用户名: 密码: 验证码:
黄土高原子午岭辽东栋与油松根际微生物生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东栎(Quercus liaotungensis)与油松(Pinus tabulaeformis)是黄土高原子午岭地区最为常见且具有重要生态及经济价值的森林植被类型,二者在黄土高原森林植被演替过程中的承递关系受到广泛关注。对辽东栎与油松根际微生物群落的比较研究,不仅可以丰富和完善林木根际微生物生态学的研究内容,进一步认识根际微生物群落与植物群落的相互关系,而且能够使我们从微生物-植物相互关系的角度深入理解辽东栎与油松在植被演替中的竞争关系,这对于该地区森林植被保护和恢复具有重要的借鉴作用。
     本研究利用“平板培养法”、“最大或然数法(MPN)”和“末端标记限制性片段长度多态性法(Terminal restriction fragment length polymorphism, T-RFLP) "分别测定了辽东栎与油松根际微生物三大类群、主要功能群以及遗传多样性组成;利用“熏蒸提取-容量分析法”测定了根际微生物生物量碳(MBC)状况;利用高锰酸钾滴定法、苯酚钠比色法、磷酸苯二钠比色法、铜盐比色法、碘量滴定法、葡萄糖标准溶液比色法和3,5-二硝基水杨酸比色法分别测定了根际土壤过氧化氢酶、脲酶、碱性磷酸酶、蛋白酶、多酚氧化酶、纤维素酶和转化酶的活性;利用“浸提-抽滤”法制备了根组织提取液,通过处理土壤,研究了根组织提取液对各类土壤微生物数量的影响情况。
     研究结果显示,辽东栎根际多项变量指标均高于油松根际,这些指标主要是土壤微生物总数量、放线菌数量、真菌数量、氨化细菌数量、固氮菌数量、纤维素分解菌数量、根际MBC含量、脲酶活性和蛋白酶活性;用根组织提取液处理土壤,随着根组织提取液浓度的增加,放线菌数量也随之增加,辽东栎根组织提取液比油松根组织提取液更能促进放线菌数量、固氮菌数量、纤维素分解菌数量和硝化细菌数量的增加;辽东栎根际微生物遗传多样性高于油松根际。
     研究结果表明,植物根系确实能够促进土壤微生物的生长发育;辽东栎根系可能通过对氨化细菌和固氮菌的促生作用,以及通过增加脲酶和蛋白酶的活性来加速氮素循环;辽东栎对放线菌的富集作用强于油松,这可能有助于提高辽东栎抵御病害的能力;辽东栎与油松在根际营养物质循环积累的方式和效率上的差别,可能是这两种植物共处同一生境时,表现出不同的适应和竞争能力的主要原因之一,辽东栎丰富的根际微生物组成有益于其对土壤养分的转化、吸收与利用,并在与油松的竞争过程中处于优势地位。
Quercus liaotungensis and Pinus tabulaeformis, which are of important ecological and economic value, are the most common types of forest vegetation in the region of Ziwuling of loess plateau. Their successive relationship during the period of the forest vegetation evolution of loess plateau is paid extensive attention. Comparison study about community of the rhizosphere microorganism between Q. liaotungensis and P. tabulaeformis has not only enriched and improved the research content about rhizosphere microorganism of forest, it is also useful for us to know the bionomics relationship between the rhizosphere microorganism and plant community, and to know the competition relationship between Q. liaotungensis and P. tabulaeformis during the succession period from the point of relationship between microorganism and plant. These researches are important sources of reference to the protection and recovery of forest vegetation of that region.
     This research uses plate counting method, MPN method to measure the composition of microorganism in rhizosphere of Q. liaotungensis and P. tabulaeformis, researching the inherited diversity of rhizosphere soil microorganism through T-RFLP. Using fumigation extraction-capacity analysis measure microorganism biomass C, Potassium Permanganate Volumetric Method, Colorimetric phenol sodium, Disodium phenyl phosphate assay, Copper assay, Iodometric titration, Glucose standard solution assay and 3,5-Dinitrosalicylicacidcolorimetr measure the calalase, urease, alkaline phosphatase, protease, polypherol, cellulase, and invertase about rhizosphere microorganism. Preparing root tissue extract by extraction-filtration method and research the effecting to the microorganism quantity with root tissue extract.
     As the result showns, the total quantity of soil microorganism, actinomycetes, fungi, ammonifiers, nitrogen-fixing bacteria, cellulose-docomposing, content of MBC, urease and protease of Q. liaotungensis are all greater than those of P. tabulaeformis. With the concentration is becoming greater, whether use Q. liaotungensis or P. tabulaeformis to dispose the soil, the quantity of actinomycetes is increased, also, the microbial functional groups of soil microorganism is increased. Comparing with the root tissue extract of Q. liaotungensis is more useful in increasing the number of soil microorganism. Also, the inherited diversity of rhizosphere soil microorganism of Q. liaotungensis is greater than P. tabulaeformis.
     The result showns that root system of plant can indeed promote growing of soil microorganism; through expediting the propagation of ammonifiers and nitrogen-fixing bacteria, and also increasing the activity of urease and protease, rhizosphere of Q. liaotungensis may accelerate nitrogen cycle. Compare with P. tabulaeformis, Q. liaotungensis is more effective to actinomycetes; this may improve the protection against plant disease. Differention of rhizosphere nutrient substance cycle and accumulative mode and efficiency in converting and accumulating soil nutrient substance of Q. liaotungensis and P. tabulaeformis. These may the main reason for their different adaptive capacity and competitive strength in the same environment. Abundant rhizosphere soil microorganism composition of Q. liaotungensis is useful to convert, absorb and utilize soil nutrient, also be in superiority position in competition with P. tabulaeformis.
引文
[1]吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J].土壤,2003,1:18-21.
    [2]陆雅海,张福锁.根际微生物研究进展[J].土壤,2006,38(2):113-121.
    [3]Kowalchuk G A, Buma D S, De Boer W, et al. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms [J]. Anton Leeuw Int J G,2002,81:509-520.
    [4]Yevdokimov I V, Ruser R, Buegger F, et al. Interaction between Rhizosphere Microorganisms and Plant Root:13C Fluxes in the Rhizosphere after Pulse Labeling [J]. Soil Biology,2007,7:852-861.
    [5]池振明.微生物生态学[M].山东:山东大学出版社,1999.
    [6]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171.
    [7]Macura J. Trends and advances in soil microbiology from 1924 to 1974 [J]. Geoderma,1974,12:311-329.
    [8]王林闯,贺超兴,张志斌.PCR-DGGE和FAMEs技术在土壤微生物多态性研究中的应用[J].生物技术通报,2009,12:113-117.
    [9]Puglisi E, Del Re A A M, Rao M A, et al. Development and validation of numerical indexes integrating enzyme activities of soils [J]. Soil Biology & Biochemistry, 2006,38:1673-1681.
    [10]Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and sub soils using various techniques [J]. Soil Biology and Biochemistry,2002,34(3):387-401.
    [11]Tabatabal M A, Brenner J M. Assay of urease activity in soil [J]. Soil Biol Biochem, 1972,4:479-487.
    [12]Hoffmann. Eine photometrische Methode zur Bestimmung der Phosphatase Aktivitat in Baden [J]. Z Pflanzenernaehr Bodenkd,1967,118:193-198.
    [13]Trevors J. Dehydrogenase activity in soil:a comparison between the INT and TTC assay [J]. Soil Biol Biochem,1984,16:673-674.
    [14]Visser S, Parkinson D. Soil biological criteria as indicators of soil quality:soil microorganisms [J]. Am J Altern Agric,1992,7:33-37.
    [15]Skujins J. History of abiotic soil enzyme research [M]. New York:Academic Press, 1978.
    [16]Beck T. Mikrobiologische and biochemische Charakterisierung landwirtschaftlich genutzter Boden:Ⅰ. Mit. Die Ermittlung der Bodenmikrobiologischen Kennzahl [J]. Z Pflanzenernaehr Bodenkd,1984,147:456-466.
    [17]Trasar-cepeda C, Leiros C, Gilsotres F, et al. Towards a biochemical quality index for soils:an expression relating several biological and biochemical properties [J]. Biol Fertil Soils,1998,26:100-106.
    [18]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities of on the basis of patterns of community level sole carbon source utilization [J]. Appli Environ Microbial,1991,57:2351-2359.
    [19]Insam H. A new set of substrates proposed for community characterization in environmental samples [M]. New York:Academic Press,1997.
    [20]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5):899-904.
    [21]Sam H, Amor K, Renner M, et al. Changes in functional abilities of the microbial community during composing of manure [J]. Soil Biochemistry,1991,19: 101-106.
    [22]Tunlid A, White D C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial community in soil [J]. Soil Biochemistry,1998,2:229-262.
    [23]Fishcer S G, Lerman L S. DNA fragments differing by single base-pair substitutions separated in denaturing gradient gels:correspondence with melting theory [J]. Proceedings of the National Academy of Sciences,1983,80: 1579-1583.
    [24]Muyzer G, Waal E D, Uitterlinden G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol,1993,59: 695-700.
    [25]Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in stratified fjord (MariagerFjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragment [J]. Appl Environ Microbiol,1996,62(4):1405-1415.
    [26]Horz H, Yimga M T, Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and Ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling [J]. Applied and Environmental Microbiology,2001, 67(9):4177-4185.
    [27]章戴荣,白林,周东胜.利用T-RFLP技术分析微生物的多样性[C].中国牧兽医学会动物微生态学分会第三届第八次学术研讨会论文集.广州,2006.
    [28]李献梅,王小芬,崔宗均.末端限制性片段长度多态性技术(T-RFLP)在微生物群体分析上的应用与技术优化[J].中国农业大学学报,2009,14(4):1-9.
    [29]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev,1995, 59:143-169.
    [30]Pace N R. A molecular view of microbial diversity and the biosphere [J]. Science, 1997,276:734-740.
    [31]Huerk T, Handley L L, Reinhold Hurek B, et al. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state [J]. Molecul Plant-Micro Interact,2002,15(3):233-242.
    [32]Martin F, Duplessis S, Ditengou F, et al. Developmental cross talking in the ectomycorrhizal symbiosis:Signals and communication genes [J]. New Phytol, 2001,151(1):145-154.
    [33]Marschner H, Romheld V, Zhang F, et al. Mobilization of mineral nutrients in the rhizosphere:by root exudates Transactions 14th Interna [J]. Congress of Soil Sci, 1990,2:158-163.
    [34]Ramachandra Reddy T K. Plant treatment in relation to the rhizosphere effect [J]. Plant and Soil,1968,18(2):347-356.
    [35]沈瑞清,张萍,康萍芝,等.根际微生物与植物病害关系的研究进展[J].宁夏农林科技,2006,6:46-47.
    [36]刘子雄,朱天辉,张建.林木根系分泌物与根际微生物研究进展[J].世界林业研究,2005,18(6):25-31.
    [37]Cecile B, Yang X H, Leslie A. The role of root exudates and allelochemicals in the rhizosphere [J]. Plant and Soil,2003,256:67-83.
    [38]胡小加.根际微生物与植物营养[J].中国油料作物学报,1999,21(3):77-79.
    [39]马斌,周志宇,张彩萍,等.超旱生灌木根际土壤磷的含量特征[J].草业学报, 2005,14(3):106-110.
    [40]Han J G, Xia D L, Li L B, et al. Diversity of Culturable Bacteria Isolated from Root Domains of Moso Bamboo(Phyllostachys edulis) [J]. Microb Ecol,2009,10(7): 1-12.
    [41]金发会,李世清,卢红玲,等.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异[J].生态学报,2008,28(1):227-236.
    [42]蔡燕,王会肖.黄土高原丘陵沟壑区不同植被类型土壤水分动态[J].水土保持研究,2006,13(6):79-81.
    [43]张海涵,唐明,陈辉,等.黄土高原5种造林树种菌根根际土壤微生物群落多样性研究[J].北京林业大学学报,2008,30(3):87-90.
    [44]张海涵,唐明,陈辉.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义[J].环境科学,2009,30(3):2432-2437.
    [45]沈雪梅.土壤微生物多样性的主要影响因子[J].安徽农学通报,2009,15(11):83-85.
    [46]高永健,袁玉欣,刘四维,等.不同林龄杨树人工林对土壤微生物状况和酶活性的影响[J].林业科学,2007,23(7):185-189.
    [47]张文婷,吕家珑,来航线,等.黄土高原不同植被坡地土壤微生物区系季节性变化[J].中国土壤与肥料,2008,6:74-77.
    [48]廉梅霞,李云平,郭晋平,等.黄土高原农林复合经营土壤微生物种群及数量变化的初步研究[J].山西林业科技,2006,4:20-22.
    [49]韩亚琦,唐宇丹,石雷,等.辽东栎研究进展[J].中国植物园,2006,1:101-109.
    [50]田丽,王孝安,郭华,等.黄土高原马栏林区优势种幼苗与其种群径级结构的演替研究[J].西北植物学报,2006,26(12):2560-2566.
    [51]方坚,王孝安,郭华,等.黄土高原马栏林区辽东栎林种内、种间竞争研究[J].西北植物学报,2007,27(2):0334-0339.
    [52]梁健,王孝安,陶树兴,等.森林演替过程中优势树种凋落叶对土壤微生物组成的影响[J].生态学杂志,2008,27(7):1127-1133.
    [53]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [54]湛方栋,陆引罡,关国经,等.烤根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494.
    [55]Gaskins M H, Albrecht S L, Hubbell D H. Rhizosphere bacteria and their use to increase plant productivity [J]. Crop Sci,1985,12:99-116.
    [56]Polyanskaya L M, Kh Orazova M, Mirchink T G, et al. Abundance Dynamics and Structure of Microbial Complex in the Rhizosphere of Pea Plants [J]. Mikrobiologiya,1994,6(2):314-325.
    [57]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [58]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [59]周永强,薛泉宏,杨斌,等.生防放线菌对西瓜根域微生态的调整效应[J].西北农林科技大学学报,2008,36(4):143-150.
    [60]王树起,韩晓增,乔云发.根系分泌物的化感作用及其对土壤微生物的影响[J].土壤通报,2007,38(6):1219-1226.
    [61]唐敏.国槐、刺槐幼苗根系固氮酶活性的研究[J].北京林业大学学报,1991,13(3):15-20.
    [62]申建波,张福锁.根分泌物的生态效应[J].中国农业科技导报,1999,4:21-27.
    [63]张亮,程智慧,周艳丽,等.百合生育期根际土壤微生物和酶活性的变化[J].园艺学报,2008,35(7):1031-1038.
    [64]王燕,宗兆锋,程联社.放线菌在植物病害生物防治中的应用[J].杨凌职业技术学院学报,2005,4(3):21-23.
    [65]于翠,吕德国,秦嗣军,等.大青叶樱桃根际微生物种群结构及其变化动态[J].果树学报,2007,24(3):298-302.
    [66]安慧.子午岭林区典型植物生长的氮素调控机理[D].陕西:西北农林科技大学,2008.
    [67]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林根际微生物数量及其生化强度的季节性动态研究[J].土壤通报,2002,33(3):219-222.
    [68]张晓波,苏德荣,赵艳.不同光照条件下草地早熟禾根际微生物区系动态研究[J].中国草地学报,2007,29(3):23-27.
    [69]刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品,2007,9(3):63-65.
    [70]邓若磊,徐海荣,曹云飞,等.植物吸收铵态氮的分子生物学基础[J].植物营养与肥料学报,2007,13(3):512-519.
    [71]周军,肖炜,钦佩.互花米草入侵对盐土壤微生物生物量和功能群的影响[J].南京大学学报,2007,43(5):494-500.
    [72]Kell J J, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter [J]. Journal of Environmental Quality,1998,27(3):609-617.
    [73]Jacek K, Jan K E. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches [J]. Soil Biology and Biochemistry,2000,32:1405-1417.
    [74]曹文亮.不同耕作措施对土壤纤维素分解菌及其酶活性的影响[D].甘肃:甘肃农业大学,2008.
    [75]刘占锋,刘国华,傅伯杰,等.人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征[J].生态学报,2007,27(3):1011-1018.
    [76]Diaz-Ravina M, Acea M J, Carballas T. Microbial biomass and its contribution to nutrient concentration in forest soils [J]. Soil Biol Biochem,1993,25:25-31.
    [77]刘志恒.现代微生物学[M].北京:科学出版社,2008.
    [78]Rogers B F, TateⅢ R L. Temporal analysis of the soil microbial community along a toposequence in Pineland soils [J]. Soil Biol Biochem,2001,33:1389-1401.
    [79]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [80]王珊,李廷杆,张锡洲,等.设施土壤中微生物数量及其生物量碳的变化研究[J].中国农学通报,2005,21(4):198-201.
    [81]蔡晓红,杨京平,马维娜,等.稻田根际微生物生物量碳与水分、氮素影响效应分析[J].浙江大学学报,2008,34(6):662-668.
    [82]Doran J W, Coleman D C, Bedzicekd F, et al. Defining soil quality for a sustainable environment Madison [J]. Soil Society of America Inc,1994:107-124.
    [83]Veronica A C, Leo C, David S R, et al. Enzyme activities as affected by soil properties and land use in a tropical watershed [J]. Applied Soil Ecology,2007,35: 35-45.
    [84]唐清畅,李小明,杨麒.锰矿尾渣污染土壤商陆根际和非根际土壤酶活性[J].环境工程学报,2009,3(5):886-890.
    [85]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.
    [86]Berg B, Karenlampi L, Veum A K. Comparison of decomposition rates Measured by Means Of cellulose in Fennoscandina Tundra Ecosystem [M]. Spring-Verlog, Berlin, Heidelberg, Network,1975,260-267.
    [87]姜惠武,赵玉泉,张博.森林中的土壤酶研究[J].林业勘查设计,2009,3: 75-76.
    [88]Johansen J E, Binnerup S J. Contribution of Cytophaga-like Bacteria to the Potential of Turnover of Carbon, Nitrogen, and Phosphorus by Bacteria in the Rhizosphere of Barley (Hordeum vulgare L.) [J]. Microb Ecol,2002,43:298-306.
    [89]Diamantidis G, Effosse A, Potier P, et al. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum Iipoferum [J]. Soil Biology & Biochemistry,2000,32:919-927.
    [90]李文革,刘志坚,谭周进,等.土壤酶功能的研究进展[J].湖南农业科学,2006,6:34-36.
    [91]周玉娟,冯旄,李日伟,等.桉树人工林与其它林地土壤酶活性的差异分析[J].广西林业科学,2009,38(3):155-157.
    [92]刘娟,韩春丽,高旭梅,等.耕作措施对新疆绿洲棉田土壤微生物量及酶活性的影响[J].石河子大学学报,2009,27(5):557-562.
    [93]曾小龙.桉树林地土壤酶特性研究进展[J].广东教育学院学报,2009,29(5):97-103.
    [94]郭天财,宋晓,马冬云,等.氮素营养水平对小麦根际微生物及土壤酶活性的影响[J].水土保持学报,2006,20(3):129-131.
    [95]杜天庆,苗果园.豆科牧草根际土壤脲酶活性的研究[J].中国生态农业学报,2007,15(1):25-27.
    [96]郑有飞,石春红,吴芳芳,等.大气臭氧浓度升高对冬小麦根际土壤酶活性的影响[J].生态学报,2009,29(8):4386-4391.
    [97]樊盛菊,齐树亭,武洪庆,等.盐生植物根际对土壤中微生物数量和酶活性的影响[J].河北大学学报,2006,26(1):38-41.
    [98]吴琳,景晓辉,黄俊生.产纤维素酶菌株的分离、筛选及酶活性测定[J].安徽农业科,2009,37(17):7855-7857.
    [99]隋宝强,张欣,邓胜兴,等.白三叶草浸提液对树莓根际土壤酶活性的影响[J].西南大学学报,2008,30(10):116-119.
    [100]仲庆林,韩素梅.油松沙棘混交林土壤酶活性状况的研究[J].辽宁林业科技,2001,2:18-19.
    [101]徐强,程智慧,孟焕文,等.玉米线辣椒套作对线辣椒根际、非根际土壤微生物、酶活性和土壤养分的影响[J].2007,25(3):94-99.
    [102]廖梓良,孙传伯,李云,等.香石竹根际土壤酶活性变化分析[J].园艺博览,2008,2:10-12.
    [103]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [104]Fisher R F. Amelioration of degraded rain forest soils by plantation of native trees [J]. Soil Sci Soc Am J,1995,59:544-549.
    [105]Groffman P M, Mcdowellb W H, Myersc J C, et al. Soil microbial biomass and activity in tropical riparian forests [J]. Soil Biol Biochem,2001,33:1339-1348.
    [106]罗虹,刘鹏,徐根娣,等.铝对荞麦和金荞麦根际土壤微生物及酶活性的影响[J].生态环境,2008,17(6):2381-2386.
    [107]李宝福,张金文,赖彦斌,等.巨尾桉根际与非根际土壤酶活性的研究[J].福建林业科技,1999,26:13-16.
    [108]高丹,胡庭兴,黄绍虎,等.巨桉根浸提液对三种牧草的化感作用初步探讨[J].福建林业科技,2007,34(4):87-90.
    [109]Rice E L. Allelopathy [M]. New York:Academic Press Inc,1984:309-315.
    [110]Lodhi M AK. Soil-plant phytotoxity and its possible significance in patterning of herbaceous growth [J]. Amer J Bot,1975,62:618-622.
    [111]Gallet C. Allelopathic potential in bilberry-spruce forests:influence of phenolic compounds on spruce seedling [J]. J Chem Ecol,1994,20(5):1009-1024.
    [112]高兴祥,李美,高宗军,等.苍耳对不同植物幼苗的化感作用研究[J].草业学报,2009,18(2):95-101.
    [113]罗诚彬,方升佐,田野.杨树根系浸提液对3种牧草种子萌发及幼苗生长的影响[J].植物资源与环境学报,2003,12(4):27-30.
    [114]耿广东,张素勤,程智慧.不同作物根系分泌物对莴苣化感作用的研究[J].北方园艺,2009,6:24-26.
    [115]马卫宾,颜霞,谢慧丽.小麦化感作用对非根际土壤微生物区系的影响初探[J].陕西农业科学,2007,4:35-37.
    [116]Khan E A, Khan M A, Ahmad H K, et al. Allelopathic Effects of Eucalyptus Leaf Extracts on Germination and Growth of Maize(Zeamays L.) [J]. Weed Science Research,2003,9(1/2):67-72.
    [117]张伟东,汪思龙,颜绍馗,等.杉木根系和凋落物对土壤微生物学性质的影响[J].应用生态学报,2009,20(10):2345-2350.
    [118]赵正金,张春云,张正民,等.大豆根际和根系提取液对种子发芽、出苗抑制效应的初步研究[J].江苏农业科学,2000,2:29-32.
    [119]毛健.黄芪根的提取液对作物种子发芽和土壤生物化学性质的影响[M].江苏:扬州大学,2005.
    [120]吕可,潘开文,王进闯,等.花椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J].应用生态学报,2006,17(9):1649-1654.
    [121]王晗光,张健,杨婉身,等.不同林地巨桉的化感物质比较研究[J].河北师范大学学报,2009,33(1):94-99.
    [122]黄高宝,柴强,黄鹏.植物化感作用影响因素的再认识[J].草业学报,2005,14(2):16-22.
    [123]彭少麟,邵华.化感作用的研究意义及发展前景[J].应用生态学报,2001,12(5):780-786.
    [124]陈彬,郑斯平,周莉娟,等.水稻根际土壤及根组织内外固氮微生物的遗传多样性分析[J].农业生物技术学报,2007,15(5):841-846.
    [125]Torsvik V, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria [J]. Appl Environ Microbial,1990,56:782-787.
    [126]刘云国,周海舟,冯宝莹,等.锰污染稻田土壤微生物群落结构和遗传多样性研究[J].湖南文理学院学报,2007,19(4):58-61.
    [127]Amann R I, Ludqig W, Schleifer H H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation [J]. Microbial Rev, 1995,59:143-169.
    [128]贾俊涛,宋林生,李筠.T-RFLP技术及其在微生物群落结构研究中的应用[J].海洋科学,2004,28(3):64-68.
    [129]Dunbar J, Ticknor L O, Kuske C R. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment prodiles of 16S rRNA genes from bacterial communities [J]. Appl Environ Microbiol,2001,67(1): 190-197.
    [130]Lukow T, Dunfield P F, Leisack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants [J]. FEMS Microbiol Ecol,2000,32:241-247.
    [131]Moeseneder M M, Arrieta J M, Muyzer G, et al. Optimization of terminal restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis [J]. Appl Environ Microbiol,1999,65(8):3518-3525.
    [132]葛芸英,陈松,孙辉,等.土壤细菌群体多样性的T-RFLP分析应用探讨[J].中国法医学杂志,2008,23(2):104-107.
    [133]滕齐辉,曹慧.太湖地区典型菜地土壤微生物16SrDNA的PCR-RFLP分析[J].生物多样性,2006,14(4):345-351.
    [134]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].海洋科学,2006,12(6):861-868.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700