用户名: 密码: 验证码:
氧化技术降解典型有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从有机物降解过程看,其本质而言是氧化过程。应用各种氧化技术在较短时间里将难降解、毒性大的有机污染物完全无害化、不产生二次污染,己成为当前环境污染治理的热点之一。近年来把氧化技术应用于难降解有机污染物的研究极为活跃,其有效性得以验证,但就氧化降解机理研究不足。在当前已开展的相关研究发表文献中,对氧化降解机理与历程,绝大多数停留在推测阶段。涉及高级氧化法中自由基参与反应的方式、中间产物的生成等关键信息,目前少有报道。
     论文选题是环境氧化技术对典型有机污染物降解机理与应用研究。主要完成三个目标:①借助EC-MS技术以及紫外光解结合质谱分析揭示典型有机污染物氧化降解历程与机理;②氧化技术用于实际的典型有机废水处理的有效性确认;③对前期完成水溶性染料模拟废水高级氧化降解历程的重新分析。
     氧化机理实验包含基于EC-MS的氯四环素氧化降解实验以及基于质谱的氯四环素紫外光解历程分析两个阶段。
     就EC-MS装置展开的氯四环素电化学氧化降解实验而言:pH=3.0体系之中,CTC出现明显降解趋势的时间点对应的电压为1120mV;pH=6.8体系之中,CTC出现明显降解趋势的时间点对应的电压为1264mV;pH=10.0体系之中,CTC出现明显降解趋势的时间点对应的电压为1510mV。在pH=3.0体系中,EC中电压为1822mV时开始产生羟基自由基;在pH=6.8体系中,EC中电压为1948mV时开始产生羟基自由基;在pH=10.0体系中,EC中电压为2020mV时开始产生羟基自由基。就产物m/z=495正离子峰高值来看,pH=3.0体系中出现的m/z=495正离子峰强度高值为1.4×10~6,pH=6.8体系为6.0×10~5,pH=10.0体系为10.0×10~5,表明在酸性体系中羟基自由基生成浓度最大,与EC-MS实验所确定的CTC在酸性条件下易于氧化降解的特征相对应,构成羟基自由基的进攻是CTC电氧化降解初始步骤的证据。
     光解实验采用以中压汞灯反应装置为光源,甲醇与纯水作为溶剂,醋酸铵作为缓冲剂的CTC溶液体系光解实验,并考察了零价铁、氧化锌和二价铁离子所发挥的作用。氯四环素的紫外光解氧化实验结论如下:CTC在酸性条件下最稳定,中性体系中次之,在碱性体系中光降解稳定性最差。零价铁的加入对pH=3.0的体系中CTC的降解产生明显促进作用,原因在于零价铁被氧化成为亚铁离子和铁离子,与体系中光生羟基自由基共同构成光助Fenton体系发挥功效。在pH=3.0的体系中引入0.005mmol/L浓度的Fe(II)离子,对于这一体系CTC紫外光解产生显著促进作用,此时也会出现产物正离子峰m/z=532。氧化锌对pH=10.0和6.8体系中的CTC紫外光解发挥显著促进作用,实验并未发现锐钛型二氧化钛发挥明显催化效果。提供了通过质谱图识别出的三种pH体系逐时光解产物离子峰信息。
     就电化学氧化降解和光氧化降解机理而言:酸性体系中CTC电氧化降解初始步骤在于羟基自由基进攻CTC分子结构中的苯环,使其活化并逐步降解;中性和碱性体系中CTC电氧化降解初始步骤则在于羟基自由基和超氧自由基的共同作用。酸性体系中CTC的紫外光解,在于超氧自由基作用导致;中性体系中CTC的紫外光解,仅识别出羟基自由基的攻击合成产物;而碱性体系中CTC的紫外光解,则由羟基自由基和超氧自由基共同作用导致。在亚铁离子引入pH=3.0体系的CTC光降解的历程,首先是CTC与亚铁络合脱除两个氢生成产物(532=479+56-2),这一络合物降解是通过体系中因光照产生的超氧自由基作用发生。ZnO对CTC在pH=6.8的体系中的光催化氧化降解起到促进作用,此时CTC降解经历步骤如下:CTC脱氯,生成TC(对应m/z=445);CTC与缓慢释放进入溶液中的锌离子产生络合;CTC受系统中生成的超氧自由基攻击,产生加成产物。
     氧化技术应用实验是对环境氧化法有效性的确认,Fenton技术和铁炭内电解法处理垃圾渗滤液实验得到的结果如下:
     Fenton氧化降解垃圾渗滤液实验中, pH=3.0,Fe~(2+)/H_2O_2比例为1:30时,垃圾渗滤液COD的去除效果可达到40%~50%的范围,U_(V254)的去除率可达到30~40%。铁-炭内电解法处理垃圾渗滤液实验中,流过式铁炭填充柱对COD、浊度的去除率优于铁炭混合浸泡法。流过式铁炭填充柱对COD的去除率可达60%,浊度去除率可达94%。氧化技术应用部分还包括对前期完成水溶性染料模拟废水高级氧化降解历程的重新分析。
     论文通过针对实际产生的高浓度废水垃圾渗滤液、简化的模拟废水染料水溶液,以及氯四环素甲醇水溶液这一适合于质谱仪器分析的体系,分别采用Fenton氧化法、铁炭内电解法、光助Fenton法、EC电化学实验装置耦合有机质谱分析法以及紫外光解法等氧化还原及高级氧化技术与实验方法,对环境氧化技术展开了机理与应用研究,以期为适合于有机污染物处理的新型高效氧化技术的设计与开发提供依据。
Based on the processes of organic pollutants degradation, it is composed ofoxidation reactions. Oxidation technology can be used in treatment of persistent andtoxic organic pollutants in quite short period with minimized secondly pollution, whichmakes it a focus in recent environmental researches. Because the targeted pollutants canbe destroyed completely, advanced oxidation processes are also namely as destructivetechnology, which have found more and more wide applications currently.
     Experimental researches in this study can be described as three stages:①powerfulEC-MS technology was used to look into the details in the complete organic pollutantsoxidative degradation and the photocatalytic degradation processes;②the effectivenessof oxidation processes was confirmed by applying Fenton’s reaction and iron-carbonelectrolysis technology in landfill leachate treatment;③mechanisms of environmentaloxidation processes were reviewed and probed into based on previous water-solubledyes oxidative degradation data.
     In part I experiments, the results are as follows:
     There are two series of experiments, namely oxidative degradation of two typicalantibiotics based on EC-MS technology, and ultraviolet degradation of chlortetracyclineand products identification with organic mass spectrometer.
     Taking advantage of EC-MS technology, oxidative degradation tendencies ofchlortetracycline in three pH conditions, namely pH=3.0,6.8and10.0were compared,and possible derivative products of chlortetracycline in natural environment wereidentified. Oxidative degradation products of chlortetracycline with the electric potentialrising from0to+2500mV were identified with organic mass spectrometer in threedifferent pH conditions. More than10product positive ion peaks are of interest, some ofwhich have got their possible molecular formulas. In pH=3.0system,when the voltagein EC reached1120mV, CTC showed the tendency of degradation; in pH=6.8system,when the voltage in EC reached1264mV, CTC showed the tendency of degradation; inpH=10.0system, when the voltage in EC reached1510mV, CTC showed the tendencyof degradation. In pH=3.0system,when the voltage in EC reached1822mV, hydroxylradicals were generated; in pH=6.8system,when the voltage in EC reached1948mV,hydroxyl radicals were generated; in pH=10.0system,when the voltage in EC reached2020mV, hydroxyl radicals were generated. As for the production of product m/z=495, the highest ion intensity of this ion in pH=3.0was1.4×10~6; in pH=6.8system, it was6.0×10~5and in pH=10.0system, it was10.0×10~5. It was believed as an evident thatelectrical chemistry oxidative degradation of CTC was initiated by the attacking fromhydroxyl radicals.
     In UV degradation experiments, middle-pressure immersion UV lamp (TQ150,150W) was used as the core of the UV reactor, provided with quartz burner and quartzcooling water jacket. The reaction system was composed of methanol and pure water, assolvent, and ammonium acetate as buffer agent, chlortetracycline as the UV degradationtarget. In addition to the investigation on the UV degradation processes of CTC in3different pH conditions, effects of zero-valent iron, zinc oxide, titanium dioxide andFe(II) were studied. Based on the result, it was found in acidic system, CTC is moststable under UV radiation, while in alkaline condition, CTC is most active to degrade.Zero valent iron can promote the UV degradation of CTC in pH=3.0system, and thepositive ion peak m/z=534of the complex of iron ion with CTC was identified. It wasbelieved that in acid system, zero valent iron was transferred into Fe(II) and Fe(III) ions,which would contribute as the catalytic agents in UV-Fenton’s system. The othernecessary part of Fenton’s reaction is hydroperoxide, which was produced by UVirradiation in the system. Although methanol was reported as a kind of free radicalquenching agent, but UV radiation-induced hydroperoxide generation is so rapid thatthe Fenton’s reaction can take place. In neutral system (pH=6.8), zero valent iron canhardly be transferred into Fe(II) or Fe(III) ions into the solution and there was noevidence that zero valent iron itself can not promote the UV degradation of CTC. Inaddition, there was no positive ion peak m/z=534of the complex of iron ion with CTCidentified.
     In pH=3.0system, introduction of0.1mmol/L Fe(II) can promote the UVdegradation of CTC obviously, and also the positive ion peak m/z=534of the complexof iron ion with CTC identified. Zinc oxide exerted different effects in different systemsin UV degradation of CTC. In pH=3.0system, rapid chemical reaction took placebetween zinc oxide and CTC. In pH=10.0and pH=6.8systems, zinc oxide can promoteUV degradation of CTC obviously. Several positive ion peaks of the products wereidentified, including two kinds of complex of CTC with zinc ions.
     For application of Fenton’s process in landfill leachate treatment, when pH=3andFe~(2+)/H_2O_2molar concentration ratio was1:30, COD remoal of landfill leachate was inthe range of40%~50%and UV254removal was in the range of30~40%.
     For application of iron-carbon electrolysis process in landfill leachate treatment,effect of flow-in iron-carbon column is better than mixed immersion of iron scraps andcarbon grapes for the remoal of COD and turbudity. In the experiment conditions,COD removal of landfill leachate was60%and turbudity remoal was as high as94%with flow-in iron-carbon column even in weakly acidic condition.
     Experiment results listed in part III experiment was carried out previously andextracted from published thesises of the candidate herself, based on which, the pathwayand mechanisms were reconsidered to provide reliable basis for effective oxidationtechnology development suitable for organic pollutants treatment.
     In conclusion, in this study, real landfill leachate of high-concentration organicpollutants, simplified water-soluble dyes water solutions and chlortetracyclinemethanol-water solution were selected as the research systems, Fenton’s oxidationprocess, iron-carbon internal electrolysis method, UV-Fenton process, EC-MStechnology and UV reactor coupled with organic mass spectrometer were used foroxidative degradation research. The research covered the preliminary determination oftreatment efficiency to the reckoning on reaction steps, to the identification of productsand intermediate products in the oxidative degradation processes by the powerful MStechnology. Wishing it can make contribution to new flexible technologies developmentfor the treatment of distributed waste water.
引文
[1]吴玉成.我国重特大干旱灾害频发原因探析[J].中国防汛抗旱,2012,22(5):10-11.
    [2]胡晓静,吴敬东,叶芝菡,宿敏.北京“2012.7.21”暴雨洪灾调查与影响因素分析[J].中国防汛抗旱,2012,22(6):1-3.
    [3]吴国忠,郭英,于忠臣,高超.铁元素在废水处理工艺中的应用研究进展[J].工业用水与废水,2009,40(6):9-13.
    [4]刘勇健,姜兴华,庄虹.铁元素在铁炭微电解-Fenton试剂深度处理印染废水中的形态及含量变化试验研究[J].安全与环境工程,2009,16(6):58-61.
    [5]陈皓,陈玲,赵建夫,等.铁元素对有机物厌氧降解的影响研究[J].四川环境,2005,24(6):14-16.
    [6]李炟,王春荣,何绪文,等.电化学氧化法去除微污染水中的氨氮[J].环境工程学报,2012,6(5):1553-1558.
    [7]魏令勇,郭绍辉,阎光绪.高级氧化法提高难降解有机污水生物降解性能的研究进展[J].水处理技术,2011,37(1):14-19.
    [8]李文书,李咏梅,顾国维.高级氧化技术在持久性有机污染物处理中的应用[J].工业水处理,2004,24(11):9-12.
    [9]徐颖,陈磊,周俊晓. Fenton氧化-生化组合工艺处理染料中间体废水[J].环境工程学报,2007,1(4):57-60.
    [10]崔亚伟刘云根.污染地下水原位处理PRB技术研究进展[J].地下水,2009,31(6):100-102.
    [11] Sivavec T M, Mackenzie P D, Horney D P, et al. Redox-Sctive media for Permeable reactivebarriers. Conference proceedings: Inter national Containment Technology Conference, St.petersberg, FI, USA.1997, Feb.9-12,753-759.
    [12] Claudio D R, Vincenzo B, Sureyya M. Heterotrophic/autotrophic de-nitrification (HAD) ofdrinking water: prospective use for permeable reactive barrier[J]. Desalination,2007,210:194-204.
    [13]崔海炜,孙继朝,向小平,张玉玺,刘景涛. PRB技术在地下水污染修复中的研究进展[J].地下水,2010,32(3):81-83.
    [14] Westerhoff P. Reduction of Nitrate, Bromate, and Chlorate by Zero Valent Iron (Fe0)[J].Journal Of Environ. Eng, ASCE,2003,129(1):10-16.
    [15]崔海炜,孙继朝,陈玺等. PRB技术在垃圾渗滤液污染地下水修复中的可行性研究[J].南水北调与水利科技,2010,8(6):66-69.
    [16] BLOWES D W, PTACEK C J, BENNER R W, et al. Treatment of Inorganic ContaminantsUsing Permeable Reactive Barriers [J]. Journal of Contaminant Hydrology,2000,45:123-137.
    [17]陈梦舫,骆永明,宋静,等.场地饱和层氯代烃污染物自然衰减机制与纳米铁修复技术的研究进展[J].环境检测管理与技术,2011,23(3):85-89.
    [18]宗芳,赵勇胜,董军.混合PRB介质处理渗滤液污染地下水的可行性研究[J].世界地质,2006,25(2):18-186.
    [19]揣小明.零价铁可渗透反应柱去除四氯化碳实验研究[D].徐州:中国矿业大学,2008.
    [20]杜连柱,张兰英,刘娜,等.可渗透反应墙对地下水中多氯联苯的处理[J].环境化学,2007,26(4):499-503.
    [21]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望[J].环境污染治理技术与设备,2001,2(5):48-53.
    [22]刘玲,徐文彬,甘树福. PRB技术在地下水污染修复中的研究进展[J].水资源保护,2006,22(6):76-80.
    [23]郭敏丽,王金生,刘立才.非正规垃圾填埋场地下水污染控制技术比较[J].水资源保护,2006,22(6):28-30.
    [24]许光泉,史红伟,何晓文. PRB技术处理污染地下水的试验研究[J].合肥工业大学学报(自然科学版),2010,33(6):901-905.
    [25]李书鹏,刘鹏,杜晓明,等.基于零价铁(ZVI)的化学还原修复技术[J].中国环保产业,2011,12:38-41.
    [26]朱振兴,颜涌捷,元伟,等.铁炭微电解-Fenton试剂预处理纤维素发酵废水[J].工业用水与废水,2009,40(2):27-30.
    [27]顾秉林,钟海英,等.铁炭微电解-Fenton组合工艺处理炸药废水[J].水处理技术,2009,35(9):101-104.
    [28]潘碌亭,吴锦峰,王键.强化催化铁炭内电解处理高质量浓度焦化废水[J].江苏大学学报(自然科学版),2010,31(3):348-352.
    [29]杨晓燕,陈雷,陆雪梅,等.微电解-芬顿法预处理吡虫琳农药生产废水[J].南京工业大学学报:自然科学版,2008,30(3):30-33.
    [30]李德生,王宝山.曝气铁炭微电解工艺预处理高浓度有机化工废水[J].中国给水排水,2003,19(10):58-60.
    [31] Lai P, Zhao H Z, Leng M, et al. Study on treatment of coking wastewater by bio-film reactorscombined with zero-valent iron process [J]. Journal of Hazardous Materials,2009,162:1423-1429.
    [32]赵文生,邓锡斌,赵勇胜,等.铁炭微电解-Fenton试剂预处理山梨酸废水[J].工业水处理,2008,28(3):48-51.
    [33]渠光华,张智,郑海领,李柏林.铁炭微电解去除超高盐榨菜废水中磷的试验研究[J].工业水处理,2012,32(9):21-24.
    [34]郭鹏,黄理辉,高宝玉,等.铁碳微电解-H2O2法预处理晚期垃圾渗滤液[J].水处理技术,2008,34(12):57-61.
    [35]夏虹,李娟,张永刚.电化学氧化-内电解耦合预处理高浓度制药废水[J].天津工业大学学报,2011,30(1):55-57.
    [36]李金成;李鹏;孟晶;叶雪松. Fenton氧化-铁炭内电解预处理紫外线吸收剂生产废水[J].工业水处理,2011,31(12):63-66.
    [37]董磐磐,程爱华,李杰等.铁炭耦合Fenton试剂预处理DMF废水的研究[J].工业用水与废水,2012,43(3):8-11.
    [38]方艳,徐竟成,李光明,等.铁炭法强化人工湿地深度处理外排焦化废水试验研究[J].井冈山大学学报(自然科学版),2011,32(5):59-63.
    [39]陈茂荣,孙家寿,李文荣等.铁炭微电解-光催化氧化处理医药废水[J].非金属矿,2010,33(03):77-80.
    [40]潘碌亭,吴锦峰,王键.强化催化铁炭内电解处理高质量浓度焦化废水[J].江苏大学学报(自然科学版),2010,31(3):348-352.
    [41]王祖佑,陈怡,陈进富等.兰州石化高浓度化工污水铁炭微电解试验研究[J].广东化工,2010,37(10):100-103.
    [42]雷乐成,汪大翚.水处理高级氧化技术[M].北京:化学工业出版社,2001.14-16.
    [43]金伟,范瑾初.臭氧和膜法在去除有机致色物质效果的比较[J].水处理技术,1996,22(3):177-178.
    [44]顾鼎言,朱素芬.印染废水处理[M].北京:中国建筑工业出版社,1985.275-288.
    [45]哈尔滨建筑工程学院.排水工程(下册)[M].北京:中国建筑工业出版社,1980.289-304.
    [46] Walling C. Fenton’s reagent revisited [J]. Account of chemistry research,1975,8:125-131.
    [47]谢银德,陈锋,何建军等. Photo-Fenton反应研究进展[J].感光科学与光化学,2000,18(4):357-365.
    [48] Will I B S, Moraes J E F, Teixeira ACSC et al. Photo-Fenton degradation of wastewatercontaining organic compounds in solar reactor[J]. Separation and Purification Technology,2004,34:51-57.
    [49]熊忠,林衍. Fenton氧化法在废水处理中的应用[J].新疆环境保护,2002,24(2):35-39.
    [50]叶招莲,陈育红.催化氧化处理酸性染料废水[J].环境保护,2001,23:4-6.
    [51]李绍锋,张秀忠,张德明等. Fenton试剂氧化降解活性染料的试验研究[J].给水排水,2002,28(3):46-49.
    [52]相欣奕,郑怀礼. Fenton反应处理染料废水研究进展[J].重庆建筑大学学报,2004,26(4):126-130
    [53]雷乐成,汪大翚,水处理新技术及工程设计.化学工业出版社。
    [54]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术.化学工业出版社
    [55] Gustavo A. Penuela, Imma Ferrer. Identification of New Photodegradation Byproducts of theantifouling agent Irgarol in seawater samples[J]. Environ. Anal. Chem.,2000,78(1):25.
    [56] Montserrat Perez, Francesc Torrades, Xavier Domenech, Jose Peral.Fenton and photo-Fentonoxidation of textile effluents[J]. Water Research.2002,36:2703–2710
    [57] Michael J. Watts,Karl G. Linden. Chlorine photolysis and subsequent OH radical productionduring UV treatment of chlorinated water [J]. Water Research,2007,41:2871-2878.
    [58] Juan Casada, Jordi Fornaguera, Maria Isabel Galan. Mineralization of aromatics in waterby sunlight-assisted electro-Fenton technology in a pilot reactor [J]. Environ. Sci.Technol.,2005,39(6):1843-1847.
    [59]杜桂荣,孙占学,黄克玲等. Fenton氧化-混凝法处理含活性染料废水的研究[J].华东地质学院学报,2002,25(4):305-307.
    [60]杨大春,张光辉,顾平. Fenton-微滤工艺处理印染废水研究[J].中国给水排水,2003,19(3):46-48.
    [61]张志军,覃静,刘东飞.混凝-Fenton法处理垃圾渗滤液[J].常州大学学报(自然科学版),2011,23(1):39-42.
    [62] Scott G. HuLing etal. Influence of peat on Fenton Oxidation[J]. Wat. Res.,2001,35(7):1687-1694.
    [63] Brillas E, Sires I, Oturan M A. Electro-Fenton Process and Related ElectrochemicalTechnologies Based Reaction Chemistry[J]. Chem Rev,2009,109(12):6570-6631.
    [64] Irmak S, Yavuz H I, Erbatur O. Degradation of4-chloro-2-ethylphenol in aqueous solutionby electro-Fenton and photoelectro-Fenton processes [J]. Appl. Catal., B: Environ,2006,63(3):243-248.
    [65] Lou Jie-Chung, Huang Yu-Jen, Han Jia-Yun. Treatment of printed circuit board industrialwastewater by Ferrite process combined with Fenton method [J]. HazardousMaterials,2009,170(2-3):620-626.
    [66] Tauchert E, Schneider S. Photochemically assisted electro-chemical degradation of landfillleachate [J]. Chemosphere,2006,64(9):1458-1463.
    [67] Huaili Zheng, Yunxia Pan, Xinyi Xiang. Oxidation of acidic dye Eosin Y by the solarphoto-Fenton processes [J]. Journal of Hazardous Materials,2007,(141):457-464.
    [68]汤茜,任百祥,王艳华. Fenton氧化-混凝-SBR工艺处理糠醛废水[J].化工环保,2009,29(2):151-153.
    [69]赵静,黄瑞敏,聂凌燕等. Fenton氧化-曝气生物滤池处理电镀铜镍废水的研究[J].电镀与涂饰,2010,29(04):36-38.
    [70]王春霞,肖书虎,赵旭等.光电芬顿氧化法深度处理垃圾渗滤液研究[J].环境工程学报,2009,3(01):11-16.
    [71]孟庆华,鲁玲,朱亦仁等.日光辐照H2O2-草酸铁氧化法处理棉浆粕废水[J].化工环保,2009,29(04):339-343.
    [72]高剑,吴棱,梁诗景等.铁钛双金属共柱撑膨润土光催化-Fenton降解苯酚[J].催化学报,2010,31(03):317-321.
    [73]刘成,高乃云,蔡云龙.强化混凝去除黄浦江原水中有机物研究[J].中国给水排水,2006,22(1):84-87.
    [74]姚重华.混凝剂与絮凝剂[M].北京:中国环境科学出版社,1991:25-44.
    [75] EI Samrania A G, Lartigesa B S, Montarg8s-Pelletiera E, et al. Clarification of municipalsewage with ferric chloride: the nature of coagulant species [J]. Water Research,2004,38(3):756-768.
    [76]汤心虎,黄秀微,刘佩璇等.无机/有机复合絮凝剂对印染废水脱色的研究[J].水处理技术,2001,27(5):267-271.
    [77]王燕,高宝玉,岳钦艳等,铁盐类无机有机复合絮凝剂的水解特性及脱色效能[J].环境化学,2006,25(6):730-734.
    [78]衣守志,段瑛博,张丽红.海水淡化预处理絮凝剂-聚硅酸氯化铁的性能及应用研究[J].工业水处理,2006,26(1):17-20.
    [79]苗晶,岳钦艳,高宝玉,刘玉真.高浓度聚合氯化铁混凝剂的净水效果[J].环境化学,2004,23(1):62-65.
    [80]郑怀礼,陈容,焦世裙,等.一种复合聚磷硫酸铁絮凝剂及其生产方法. CN101805051A
    [81]罗道成,刘俊峰.用铁矿石制备聚硅硫酸铁混凝剂及其应用研究[J].中国矿业,2010,19(9):85-88.
    [82]顾宏新,史峰山,王振新.聚硅酸铝铁絮凝剂对高浓度腐植酸水样的絮凝效果分析[J].昌吉学院学报,2011,6:83-85.
    [83]田国鹏,张雯,魏刚等.壳聚糖-铁絮凝剂的制备及其絮凝性能[J].北京化工大学学报,2008,35(4):47-51.
    [84]谢鸿芳,郑淑英,陈巧平等.高铁酸盐/Al (OH)3对偶氮类染料的降解脱色研究[J].福建师范大学学报(自然科学版),2011,27(4):112-115.
    [85]李国亭,郭宇杰,汪宁改等.高铁酸盐降解四环素的研究[J].人民黄河,2009,31(7):50-51.
    [86]王红宇,沈宇,胡仕斐.高铁酸盐氧化苯酚的试验研究[J].湖南科技大学学报(自然科学版),2010,25(3):102-105.
    [87]罗志勇,郑泽根,张胜涛.高铁酸盐氧化降解水中苯酚的动力学及机理研究[J].环境工程学报,2009,3(B):1375-1378.
    [88]高玉梅,刘帅霞.绿色净水剂复合高铁酸盐的制备[J].针织工业,2010,5:47-49.
    [89]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002:67.
    [90]谢银德,陈锋,何建军,赵进才.可见光均相氧化法降解吖啶橙染料的特性[J].环境科学2001,22(1):106-108.
    [91]相欣奕.光助芬顿氧化反应应用于水溶性染料脱色研究[D].重庆大学:2004年.
    [92]孙文中,崔玉民,朱亦仁等.用复相光催化剂WO3/CdS/W深度处理印染废水的研究[J].水处理技术,2002,28(5):278-280.
    [93]候海军,单宝田,马根之等.活性炭催化光氧化对活性艳红X-3B脱色的试验[J].水处理技术,2002,28(3):152-154.
    [94]黄应平,刘德富,赵进才,等.可见光/Fenton光催化降解有机染料[J].高等学校化学学报,2005,26(12):2273-2278.
    [95]张婷,吴少林,朱振兴. Fe (IlI)草酸盐络合物的光化学性质及其应用[J].江西化工,2008,(1):26-29.
    [96]刘津媛,王彬,刘希龙,等.一个新颖的类光芬顿体系光催化降解DMP[J].海南师范大学学报(自然科学版),2012,25(1):56-62.
    [97] Sara Goldstein, Dan Meyerstein,Gidon Cxapski. The Fenton Reagents[J]. Free RadicalBiology&Medicine,1993,15:435-445.
    [98] Natalia Quici,Mariia E Morgada,Raquel T Gettar, et al. Photocatalytic degradation of citricacid under different conditions: TiO2heterogeneous photocatalysis against homogeneousphotolytic processes promoted by Fe(III) and H2O2[J]. Applied Catalysis B:Environmenta1,2007,71:117.
    [99]唐文伟,曾新平,胡中华.芬顿试剂和湿式过氧化氢氧化法处理乳化液废水研究[J].环境科学学报,2006,26(8):1265-1270.
    [100]昊彦瑜,覃芳慧,赖杨兰,等. Fenton试剂对垃圾渗滤液中腐殖酸的去除特性[J].环境科学研究,2010,23(1):94-99.
    [101]张承舟.混凝-铁碳内电解法处理印染废水的研究[D].武汉科技大学:2006年.
    [102]李江涛.铁炭内电解法的基本原理与其工艺特点分析[J].科技信息,2010,35:386.
    [103] Neyens E,Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidationtechnique[J]. J. of Hazardous Materials,2003,98(1/2/3):33-50.
    [104] Fan Li,Ni Jinren, Wu Yanjun, et al. Treatment of bromoamine acid wastewater usingcombined process of micro-electrolysis and biological aerobic filter[J]. Journal ofHazardous Materzals,2009,162(2/3):1204-1210.
    [105] Gaspar D J,Lea A5,Engelhard M H,et al. Evidence for localization of reaction uponreduction of carbon tetrachloride by granular iron[J]. Langmuir,2002,18(20):7688-7693.
    [106] Fytianos K,Voudrias E,Raikos N. Modelling of phosphorus removal from aqueous andwastewater samples using ferric iron [J]. Environmental Pollution,1998,101(1):123-130.
    [107] Johansson L,Gustafsson J P. Phosphate removal using blast furnace slags andopoka-mechanisms [J]. Water Research,2000,34(1):259-265.
    [108] Kang Y W, Hwang K Y. Effects of reaction conditions on the oxidation efficiency in theFenton process [J]. Water Res,2000,34(10):2786-2790.
    [109] Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidationtechnique [J]. Hazard Materi,2003,98(123):33-50.
    [110]包木太,王娜,陈庆国,等.Fenton法的氧化机理及在废水处理中的应用进展[J].化工进展,2008,27(5):660-665.
    [111]郭劲松,陈鹏,方芳,等.Fenton试剂对垃圾渗滤液中有机物的去除特性研究[J].中国给水排水,2008,24(3):88-91.
    [112] Katsumata H, Sada M, Kaneco S, et al. Humic acid degradation in aqueous solution by thephoto-Fenton process [J]. Chem Eng J,2008,137:225-230.
    [113] Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation followinga single addition of iron and peroxide[J].Chemosphere,2000,41(3):409-417.
    [114]杨运平,唐金晶,方芳,等. UV/TiO2/Fenton光催化氧化垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34-41.
    [115]孙旭辉,贾宇宇,马军,等.微电解-Fenton联合工艺处理硝基苯废水效能研究[J].水处理技术,2009,35(1):74-78.
    [116] RIVAS F J, BELTRAN F J, FRADES J, et al. Oxidation of p-hydroxybenzoic acid byFenton's reagent[J]. Water Research,2001,35(2):387-396.
    [117] Wu Y Y, Zhou S Q, QIN F H, et al. Removal of humic substances from landfill leachate byFenton oxidation and coagulation[J]. Process Safety and Environmental Protection,2010,88(4):276-284.
    [118]周健,李宝霞,龙腾锐,等.微波强化Fenton处理垃圾渗滤液试验研究[J].中国给水排水,2009,25(17):97-99.
    [119] Karst, U.. Electrochemistry/mass spectrometry-a new tool to study drug metabolism andreaction mechanisms. Angew. Chem. Int Ed.2004,43:2476-2478.
    [120] Baumann, A., Lohmann, W., Schubert, B., Oberacher, H., Karst, U. Metabolic studies oftetrazepam based on electrochemical simulation in comparison to in vivo and in vitromethods [J]. Journal of Chromatography A,1216(2009):3192-3198.
    [121] Baumann A.. Lohmann W..Jahn S.. Karst U. On-Line Electrochemistry/ElectrosprayIonization Mass Spectrometry (EC/ESI-MS) for the Generation and Identification ofNucleotide Oxidation Products [J]. Electroanalysis,22(2010):286-292.
    [122] Baumann A., Lohmann W., Rose T.,Ahn K. C., Hammock B. D.,Karst U., and Schebb N.H.Electrochemistry-Mass Spectrometry Unveils the Formation of Reactive TriclocarhanMetabolites [J]. Drug Metabol Disp,38(2010):2130-2138.
    [123] Hoffmann, Th., Hofmann, D., Klumpp, E., Kuppers, S.. Electrochemistry-mass spectrometryfor mechanistic studies and simulation of oxidation processes in the environment[J]. Anal.Bioanal. Chem.2011,399:1859-1868.
    [124] Lei Chen, Diana Hofmann, Erwin Klumpp, Xinyi Xiang, Yingxu Chen, Stephan Küppers.Bottom-up approach for the reaction of xenobiotics and their metabolites with modelsubstances for natural organic matter by electrochemistry–mass spectrometry (EC–MS)[J].Chemosphere,2012,89(11):1376-1383.
    [125] Baumann A.. Karst U. Online electrochemistry/mass spectrometry in drug metabolismstudies: principles and applications [J]. Expert Opin Drug MetabToxicol,6(2010):715-731.
    [126] Pitterl F.. Chervet J-P.. Oheracher H. Electrochemical simulation of oxidation processesinvolving nucleic acids monitored with electrospray ionization-mass spectrometry [J]. AnalBioanal Chem,397(2010):1203-1215.
    [127] Simon H, Melles D,Jacquoilleot S, Sanderson P, Zazzeroni R, Karst U. Combination ofElectrochemistry and Nuclear Magnetic Resonance Spectroscopy for Metabolism Studies [J].Analytical Chemistry,84(2012):8777-82.
    [128] Bussy, U., Ferchaud-Roucher, V., et al. Electrochemical degradation of acebutolol:O-dealkylation of aromatic ether [C]. International workshop on electrochemistry/Massspectrometry. Spetember,2011. Munster University, Germany.
    [129] Melles D., Vielhaber T., Baumann A, Zazzeroni R.. Karst U. Electrochemical oxidation andprotein adduct formation of aniline: a liquid chromatography/mass spectrometry study [J].Anal Bioanal Chem,403(2012)377.
    [130] Baumann A.. Schebb, N.H., et al. electrochemistry-Mass spectrometry unveils the formationof reactive triclocarban (TCC) metabolites [J]. Drug Metab Dispos2010,38(12):2130-8.
    [131] Nouri-Nigjeh, E., Permentier, H.P., Bischoff, R., Bruins, A.P., Electrochemical oxidation bysquare-wave potential pulses in the imitation of oxidative drug metabolism [J]. Anal. Chem.2011(83):5519-5525.
    [132] M. Odijk. Miniaturized electrochemical cells for applications in drug screening and proteincleavage[D]. University of Twente,2011.
    [133] Faber H., Melles D Brauckmann Ch., WeheCh.A., Wentker, K Karst U. Simulation of theoxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)massspectrometry [J]. Anal Bioanal Chem.403(2012):345.
    [134] Markus Becker, Jean-Pierre Chervet, et al. Simulating oxidative metabolism using on-lineelectrochemistry/mass spectrometry [C]. International workshop on electrochemistry/Massspectrometry. Spetember,2011. Munster University, Germany. Antec公司提供资料。
    [135] A. Kraj, H.J. Brouwer, and J. Purkerson. Simulating oxidative metabolism using on-lineelectrochemistry/mass spectrometry [J]. J Biomol Tech.2010September;21(3Suppl): S40.
    [136]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展[J].环境科学与技术,2007,30(3):108-111.
    [137]刘冲,黄满红,肖斌.城市污水厂中四环素类抗生素分布特性研究[J].广州化工,2012,40(14):153-156.
    [138] Gu G, Karthikeyan K G. Sorption of the antibiotic tetracycline to humic-mineralcomplexes[J]. Journal of Environmental Quality,2008,37(2):704-711.
    [139]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展[J].环境科学与技术,2007,30(3):108-111.
    [140]刘冲,黄满红,肖斌.城市污水厂中四环素类抗生素分布特性研究[J].广州化工,2012,40(14):153-156.
    [141]高品.典型抗生素和抗药性基因在污水处理系统中的归趋及迁移分布规律[D].东华大学,2011.
    [142] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewagetreatment facilities in Hong Kong and Shenzhen,China[J]. Water Research,2008,42(1-2):395-403.
    [143] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater; Effect ofhydraulic and solid retention times on the fate of tetracycline in the activated sludgeprocess[J]. Environmental Science and Technology,2005,39(15):5816-5823.
    [144] Le-Minh N, Khan S J, Drewes J E, et al. Fate of antibiotics during municipal waterrecycling treatment processes[J]. Water Research,2010,44(15):4295-4323.
    [145] Kim S, Jensen J N, Aga D S, et al. Fate of tetracycline resistant bacteria as a function ofactivated sludge process loading and growth rate[J]. Environmental Science&Technology,2007,55(1):291-297.
    [146]那广水,陈彤,张月梅,等.中国北方地区水体中四环素族抗生素残留现状分析[J].中国环境监测,2009,25(6):78-80.
    [147] Kim S,Jensen J N,Aga D S,et al. Tetracycline as a selector forresistant bacteria in activatedsludge[J]. Chemosphere,2007,66(9):1643-1651.
    [148] Operating Instruction for Laboratory-UV-Reactorsystem. UV-RS-2. GB56071228. Providedby Heraeus.
    [149]孙德智.环境工程中的高级氧化技术[MI.北京:化学工业出版社.2002
    [150]李广科,牛静,云洋,等,垃圾填埋场渗滤液污染特性分析,农业环境科学学报[J],2008,27(1):0333-0337.
    [151]张智,李黎,卫永法,何永全,溶解氧对垃圾渗滤液强化预处理的影响研究,四川环境,2008,27(2):11-14.
    [152]王春霞,肖书虎,赵旭,光电芬顿氧化法深度处理垃圾渗滤液研究,环境工程学报,2009,3(1):11-16.
    [153] M. Ince, E. Senturk, G. Onkal Engin, B. Keskinler, Further treatment of landfill leachate bynanofiltration and microfiltration–PAC hybrid process, Desalination,2010,255(1-3):52-60.
    [154]倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较[J].应用基础与工程科学学报,2004,6(12):148-160.
    [155]杨运平,方芳,郭劲松.UV/TiO2/Fenton光化学催化氧化垃圾渗滤液的研究[J].中国给水排水,2006,22(7):34-37.
    [156]王里奥,黄本生,吕红,等.光催化氧化处理生活垃圾渗滤液[J].中国给水排水,2003,19(6):56-58.
    [157]吉芳英,谢志刚,黄鹤,等.垃圾渗滤液处理工艺中有机污染物的三维荧光光谱[J].环境工程学报,2009,3(10):1793-1788.
    [158]王建平,黄长均.粉末活性炭吸附技术在水厂的应用[J].中国给水排水,2006,22(10):17-20.
    [159]陈艳,董秉直,詹俊英,等. pH值对粉末活性炭去除有机物的影响[J].给水排水,2004,30(5):13.
    [160]孙国芬,乔铁军.预氯化对生物活性炭滤池运行的影响[J].净水技术,2007,26(4):23-26.
    [161] Johansson L,Gustafsson J P. Phosphate removal using blast furnace slags andopoka-mechanisms [J]. Water Research,2000,34(1):259-265.
    [162]黄报远,金腊华,卢显妍,刘慧漩,唐崇杰.臭氧化对垃圾填埋场后期渗滤液的预处理研究[J].环境污染治理技术与设备,2006,7(4):103-106.
    [163] Daniele M. Bila, A. Filipe Montalvao, Alessandra C. Silva, M'arcia Dezotti. Ozonation of alandfill leachate: evaluation of toxicity removal and biodegradability improvement[J].Journal of Hazardous Materials B,2005,117:235-242.
    [164] Josmaria Lopes de Morais, Patricio Peralta Zamora. Use of advanced oxidation processes toimprove the biodegradability of mature landfill leachates[J]. Journal of Hazardous MaterialsB,2005,123:181-186.
    [165]冯逸仙,杨世纯.反渗透水处理工艺[M].北京:中国电力出版社,2000.9-10.
    [166] Jung C W, Son H J, Kang L S. Effect of membrane material and pretreatment coagulation onmembrane fouling: fouling mechanism and NOM removal[J]. Desalination.2006,197:154-164.
    [167]程家迪,刘锐,高良敏,等.膜生物反应器处理微污染水源水的研究与应用现状[J].环境污染与防治,2009,31(4):66-70.
    [168]王罗春.城市生化垃圾填埋场稳定化进程研究[D].上海:同济大学,1999
    [169]李晔,吴飞,张发有,郑世忠.垃圾填埋场渗滤液回灌法处理技术探讨[J].工业安全与环保,2004,30(5):19-21.
    [170] Eatonad. Measuring UV-Absorbing Organics: A Standard Method[J]. Jour. AWWA,1995,87(2):86-90.
    [171]曲久辉,刘文娟.水处理电化学原理与技术[M].北京:科学出版社,2007.
    [172]郑怀礼,相欣奕.光助Fenton氧化反应降解染料罗丹明B [J].光谱学与光谱分析,2004,24(6):726-729.
    [173]相欣奕,郑怀礼甄卓廉,杨平.光助Fenton反应降解水溶性染料曙红Y研究[J].能源环境保护,2006,01:27-30..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700