw Hil Book Co. Inc.,1935.
    [153]Walker JW. Comparative pollenmorphology and phylogeny ofthe Ranalean complex[M]. NewYork:Columbia Univ Press, 1976b.
    [154]莫日根.试论花粉形态在种内变异的意义[J].内蒙古大学学报(自然科学版),1992,23(1):133-137.
    [155]佟乌云,韦东欣.毛茛(Ranunculus japonicus)花粉形态种内多态性及其进化[J].内蒙古农业大学学报(自然科学版),2000,21(4):40-45.
    [156]莫日根,白学良,曹瑞,等.半日花花粉形态种内变异及其花粉地理研究[J].西北植物学报,1997,17(4):528-532.
    [157]吴祝华,施季森,席梦利,等.百合种质资源花粉形态及亲缘关系研究[J].浙江林学院学报,2007,24(4):406-412.
    [158]谢果珍,舒少华,王沫.不同居群栝楼花粉形态的扫描电镜观察[J].时珍国医国药,2009,20(7):1739-1741.
    [159]毛礼米,王东,陈建海,等.红树(Rhizophora apiculata Bl.)的花粉形态与多态现象[J].微体古生物学报,2008,25(4):393-403.
    [160]Kurta S. Geoclinal change in the pollen ornamentation of Lycaris sanguinea Maxirn. var.sanguinea [J]. J Jap Bot,1985, (60):275-279.
    [161]Prentice HC. Analysis of the clinal variation pattern in Silene latifalia (Caryophyllaceae) pollen morphology[J]. PI Syst Evol, 1987,(156):5-11.
    [162]Takhtajan AL. Outline of the classification of flowering plants (Magnoliophyta)[J]. Bot Rev,1980,46(3):225-359.
    [163]Hartl DL, Clark AG. Principles of population genetics[M]. Assaehusetts:Inc.Pulishers,1997.
    [164]Schierwater B, Streit B, al. e. Molecular Ecology and Evolution:Approachesand Applications[M]. Basel:Birkhauser,1994.
    [165]O'Brien. Perspectives on conservation genetics[M]. Basel:Birkhauser,1994.
    [166]刘丹,顾万春,杨传平.鹅掌楸属遗传多样性分析评价[J].植物遗传资源学报,2006,7(2):188-191.
    [167]张博.杨树比较作图及重要性状QTL定位,[D].南京:南京林业大学,2005.
    [168]艾畅.马尾松无性系种子园遗传多样性及其自由授粉子代父本组成研究[D].南京:南京林业大学,2004.
    [169]李锐.柽柳SSR标记开发及群体遗传结构分析[D].南京:南京林业大学,2007.
    [170]王源秀.杞柳和簸箕柳SSR指纹图谱及遗传多样性分析[D].南京:南京林业大学,2004.
    [171]胥猛,李火根.鹅掌楸EST-SSR引物开发及通用性分析[J].分子植物育种,2008,6(3):615-618.
    [172]Mantel N. The detection of disease clustering and a generalized regression approach[J]. Cancer Research,1967,27:209-220.
    [173]Wright S. Wright Evolution mendelian population[J]. Genetics,1931,16:97.
    [174]Jimenez P, Agundez D, al. e. Genetic variation in central and marginal populations of Quercus suber L.[J]. Silvae Genetica, 1999,48(6):278-284.
    [175]贺善安,郝日明,汤诗杰.鹅掌楸致濒的生态因素研究[J].植物资源与环境学报,1996,5(1):1-8.
    [176]Hornero J, Gallego FJ, al. e. Testing the conservation of Quercus spp. Mixrosatellites in the cork oak, Q. suber L.[J]. Silvae Genetica,2001,50(3-4):162-167.
    [177]Agundez D. Multilocus Analysis of Pinus halepensis Mill. From Spain:genetic diversity and clinal variation[J]. Silvae Genetica,1999,49(3-4):173-178
    [178]Hewitt GM. Some genetic consequences of ice ages and their role in divergence and speciation[J]. Biological Journal of the Linnean Society,1996,58:247-276.
    [179]Petit RJ, Kremer A, Wagner DB. Finite island model for organelle andnuclear genes in plants[J]. Heredity,1993,71:630-641.
    [180]Ennos RA. Estimating the relative rates of Pollen and seed migration among Plant Population[J]. Heredity,1994, 86:485-486.
    [181]李欣.东亚七筋姑分子系统发育地理学研究[D].西安:西北大学,2008.
    [182]李健仔,李思光,罗玉萍,等.猕猴桃属植物叶绿体基因PCR-RFLP分析[J].植物研究,2003,23(3)
    [183]崔彬彬,李云,金晓洁,等.白杨叶绿体和线粒体DNA的多态性及遗传性分析[J].北京林业大学学报,2006,28(6):9-14.
    [184]胡建斌,梁芳芳,李建吾,等.黄瓜cpSSR-PCR反应体系优化及应用[J].分子植物育种,2009,7(4):822-826.
    [185]程运江,郭文武,邓秀新.叶绿体SSR标记:柑橘体细胞杂种胞质遗传分析的一种新方法[J].植物学报,2003,45(8):906-909.
    [186]代文娟,唐绍清,刘燕华.叶绿体微卫星分析濒危植物资源冷杉的遗传多样性[J].广西科学,2006,13(2):151-155.
    [187]王凤英,龚洵,胡启明,等.基于叶绿体DNA变异研究高山植物偏花报春的种内谱系地理结构(英文)[J].植物分类学报,2008,46(1):13-22.
    [188]魏晓新.落叶松属的分子进化与生物地理学[D].北京:中国科学院植物研究所,2004.
    [189]孟丽华,杨慧玲,吴桂丽,等.基于叶绿体DNA trnL-F序列研究肋果沙棘的谱系地理学[J].植物分类学报,2008,46(1):32-40.
    [190]姬生国,霍克克,王峻,等.基于叶绿体基因rbcL和psbA-trnH间区探讨石杉科植物系统关系(英文)[J].植物分类学报,2008,46(2):213-219.
    [191]王亚玲,李勇,张寿洲,等.用matK序列分析探讨木兰属植物的系统发育关系[J].植物分类学报,2006,44(2):135-147.
    [192]苏应娟,王艇,郑博,等.根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理 [J].生态学报,2004,24(5):914-919.
    [193]王廷华等.PCR理论与技术[M].北京:科学出版社,2005.
    [194]吕志堂,刘志恒.糖单孢菌16S rDNA的PCR-RFLP分析[J].微生物学报,2000,40(6):567-572.
    [195]Chung S-M, E.Staub J. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa[J]. Theor Appl Genet,2003,107:757-767.
    [196]Sebastiani F, Carnevale S, Vendramin GG A new set of mono-and dinucleotide chloroplast microsatellites in Fagaceae[J]. Molecular Ecology Notes,2004,4:259-261
    [197]Wang Z-F, Ye W-H, Cao H-L, et al. Identification and characterization of EST-SSRs and cpSSRs in endangered Cycas hainanensis[J]. Conserv Genet,2008,9:1079-1081.
    [198]Jim provan, Pamela M. B I S S, Darragh mcmeel, et al. Universal primers for the amplification of chloroplast microsatellites in grasses(Poaceae)[J]. Molecular Ecology Notes,2004,4:262-264.
    [199]Dane F, Lang P, Bakhtiyarova R. Comparative analysis of chloroplast DNA variability in wild and cultivated Citrullus species[J]. Theor Appl Genet,2004,108:958-966.
    [200]Demesure B, Sodzi N, Peit RJ. A set of universal primers for amplification of polymorphic non-coding region of mitochondrial and chloroplast in plant[J]. Molecular Ecology,1995,4(1):129-131.
    [201]Zhou YH, Hou BK, Shi DQ, et al. Cloning and sequence analysis of 3'rps12, rps7 and ndhB genes from chloroplast genome of Populus tomentosa [J]. Chineses Journal of Biochemistry and Molecular Biology,2001,17(5):606-616.
    [202]Taberlet P. Universal primers for amplification of three noncoding regions of chloroplast DNA [J]. Plant Molecular Boilogy, 1991,17(5):1105-1109.
    [203]Guido c, Raffaece t, Michele m. Paternal inheritance of plastids in interspecific hybrids of the genus A ctinidia revealed by PCR-amplification of chloroplast DNA fragments[J]. Mo Gen Genet,1995, (247):693-697.
    [204]Jim provan, Pamela M.BISS, Darragh mcmeel, et al. Universal primers for the amplification of chloroplast microsatellites in grasses(Poaceae)[J]. Molecular Ecology Notes,2004,4:262-264.
    [205]李健仔,李思光,罗玉萍,等.猕猴桃属植物叶绿体基因PCR-RFLP分析[J].植物研究,2003,23(3):328-333.
    [206]Ge XJ, Liu MH, Wang WK, et al. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP[J]. Molecular Ecology,2005,14(4):933-944.
    [207]Treblay NO, Schoen DJ. Molecular phylogeography of Dryas integrifolia:glacial refugia and postglacial recolonezation[J]. MolEcol,1999,8:1187-1198.
    [208]谈探.濒危植物夏蜡梅种群遗传多样性与分子系统地理学研究[D].北京:北京林业大学,2008.
    [209]Petit RJ, Kremer A, Wanger DB. Geographic structure of chloroplast DNA polymorphisms in European oaks[J]. TheorApplGenet,1993,87:122-128.
    [210]Parks CR, Wendel JF, Sewell MM, et al. The significance of allozyme variation and introgression in the Liriodendron tulipifera Complex (Magnoliaceae)[J]. American Journal of Botany,1994,81(7):878-889.
    [211]李吉均,舒强,周尚哲,等.中国第四纪冰川研究的回顾与展望[J].冰川冻土,2004,26(3):237-243.
    [212]金建华,廖文波,王伯荪,等.新生代全球变化与中国古植物区系的演变明.广西植物,2003,23(3):217-225.
    [213]沈浪,陈小勇,李媛媛.生物冰期避难所与冰期后的重新扩散[J].生态学报,2002,22(11):1984-1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700