用户名: 密码: 验证码:
催化裂化油浆的分离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国轻质燃料油需求急速增长,同时原油的重质化以及催化剂的磨损给催化裂化装置带来结焦、结垢等不利影响,严重影响产品的质量及产品的分布,并且由于油浆的不合理利用,造成了很大浪费。因此研究催化油浆中催化剂颗粒的脱除工艺以及催化油浆的组分分离及合理利用具有重要的现实意义。
     本论文选用胜华催化油浆、兰州石化催化油浆为研究对象,主要采用化学沉降助剂降低油浆中催化剂颗粒的含量,确定脱除工艺,并对脱除机理进行初步探讨;提出了以糠醛作为萃取溶剂,用催化裂化油浆生产环保型橡胶填充油和催化裂化原料的观点,通过单级、多级错流萃取实验和多级逆流萃取实验,考察萃取温度、萃取剂油比和萃取级数的影响。
     通过对沉降助剂进行筛选,若选用聚丙烯酰胺水溶液作为沉降助剂,聚丙烯酰胺加入量为250μg/g,于80℃沉降30min时,催化剂的脱除率可达87.5%;若选用体积分数为50%的丙三醇水溶液作为沉降助剂,加入量为油浆总量的60%,于80℃沉降30min,循环利用丙三醇水溶液三次,催化剂的脱除率仍都在80%以上;若选用LAL-2作为沉降助剂,当加入量为200μg/g,于80℃沉降24h时,催化剂的脱除率可达95.2%。初步认为本实验所选用的沉降助剂对催化剂颗粒脱除主要与沉降助剂本身的粘度以及分子结构有关。
     脱除催化剂颗粒后的油浆分别采用糠醛萃取和反萃取方法来进一步对油浆组分进行分离,将油浆中的多环芳烃与饱和烃分离。研究了错流萃取和逆流萃取两种实验方案,确定单级错流萃取实验的最佳条件为:萃取温度为50℃,剂油比为2.5:1;根据原料油性质不同,萃取工艺级数为二级时最优;反萃取工艺级数为三级时最优。
     经过萃取分离得到的饱和烃可作为催化裂化的原料返回催化裂化,也可作为环保型橡胶油使用;多环芳烃由于裂化性能很低,可作为橡胶填充油或其他用途。这样催化裂化油浆可以不直接循环而是先溶剂萃取分离出易裂化组分和难裂化组分,易裂化组分返回催化裂化,难裂化组分作为别的用途使用,这样可以减少催化裂化结焦,提高催化裂化的液收。
At present, the needs of light fuel oil have been growing rapidly in China, meanwhile the heavy crude qualitative and catalyst cracking bring coking, fouling and other adverse effects to FCC, so that the devices could not be function properly, and this seriously affected the quality of products and product distribution. What’s more, the irrational use of FCC slurry caused a great of waste. Therefore, the research of effective removal of catalyst particles technology and rational use of FCC slurry had important significance.
     This paper choose Shenghua and Lanzhou FCC slurry as the research objects, using the chemical additives to reduce the content of catalyst particles in the slurry oil, and study the removal process, then discuss the removal mechanism. It is proposed that using the furfural as the solvent in FCC slurry oil system could product the environmental-friendly rubber filling oil and FCC feedstock. One-stage extraction, multi-stage cross-flow extraction and multi-stage countercurrent extraction experiments were designed to study the effects of extraction temperature, the ratio of solvent to oil and the series of extraction.
     If polyacrylamide solution were used to remove the solid catalysts from FCC slurry, the best reaction conditions were that: the addition of polyacrylamide was 250μg/g, stirring at 80℃for 30 minutes, the removal ratio of catalyst particles could reach 87.5%; If 50% volume fraction of glycerol solution were used to remove the solid catalysts from FCC slurry, the best reaction conditions were that: the addition of glycerol solution was 60wt% of the slurry, stirring at 80℃for 30 minutes, The glycerol solution was washed, filtered and concentrated to achieve recycling, then the third removal ratio of catalyst particles could still reach more than 80%; If LAL-2 were used as chemical additives to reduce the content of catalyst particles, the best reaction conditions were that: the addition of LAL-2 was 200μg/g, stirring at 80℃for 30 minutes and resting for 24h, the removal ratio of catalyst particles could reach 95.2%. It could be obtained that the main effect of the catalyst particle removal was related to the viscosity and molecular structure of settlement agents.
     The FCC slurry was separated further into saturation fractions and aromatic fraction by using furfural extraction. Cross current extraction and counter-current extraction were studied in this dissertation. The best extraction conditions in primary cross current solvent extraction were that: reaction temperature was 50℃, and the ratio of solvent/oil was 2.5:1. In the extraction process series, the optimal series was twice. In the solvent stripping process level 3 was the optimal series. Then in simulation experiments on three counter-current extraction, when the reaction temperature was 50℃, the ratio of solvent/oil was 2.5:1, and the extraction series was three, the product conforms to the Europe standard requirements, and the yield could reach 30%.
     The saturation fractions could be the raw materials of FCC unit. The aromatic fraction could be used as the rubber oil because of its poor property of cracking. Thus, the FCC slurry was first extracted into easy cracking fractions and difficult cracking fractions instead of recycling straight into FCC. The easy cracking fractions were recycled into FCC and the difficult cracking fractions are used as rubber oils. This method may lower the coke quantity of FCC and improve e the production of liquid products.
引文
[1]赵光辉,马克存,孟锐,等.炼厂催化裂化外甩油浆的分离技术及综合利用[J].现代化工,2006,26(1):20-23
    [2]林世雄.石油炼制工程[M].北京:石油工业出版社,2000:25-26
    [3]张德华,沈健,袁兴东.催化裂化油浆的分离与综合利用[J].天津化工,2004,18(3):10-13
    [4]王峰,赵德智,曹祖宾,等.催化裂化油浆的加工工艺及进展[J].当代化工,2003, 32(1):45-49
    [5]陈俊杰.FCC油浆的净化改质技术及其应用[J].安徽化工,2003,121(1):14-16
    [6]郑铁柱,邢学伟,李淑杰.催化裂化油浆液固体系分离技术探讨[J].石油化工设备技术,2000,21(3):11-13
    [7]张洪林,杨磊.重油催化裂化外甩油浆离心沉降净化研究[J].石油炼制与化工,1999,30(4):5-7
    [8]方云进,肖文德,王光润.液固体系的静电分离研究Ⅰ.冷模试验[J].石油化工,1998,27(6):419-424
    [9]方云进,肖文德,王光润.液固体系的静电分离研究Ⅱ.饱和吸附量的测定[J].石油化工,1998,27(11):815-819
    [10]方云进,肖文德,王光润.液固体系的静电分离研究Ⅲ.热模试验[J].石油化工,1999,28(5):312-315
    [11]刘国荣.催化油浆过滤技术研究及工业应用[J].化工机械,2005,32(4):195-198
    [12]鲍景波,张险峰.重油催化裂化装置中油浆过滤系统的改进[J].化学工程师,2006,129(6):45-46
    [13]刘存柱,李胜昌,孙玉虎,等.重油催化裂化油浆连续过滤技术的应用[J].炼油技术,2001,31(1):32-34
    [14]西格.简-伯纳得,罗塞简.从来自催化裂化的进料中分离催化剂微粒的方法[P].法国专利:CN86107787A,1986
    [15]丁洛,杨焜远.催化裂化油浆催化剂粉末的脱除技术[J].石油炼制与化工,2001,32(5):60-61
    [16]陈俊杰,李林,张静如.用沉降助剂脱除催化裂化油浆中的催化剂粉末[J].石油炼制与化工,2005,36(1):16-19
    [17]杨莹,张兰波.催化裂化油浆沉降剂的研究及应用[J].石化技术与应用,2006,24(3):238-240
    [18]赵晓武,赵开鹏.SSA-1油浆粉末沉降剂的工业应用[J].炼油,2002,7(1):52-54
    [19]王振宇,徐振红,于丽,等.一种脱除催化裂化油浆中催化裂化粉末的组合物和脱除方法[P].中国专利:200610169526.8,2006
    [20] Paul R.H, Wiley L.P, Man E.G, et a1. Settling aids for solids in hydrocarbons[P].美国专利:US 5476988. 1995
    [21] Gene F.B, Mark S.B, Paul R.H. Settling aids for solids in hydrocarbons[P].美国专利:US5481059. 1996
    [22] Philip M, Roger W.R. Process for the removal of solids from oil[P].美国专利:US4539099. 1985
    [23] Edward C H, Philip J M, Dean L S, et a1. Process for the removal of solids from oil[P].美国专利:US4692237. 1987
    [24]郭皎河,曲涛,付丽.一种催化裂化油浆的处理方法[P].中国专利:CN1302841A,2001
    [25]许志明,张立,赵锁奇,等.催化裂化油浆的分离与化工利用[J].石油炼制与化工,2001,32(9):17-21
    [26]王赣父.催化裂化-芳烃抽提联合工艺的研究与工业试验[J].石油炼制与化工,1995,26(6):1-8
    [27]杨基和,徐鸽,孔泳.一种用于催化裂化油浆分离的方法[P].中国专利:CN101260315A,2008
    [28] Baudilio Coto, Rafael van Grieken, Jose L. Pena, Juan J. Espada. Ageneralized model to predict the liquid-liquid equilibrium in the systems furfural + lubricating oils[J]. Chemical Engineering Science, 2006, 61(24): 8028-8039
    [29]王雷.糠醛抽提回炼油浆的研究[J].沈阳工业大学学报,2005,27(3):358-340
    [30]吕春胜,高玉青,王怀韬.重油催化裂化油浆的几种加工方案和经济评价[J].大庆石油学报,1995,19(3):52-56
    [31]叶安道,王文柯.掺入回炼油或油浆改善重油催化裂化原料裂化性能[J].炼油技术与工程,2004,34(6):5-6
    [32]辛秀婷,熊春珠,周勇,等.克拉玛依石化公司环保型填充油[J].橡胶科技市场,2009,17(2):1-4
    [33]潘金亮,杜兰英,韩德奇,等.一种环保型橡胶填充油的生产方法[P].中国专利:101591453A,2009
    [34]王丽涛,杨基和.催化裂化油浆抽提油作橡胶添加剂的研究[J].炼油技术与工程,2009,39(1):17-20
    [35]杨玉庆,王玉萍,李俊明.催化裂化油浆开发橡胶软化剂实验性研究[J].山东化工,2003,32(2):22-23
    [36]李书杰.催化裂化油浆制取二元族烃型橡胶增塑剂[J].石油炼制与化工,1994,25(1):19-22
    [37]张庆宇,魏积平,邓先梁,等.催化裂化重芳烃作橡胶软化剂的应用研究[J].石油炼制与化工,1998,2(3):24-28
    [38]余夕志.催化重芳烃作橡胶软化剂的应用开发[J].安徽化工,2003,12(3):27-28
    [39]赵渊杰,王会东,关毅.芳香烃型橡胶填充油的研制[J].合成橡胶工业,2006,29(5):330-334
    [40]陈志刚,赵德智,曹祖宾.糠醛抽出油制备橡胶软化剂的研究[J].辽宁石油化工大学学报,2009,29(1):28-30
    [41]张德华,沈健,亓玉台等.FCC油浆与丙脱沥青调和生产重交通道路沥青[J].辽宁石油化工大学学报,2005,25(3):28-35
    [42]刘以红,宋艳茹.催化裂化油浆在生产优质道路沥青中的应用[J].石油化工高等学校学报,2004,17(3):58-61
    [43]陈静,周晓龙,金鸣林,等.FCC油浆热转化制备中间相沥青的研究[J].华东理工大学学报,2007,33(1):14-18
    [44]王延飞,程健,贾生盛,等.采用丙烷脱沥青工艺探讨催化裂化油浆的合理应用[J].石油炼制与化工,2002,33(1):47-49
    [45]贾生盛,程健,罗运华.掺兑催化油浆对渣油溶剂脱沥青过程的影响[J].炼油设计,1995,25(4):8-11
    [46]龙军.催化裂化油浆脱沥青的研究[J].石油炼制与化工,1997,28(3):6-9
    [47]范雨润,孙鉴.丙烷脱沥青工业装置掺炼催化裂化油浆[J].石油炼制与化工,1998,29(8):6-9
    [48]龙军,史光伟,黄伟祈,等.减压渣油与催化裂化油浆混合脱沥青的研究[J].石油炼制与化工,1995,26(9):11-13
    [49]彭显峰,侯特超,罗勇宝.掺催化裂化油浆的减压渣油溶剂脱沥青工业试验及其在我厂组合工艺上的应用[J].广州石化科技信息,1995,(1):38-45
    [50]刑思宽.丙烷脱沥青装置掺和RFCC油浆[J].炼油设计,1996,26(6):9-11
    [51]查庆芳,张玉贞,郭燕生,等.减压渣油搀兑FCC油浆制备针状焦[J].碳素技术,2002,5(4):10-14
    [52] S. Eser. Relationships between molecular composition of FCC decant oils and mesophase development[J]. Energy&Fuels, 1995, 26(3): 266-267
    [53]张永新.FCC油浆的分离与综合利用[J].石化技术与应用,2003,21(2):92-94
    [54]周溪华.沥青基碳纤维的研制与开发[J].合成纤维工业,1993,16(2):36-41
    [55]李炳炎.我国炭黑原料油发展现状和展望[J].中国橡胶,2008,24(16):4-7
    [56]金阳.用催化裂化油浆生产高附加值产品[J].石油知识,2004,(3):17-18
    [57]张立,许志明,胡云翔.催化油浆在石油化工方面的利用[J].石油化工,1999,28(5):337-339
    [58]韩德奇,杜兰英,徐会林,等.催化裂化油浆利用的新途径[J].节能,2000,17(11):44-46
    [59]程健,于桂珍,刘以红,等.常压渣油掺炼催化裂化油浆提高蒸馏拔出率的研究[J].石油炼制与化工,1998,30(8):34-38
    [60]王曼霞.催化裂化油浆芳烃的分离和利用[D].青岛:青岛化工学院,2000
    [61] IP346/92, Determination of polycyclic aromatics in unused lubricating base oils and asphaltene free petroleum refractive index method[S]. England: 1996
    [62]张永超,冯喆.有机絮凝剂的机理及进展[J].塑料制造,2001,33(9):79-81
    [63]张锁兵,马自俊,丁唯.油田采油污水处理用絮凝剂研究进展(一)[J].内蒙古石油化工,2010,37(6):83-84
    [64]肖锦,杞永亮.我国絮凝剂发展的现状与对策[J].现代化工,1997,1(12):6-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700