用户名: 密码: 验证码:
液体油品中硫、氮化物的氧化脱除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于燃油燃烧所导致的环境破坏越来越严重,世界各国对油品中的硫、氮化物的限制也因此越来越严格,不断提出硫含量更低的燃油标准,传统的加氢脱硫工艺受到较大挑战。因此,探究其他更为经济、有效的脱硫途径已经是世界范围内关注的热点。
     氧化脱硫法因具有反应条件温和,不耗氢,操作简单,并能有效脱除加氢工艺中难以去除的硫化物等优点,而备受关注。本课题组在钛硅分子筛催化氧化脱除硫化物方面已经取得了较好的效果,鉴于氮化物与硫化物共存于油品中,本文首先研究了在钛硅分子筛/H202体系下,油品中典型的氮化物对硫化物脱除的影响。然而由于钛硅分子筛合成成本较高,大量极性溶剂的存在造成了油品损失,因此本文还在无溶剂的条件下,在MoO3/γ-Al2O3/H2O2体系中研究了硫或氮化物的氧化脱除。论文主要内容分为三部分。
     一、典型的含氮化合物对模拟油品中硫化物氧化脱除的影响。
     在以钛硅分子筛为催化剂,H202为氧化剂,有溶剂存在的条件下,研究了油品中典型的氮化物吡啶、喹啉、吡咯和吲哚对小分子的硫化物噻吩(Th)以及大分子的苯并噻吩(BT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)氧化脱除的影响。结果表明:1.在TS-1/H2O2/H2O体系下,小分子的氮化物吡啶和吡咯对噻吩的氧化脱除存在较大的抑制作用,Th的脱除率均大大降低,碱性的吡啶较中性的吡咯影响更大。大分子的氮化物喹啉和吲哚由于分子较大,对噻吩的最终脱除率没有影响。2.在Ti-HMS/H2O2/Methanol体系中,分别引入氮化物喹啉和吲哚以及咔唑时, BT的初始脱除速率受到抑制,最终脱除率没有变化,均达到100%。氮化物喹啉、吲哚和咔唑及其氧化产物与BT分子在Ti-HMS活性中心上的竞争吸附限制了BT的吸附及氧化,从而降低了BT的氧化脱除速率。三环的咔唑分子对BT氧化脱除的影响小于喹啉和吲哚。3.通过喹啉和吲哚对4,6-DMDBT在Ti-HMS/H2O2/Methanol体系中脱除影响的研究,发现在体系中氮化物和硫化物之间的竞争吸附作用,是导致4,6-DMDBT的氧化脱除率降低的主要原因;碱性喹啉的对硫化物脱除的影响略高于中性的吲哚。
     二、模拟油品中硫化物在MoO3/γ-Al2O3/H2O2/无溶剂体系下的氧化脱除
     以MoO3/y-Al2O3为催化剂、无溶剂条件下,研究了硫化物的氧化脱除,得到如下的结果:1.发现硫化物的反应活性顺序为4,6-DMDBT>DBT>BT>Th,Th的氧化产物为H2SO4,其他三种硫化物的产物分别为各自的砜,反应过程中没有检测到亚砜的存在。而且硫浓度为150μg/g的4,6-DMDBT在反应至5 min时就已经被完全氧化脱除。2.在无溶剂条件下DBT的氧化脱除速度较快。由于溶剂(甲醇、乙腈)分子在催化剂活性中心上的吸附作用,大大的抑制了DBT的反应速率;当剂(甲醇)油比为1时,DBT在反应至120 min时的脱除率为91.5%;硫化物初始浓度越低,脱除速率越快;Mo03负载量为14 wt.%时的催化剂具有最好的催化氧化活性。3.使用过的催化剂通过甲醇溶液洗涤并烘干过夜,催化活性可以恢复,多次再生不影响MoO3/γ-Al2O3的活性,再生9次后催化剂活性没有降低。4.氮化物吡啶和喹啉的存在降低了Th的脱除率
     三、氮化物在MoO3/Al2O3/H2O2/无溶剂体系下的氧化脱除
     1.氮化物在MoO3/γ-Al2O3催化剂上的反应活性顺序为吡咯≈吲哚>喹啉≈吡啶,中性的氮化物较碱性的反应活性高。2.经过优化,在较佳的氧化脱除反应条件下喹啉的脱除率为74.9%。3.含磷钼源的使用提高了催化剂活性中心的分散度,增加了催化氧化中心的利用率,使得催化剂的活性提高约10%;当焙烧温度为873 K时,MoO3/γ-Al2O3具有较好的催化活性。4.研究了以MoO3/γ-Al2O3为催化剂,H202为氧化剂,无溶剂的条件下真实柴油和汽油中的氮化物的氧化脱除,结果表明柴油中氮化物的脱除率可达87.5%,汽油中的脱氮率为37.8%;柴油中的中性氮化物可完全被氧化脱除,碱性氮化物最难脱除。
The automobile exhaust pollution becomes more and more serious, most countries establish very stringent sulfur and nitrogen level for liquid oil to reduce the pollution emission, and the traditional HDS technology is facing a great challenge to produce ultra-low sulfur level fuel. So it is necessary to find an economical and efficient process to obtain low sulfur and nitrogen level fuel.
     The oxidative desulfurization technology is focused widely, because the advantages of mild reaction conditions, hydrogen free, simple operational conditions, and the sulfur compounds have the best reactivity in oxidative processes which are the most refractory in hydrodesulfurization. Our group had worked on oxidative desulfurization under Titanium silicalite/H2O2 system for some years, sulfur containing compounds can be removed successfully in our oxidative system, but the N-containing compounds co-exist with S-containing compounds in the liquid fuel, so we investigate the effect of N-containing compounds on oxidative desulfurization over Titanium silicalite catalysts. Considering the high cost of the Titanium silicalite catalysts and the loss caused by the use of solvent, the oxidative desulfurization or denitrogenation are investigated over MoO3/Y-Al2O3 catalyst under mild and solvent free conditions. The paper includes major three parts:
     1. The effect of N-containing compounds on oxidative desulfurization of model liquid fuel
     The effect of N-containing compounds (pyridine, pyrrole, quinoline, indole and kabazole) on oxidative removal of organosulfur compouds (Thiophene/Th, Benzothiophene/BT and 4, 6-Dimethyl dibenzothiophene/4,6-DMDBT) in model fuel is studied over Titanium silicalite with hydrogen peroxide, and get the following results:1. In the TS-1/H2O2/H2O system, the effect of pyridine and pyrrole on oxidative removal of Th is due to the competitive adsorption between sulfides and nitrides on the active centers of TS-1, the effect from pyridine is worse than that of pyrrole; quinoline and indole have no influence on the final removal rate of Th.2. In the Ti-HMS/H2O2/methanol system, BT initial removal rate decreases by the introduction of quinoline, indole or carbazole, and their oxidized products, no effect on the final BT removal rate. The effect from carbazole with three rings is less than that of quinoline and indole.3. The competitive adsorption between S and N-containing compounds on the active centers result in the decrease of removal rate of 4,6-DMDBT, the effect from Quinoline is worse than that of indole.
     2. Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions
     Th, BT, DBT (Dibenzothiophene) and 4,6-DMDBT is dissolved in n-octane separately as model fuel. The oxidative removal of S-containing compounds in model fuel is carried out with H2O2 over MoO3/γ-Al2O3 and solvent free conditions, the results are:1. The trend of oxidative reactivity of sulfur containing compounds is:4,6-DMDBT> DBT> BT> Th,4, 6-DMDBT can be oxidized in 5 min completely with initial sulfur concentration of 150μg/g, DBT and BT can be oxidized efficiently over MoO3/γ-Al2O3. The oxidized products of BT and DBTs are their corresponding sulfones under the conditions described above, and sulfoxides were not detected in the products, the product of Th is H2SO4.2. The employments of solvents (methanol and acetonitrile) have decreased the reaction rate of DBT, DBT removal rate is 91.5% after reaction 120 min when methanol was used as the solvent, and the efficient removal can be achieved under solvent free conditions, the technology is applied to process low sulfur fuel. The catalyst with 14.2 wt.% MoO3 loading shows the best activity on oxidative removal of DBT.3. The activity of spent catalyst is as well as the fresh one which is washed by methanol at 333 K and dried at 373 K in air over night, the regeneration processing have no influence on the activity of the catalyst.4. Pyridine and quinoline dreacrse the removal rate of Th under solvent free conditions.
     3. Oxidative denitrogenation with MoO3/y-Al2O3 and H2O2 under solvent free conditions
     In this part, the oxidation of N-containing compounds is studied with H2O2 over MoO3/γ-Al2O3 under solvent free conditions, there are several findings as results:1. The reactivity of the N-containing compounds trend as follow:pyrrole≈indole> pyridine≈quinoline, the neutral compounds can be oxidized easier than the basic ones.2. Removal rate of quinoline can be achieved at 74.9% over 0.1 g MoO3/γ-Al2O3 at 333 K with a molar ratio H2O2 to N is 4.3. The removal rate of quinoline increases over MoO3/γ-Al2O3 with keggin structure Mo precursor, which is due to the formation of well disperately Mo-O particles. The catalyst calcined at 873 K shows best oxidative denitrogenation activity.4. The oxidative denitrogenation of real gasoline and diesel with H2O2 over MoO3/γ-Al2O3 under solvent free conditions are investigated. The result of oxidative denitrogenation of diesel is better than that of gasoline, which removal rate is 87.5%, and that of gasoline is 37.8%. The neutral N-containing compounds ones can be oxidized completely in this oxidative processing, and the basic are the most refactory ones.
引文
[1]齐江,张瑾,戴猷元.石油产品溶剂脱氮研究进展.现代化工,1999,19(11):9-11.
    [2]王军民,马骆广生,朱慎林等.NOx对大气的污染与燃油的脱氮技术.环境保护,1997,02:12-14.
    [3]Nag N K, Sap re A V, Broderick D H et a 1. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided CoO-MoO3/γ-Al2O3:The relative reactivities. J. Catal.,1979,57(3):509-219.
    [4]Broderick D H, Sap re A V, Gates B C. Hydrodesulfurization of dibenzothiophene and related compounds catalyzed by sulfided CoO-MoO3/γ-Al2O3:Effects of reactant structure on reactivity. Am. Chem. Soc. Div. Petrol. Chem. Prepr.,1977,22:941-946.
    [5]Wang H M, Prins R. Hydrodesulfurization of dibenzothiophene,4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over Ni-MoS2/γ-Al2O3. J. Catal.,2009,264(1):31-43.
    [6]Teng Y, Wang A J, Li X et al. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure. J. Catal.,2009,266:369-379.
    [7]Whitehurst D D, Isoda T, Mochida I. Present State of the Art and Future Challenges in the Hydrosulfurization of Polyaromatic Sulfur Compounds. Adv. Catal.,1998,42:345-471.
    [8]Whitehurst D D, Farag H, Nagamatsu T et al. Assessment of limitations and potentials for improvement in deep desulfurization through detailed kinetic analysis of mechanistic pathways. Catal. Today,1998, 45(1-4):299-305.
    [9]Mochida I, Choi K-H. An Overview of Hydrodesulfurization and Hydrodenitrogenetion. J. Jpn. Petrol. Inst.,2004,47:145-163.
    [10]Laredo G C, Altamirano E, De los Reyes J A. Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. Appl. Catal. A:Gen.,2003,243(2): 207-214.
    [11]Zeuthen P, Knudsen K G, Whitehurst D D. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catal. Today,2001,65:307-14.
    [12]Whitehurst D D, Brorson M, Knudsen K et al.2003, US Pat.6 551 501, to Haldor Topsoe A/S.
    [13]Min W S, Choi K I, Khang, S Y et al. US Patent 6 248 230,2001, to SK Corporation
    [14]Schlatter J C, Oyama S T, Metcalfe III J E. Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. et al. Ind. Eng. Chem. Res.,1988,27(9): 1648-1653.
    [15]于道永,徐海,阙国和.石油非加氢脱氮技术进展.化工进展,2001,10:32-35.
    [16]Oyama S T, Yu C C, Ramanathan S. Transition Metal Bimetallic Oxycarbides:Synthesis, Characterization and Activity Studies.1999,184(2):535-549.
    [17]Lee K S, Abe H, Reimer I A et al. Hydrodenitrogenation of Quinoline over High-Surface-Area Mo2N. J. Catal.,1993,139(1):34-40.
    [18]Abe H. Cheung T K, Bell A T. The activity of transition metal nitrides for hydrotreating quinoline and thiophene. Catal. Lett.,1993,21(1-2):11-18.
    [19]Colling C W, Thompson L T. The structure and function of supported molybdenum nitride hydrodenitrogenation catalysts. J. Catal.,1994,146:193-203.
    [20]Ramanathan S, Oyama S T. New catalysts for hydroprocessing:Transition metal carbides and nitrides. J. Phys. Chem.,1995,99:16365-16372.
    [21]Choi J G, Brenner J R, Thompson L T. Pyridine Hydrodenitrogenation over Molybdenum Carbide Catalysts. J. Catal.,1995,154(1):33-40.
    [22]Sardhar Basha S J, Sasirekha N R, Maheswari R et al. Mesoporous H-A1MCM-41 supported NiO-MoO3 catalysts for hydrodenitrogenation of o-toluidine:Ⅰ. Effect of MoO3 loading. Appl. Catal. A: Gen.,2006,308:91-98.
    [23]孙桂大,闫富山.石油化工催化作用导论.北京:中国石化出版社,2000:185-197.
    [24]程启.RN-10催化剂在柴油加氢装置的工业应用.工业催化,2003,11(11):17-20.
    [25]Koranyi T I, Coumans A E, Hensen E M et 1. The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts. Appl. Catal. A:Gen.,2009, 365(1):48-54.
    [26]Hernandez-Maldonado A J, Yang R T. Desulfurization of Diesel Fuels by Adsorption via π-Complexationwith Vapor Phase Exchanged (VPIE) Cu(I)-Y Zeolites. J. Am. Chem. Soc.,2004,126: 992-993.
    [27]Hernandez-Maldonado A N, Yang F H, Qi G et al. Desulfurization of Commercial Fuels by π-Complexation:Monolayer CuCl/γ-Al2O3. Appl. Catal. B:Environ.,2005,56:111-126.
    [28]Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of Transportation Fuels with Zeolites under Ambient Conditions. Science,2003,301:79-81.
    [29]Yang R T, Takahashi A, Yang F H. New Sorbents for Desulfurization of Liquid Fuels by π-Complexation. Ind. Eng. Chem. Res.,2001,40:6236-6239.
    [30]Wang Y H, Yang F H, Yang R T et al. Desulfurization of high-sulfur jet fuel by pi-complexation with copper and palladium halide sorbents, Ind. Eng. Chem. Res.,2006,45:7649-7655.
    [31]Wang Y H, Yang R T, Heinzel J M, Desulfurization of jet fuel by π-complexation adsorption with metal halides supported on MCM-41 and SBA-15 mesoporous materials, Chem. Eng Sci.,2008,63: 356-365.
    [32]周丹红,王玉清,贺宁等.Cu(Ⅰ)、Ag(Ⅰ)/分子筛化学吸附脱硫的π-络合机理.物理化学学报,2006,22(5):542-547.
    [33]Zhou H Y, Li G, Wang X X et al. Preparation of a kind of mesoporous carbon and its performance in adsorptive desulfurization. J. Nat. gas chem.,2009,18(3):365-368.
    [34]张晓静,秦如意,刘金龙等.催化裂化汽油吸附工艺研究.炼油设计,2001,31(6);44-47.
    [35]Zhou A N, Ma X L, Song C S. Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel. Appl. Catal. B:Environ.,2009,87:190-199.
    [36]Kim J H, Ma X L, Zhou A N et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism. Catal. Today,2006,111:74-83.
    [37]Irvine Robert L. Process for desulfuring gasoline and hy-drocarbon feedstocks.1998, US Pat. 5730860.
    [38]Varraveto D M, Black & Veatch Pritchard, Inc. IRVADTM Process-low cost breakthrough for low sulfur gasoline. NPRA.1999, AM-99-42.
    [39]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺脱附剂的研究.石油炼制与化工,2004,35(4):5-8.
    [40]秦如意,张晓静,刘金龙等.FCC汽油吸附脱硫工艺脱附剂的研究.石油炼制与化工,2003,34(3):24-27.
    [41]Ma X L, Velu S, Kim J H et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for cell applications. Appl. Catal. B:Environ.,2005,56(1/2):137-147.
    [42]Velu S, Kim J H, Song C S. Fuel Cell Grade Gasoline Production by Selective Adsorption for Removing Sulfur. Am. Chem. Soc. Div. Petr. Chem. Prepr.,2003,48(2):58-59.
    [43]Breysse M, Djega M G, Pessayre S, Vrinat M, Perot G, Lemaire M. Deep desulfurization:reactions, catalysts and technological challenges. Catal. Today,2003,84(3/4):129-138.
    [44]Ma X L, Sun L, Song C S. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catal. Today,2002,77:107-116.
    [45]Zhang Z Y, Shi T B, Jia C Z et al. Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites. Appl. Catal. B:Environ.,2008,82:1-10.
    [46]Ma X L, Song C S. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B:Environ.,2003,41(1/2):207-238.
    [47]Babich I V, Moulijin J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review. Fuel,2003,82:607-631.
    [48]June H K, Lee T J, Kim J C. A Study of Zn-Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides. Ind. Eng. Chem. Res.,2002,41:4733-4738.
    [49]Simane R B, Abbasian J. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization. Fuel Process. Technol.,2001,70:97-113.
    [50]Khare Granesh P, Engelbert, Donald R et al. Transport desulfurization Process Utilizing a Sulfur Sorbent that is both Fluidizable and Circulatable and a Method of Making such Sulfur Sorbent. US Pat. 5914292,1999.
    [51]Phillips Petroleum, December 2001. http://www.fuels technology.com/szorb diesel. html.
    [52]Gslason J, Oil Gas J. Phillips sulfur-removal process nears commercialization,2002,99:74-76.
    [53]柯明,周爱国,赵振盛等.FCC汽油烷基化脱硫技术进展.化工进展,2006,25(4):357-358.
    [54]Selvavathi V, Chidambaram V, Meenakshisundaram A, et al. Adsorptive desulfurization of diesel on activated carbon and nickel supported systems. Catal. Today,2009,141:99-102.
    [55]Sotsuki T, Takashimaetal N. Oxidation desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels,2000,14:1232-1239.
    [56]Horii Y j, Onuki H, Doi S et al. Desulfurization of light oil by xtraction. US Pat.1996,494572.
    [57]王磊,沈本贤.催化裂化汽油中乙腈萃取脱硫的研究,华东理工大学学报(自然科学版),2008,02(34):36-40.
    [58]李海彬,章建华,沈本贤等.N,N-二甲基甲酰胺对催化汽油的萃取脱硫,石化技术与应用,2008,(26)4:312-315.
    [59]Bernheimer R, Denitrogenation of petroleum products.1972, US Pat.3666660.
    [60]Wilkes J S, Zaworotko M. Chem. Commun., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc, Chem. Commun.,1992:965-967.
    [61]Wasserscheid P, Keim W. Angew. Chem. Int. Ed.,2009,39:3772-3789.
    [62]Strawinski R J. Method of desulfurization crude oil. US Pat.2521761,1950.
    [63]Klibane J J. Biodesulfurization:future prospects in coal cleaning. Proceedings 7# Annual International Pittsburgh Coal Conference.1990,373-381.
    [64]Garcia S R. A "live" catalyst for refiners. Hydrocarb. Process.,1995,74(5):19-20.
    [65]钟慧芳,李雅芹,刘国振等.微生物脱除煤炭中有机硫的研究,微生物学报,2000,35(2):130-135.
    [66]孙章,董恩广,李亮等.催化裂化柴油生物脱硫,辽宁化工,2008,37(3);168-171.
    [67]王会芳,财音青格乐,张彦等.燃料油的生物脱硫,化学工业与工程,2006,23(1):6-9.
    [68]Vasily H, Fajula F, Bousquet J. Mild Oxidation with H2O2 over Ti-Containing Molecular Sieves-A very Efficient Method for Removing Aromatic Sulfur Compounds from Fuels. J. Catal.,2001,198(2): 179-186.
    [69]Branko S J. Suitability of furan, pyrrole and thiophene as dienes for Diels-Alder reactions viewed through their stability and reaction barriers for reactions with acetylene, ethylene and cyclopropene. An AM1 semiempirical and B3LYP hybrid density functional theory study. J. Mol. Struct., (Theochem) 1998, 454:105-106.
    [70]陈敏为, 甘礼骓等.有机杂环化合物.北京:高等教育出版社.1990:26-56.
    [71]徐瑞秋,裴伟伟,刑其毅等.基础有机化学.北京:高等教育出版社.1984:1013-1085.
    [72]Jiang B W, Tilley T D. Heterocyclic Compounds Chemlnform Abstract:General, Efficient Route to Thiophene-1-oxides and Well-Defined, Mixed Thiophene-Thiophene-1-oxide Oligomers. J. Am. Chem. Soc.,1999,121(41):9744-9745.
    [73]Suh M C, Jiang B W, Tilley T D. An Efficient, Modular Synthetic Route to Oligomers Based on Zirconocene Coupling:Properties for Phenylene-Thiophene-1-Oxide and Phenylene-Thiophene-1, 1-Dioxide Chains This research was supported by the National Science Foundation. M.C.S. Angew. Chem., Int. Ed.,2000,39(16):2870-2873.
    [74]相田哲夫.过酸化水素によ石油の酸化脱硫Petrotech.,2000,23(6):483-486.
    [75]Petro Star Inc. Method of desulfurization and deatomatization of petroleum liquids by oxidation and dolvent extraction. US Pat. Appl.,20020035306,2002.
    [76]Dolbear G E, Skov E R. Selective oxidation as a route to petroleum desulfurization. Preprints,2000, 45(2):375-378.
    [77]Bonde S E, Gore W, Dolbear G E. DMSO extraction of sulfones from selectively oxidized fuels. Preprints,1999,44(2):199-201.
    [78]Oston R, Fellin P. VOCs in representative Canadian residenceds. Atmos. Environ.,1994,28(3): 565-569.
    [79]Dehkordi A M, Sobati M A, Nazem M A. Oxidative Desulfurization of Non-hydrotreated Kerosene Using Hydrogen Peroxide and Acetic Acid. Chin. J. Chem. Eng.,2009,17(5):869-874.
    [80]Huang D, Want Y J, Yang L M et al. Chemical Oxidation of Dibenzothiopthene with a Directly Combined Aphiphilic Catalyst for Deep Desulfurization. Ind. Eng. Chem. Res.,2006,45:1880-1885.
    [81]Li C, Jiang Z X, Gao J B. Ultra-deep desulfurization of diesel oxidation with a recoverable catalyst assembled in emulsion. Eur. Chem.,2004,10:2277-2280.
    [82]Lu H Y, Gao J B, Jiang Z X. Ultra-deep desulfurization of diesl by selective oxidation with [C18H37(CH3)3]4[H2NaPW10O36] catalyst assembled in emusion droplets. J. Catal,2006,239(2):369-375.
    [83]Gao J B, Wang S G, Jiang Z X. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxo-tungsten catalyst assembled in emulsion droplets. J. Mol. Catal. A:Chem.,2006, 258(1-2):261-266.
    [84]Lu H Y, Gao J B, Jiang Z X. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem. Commun.,2007,2:150-152.
    [85]He L, Li H M, Zhu W S et al. Deep Oxidative Desulfurization of Fuels Using Peroxophosphomolybdate Catalysts in Ionic Liquids, Ind. Eng. Chem. Res.,2008,47:6890-6895.
    [86]Li H M, He L, Zhu W S et al. Deep Oxidative Desulfurization of Fuels Catalyzed by Phosphotungstic Acid in Ionic Liquids at Room Temperature. Energy Fuels,2009,23,1354-1357.
    [87]Zhu W S, Li H M, Jiang X et al. Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids. Energy Fuels,2007,21,2514-2516.
    [88]Yan X M, Lei J H, Liu D et al. Oxidation reactivities of organic sulfur compounds in fuel oil using immobilized heteropoly acid as catalyst. J. Wuhan Univ. technol.,2007,22(2):320-324.
    [89]Shiraishi Y, Hirai T, Komadawa I. Oxidative desulfurization process for light oil using titanium silicate molecular sieve catalysts. J. Chem. Eng. Jpn.,2002,35(12):1305-1311.
    [90]Nemeth L, Bare S R, Rathbun W et al. Oxidative desulfurization of sulfur compounds:Oxidation of thiophene and derivatives with hydrogen peroxide using Ti-Beta catalyst. Stud. Surf. Sci. Catal.,2008,174 (2):1017-1020.
    [91]Shah A T, Li B S, Abdalla Z E A. Direct synthesis of Ti-containing SBA-16-type mesoporous material by the evaporation-induced self-assembly method and its catalytic performance for oxidative desulfurization. J. Colloid Interf. Sci.,2009,336:707-711.
    [92]Aridan A, Bechtel Corporation. Mark Cullen Sulphco Inc. Desulfurization via Selective Oxidative pilot Plant Result sand Commercialization Plans. NPRA,2001.
    [93]Kong L Y, Li G, Wang X S. Kinetics and mechanism of liquid-phase oxidation of thiophene over TS-1 using H2O2 under mild conditions. Catal. Let.,2004,92(3-4):163-167.
    [94]Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2. Catal. Today,2004,93-95: 341-345.
    [95]孔令艳,李钢,王祥生等.TS-1/过氧化氢催化体系中有机硫化物的选择氧化的研究.催化学报,2004,25(10):775-778.
    [96]王云,李钢,王祥生等Ti-HMS催化氧化脱除燃油中硫化物.催化学报,2005,26(7):567-570.
    [97]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl. Catal. A:Gen.,2006,305:15-20.
    [98]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel by Mo/Al2O3-H2O2 system:The effect of system parameters on catalytic activity. Appl. Catal. A:Gen.,2008,334:366-373.
    [99]Cedeno-Caero L, Hernandez E, Pedraza F et al. Oxidative desulfurization of synthetic diesel using supported catalysts Part Ⅰ. Study of the operation conditions with a vanadium oxide based catalyst. Catal. Today,2005,107-108:564-569.
    [100]Gonzalez-Garcia O, Cedeno-Caero L. V-Mo based catalysts for oxidative desulfurization of diesel fuel. Catal. Today,2009,148:42-48.
    [101]Gomez-Bernal H, Cedeno-Caero L, Gutierrez-Alejandre A. Liquid phase oxidation of dibenzothiophene with alumina-supported vanadium oxide catalysts:An alternative to deep desulfurization of diesel. Catal. Today,2009,142:227-233.
    [102]Gonzalez-Garcia O, Cedeno-Caero L. V-Mo based catalysts for ODS of diesel fuel. Part Ⅱ. Catalytic performance and stability after redox cycles. Catal. Today,2010,150:237-243.
    [103]Chica A, Corma A, Domine M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J. Catal.,2006,242:299-308.
    [104]周新锐.用于深度脱硫的苯并噻吩类无水催化剂反应研究:(博士学位论文).大连:大连理工大学,2008.
    [105]Chang J, Wang A J, Liu J et al. Oxidation of dibenzothiophene with cumene hydroperoxide on MoO3/SiO2 modified with alkaline earth metals. Catal. Today,2009,149(1-2):122-126.
    [106]Ma X L, Zhou A N, Song C S. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catal. Today, 2007,123:276-284.
    [107]Sundararaman R, Ma X L, Song C S. Oxidative Desulfurization of Jet and Diesel Fuels Using Hydroperoxide Generated in Situ by Catalytic Air Oxidation. Ind. Eng. Chem. Res.,2010,49:5561-5568.
    [108]何柏,唐晓东,崔盈贤等.直馏汽油NOx-O2催化氧化脱硫的探索研究.石油炼制与化工,2007,38(6):11-14.
    [109]唐晓东,税蕾蕾,刘亮.直馏柴油NOx-空气催化氧化脱硫研究.催化学报,2004,25(10):789-792.
    [110]唐晓东,何柏,崔盈贤等.一种直馏汽油催化氧化脱硫的方法.中国专利,2007,CN200610021940.
    [111]杨金荣,候影飞,孔瑛等.柴油臭氧氧化脱硫研究.石油大学学报(自然科学版),2002,26(4):84-86,89.
    [113]Yin J M, Guo M. Cobalt-catalyzed photochemical methoxycarbonylation of olefins with carbon dioxide under ambient conditions. Chin. Chem. Lett.,2000,11(3):223-224.
    [114]Badstube T, Papp H, Dziembay R et al. Screening of catalysts in the oxidative dehydrogenation of ethylbenzene with carbon dioxide. Appl. Catal. A:Gen.,2000,204:153-65.
    [115]Tam P S, Kittrell J R, Eldridge J W. Ind. Eng. Chem. Res.,1990,29:321-324.
    [116]Tam P S, Kittrell J R, Eldridge J W. Ind. Eng. Chem. Res.,1990,29:324-329.
    [117]张浩.催化裂化柴油中碱性氮化物的脱除研究:(硕士学论文).武汉:武汉科技大学,2006.
    [118]齐江,延玉臻,费卫峰等.醋酸对催化裂化柴油的络合萃取精制.石油炼制与化工,1997,28(11):10-12.
    [119]Wang Y Z, Li R L, liu C G. Removal of nitrogen compounds from lubricating base stocks with complexing of oxalic acid. Fuel Process. Technol.,2004,86(4):419-427.
    [120]刘淑芝,范印帅,王宝辉等.络合萃取脱除FCC柴油中的碱性氮化物.化工进展,2008,27(1):108-111.
    [121]杨丽娜,由宏君.纯糠醛萃取脱除催化裂化柴油中的碱性氮化物.贵州化工,2003,28(4):19-20.
    [122]曾丹林,王国兴.复合吸附剂提高催化裂化柴油安定性的研究.炼油技术与工程,2003,33(6):54-56.
    [123]Kim J H, Ma X L, Zhou A N et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents:A study on adsorptive selectivity and mechanism. Catal. Today,2006,111:74-83.
    [124]Hernandez-Maldonado J, Yan R T. Denitrogenation of Transportation Fuels by Zeolites at Ambient Temperature and Pressure. Angew. Chem. Int. Ed.,2004,43,1004-1006.
    [125]Ishihara A, Wang D, Dumeignil F et al. Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl. Catal. A:Gen.,2005,279(1):279-287.
    [126]Robinson D J, McMorn P, Bethell D et al. N-oxidation of pyridines by hydrogen peroxide in the presence of TS-1. Catal. Lett.,2001,72(3-4):233-234.
    [127]Selvam T, Vinod M P, Vijayamohanan K. Catalytic and Electrocatalytic Oxidation of Aniline to Nitrobenzene over Vanadium Silicate Molecular Sieves:VS-1 Using tert-Butyl Hydroperoxide (TBHP) as Oxidant. React. Kinet. Catal. Lett.,1997,60:137-144.
    [128]Sonawane H R, Pol A V, Moghe P P et al. Selective Catalytic Oxidation of Arylamines to Azoxybenzenes with H2O2 over Zeolite. J. Chem. Soc. Chem. Commun.,1994,1215-1216.
    [139]Shiraishi Y, Tachibana K, Hirai T et al. Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation followed by Liquid-Liquid Extraction. Ind. Eng. Chem. Res.,2002,41, 4362-4375.
    [130]Shiraishi Y, Naito T, Hirai T. Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil. Ind. Eng. Chem. Res.,2003,42:6034-6039.
    [131]周新锐,马红,付新梅等.过氧化叔丁醇在钼催化剂下对咔唑的催化氧化研究.燃料化学学报,2010,38(1):75-79.
    [132]赵树光,张学军.溶剂脱氮一低压缓和加氢精制重油催化柴油.河南化工,2002,8:12-14.
    [133]Gibbs P R, et al. Prepr. Am. Chem. Soc, Div. Fuel Chem.,1999,44(1):1-4.
    [134]Benedik M J. Gibbs P P et al. Microbial denitrogenation of fossil. Trends Biotechnol.,1998,16 (9): 390-395.
    [135]马骏,隋新等.微波处理吸附剂脱除碱性氮化物的研究.石油化工高等学校学报,2004,17(2):9-12.
    [136]Habeeb J J. Method for selectively removing basic nitrogen compounds from lube oils using transition metal halides or transition metal tetrafluoroborates. US Pat.4329222,1982.
    [137]Eisch J J, Lawrence E, Lucarelli A H et al. Desulphurization and denitrogenation of SRC Liquids by transition metals on solid supports. Fuel,1985,64(4):440-442.
    [138]崔盈贤,唐晓东.复合萃取剂选择性萃取脱硫研究.石油与天然气化工,2005,34(5):387-388.
    [139]Toteva V, Georgiev A, Topalova L. Oxidative desulphurization of light cycle oil Monitoring by FTIR spectroscopy. Fuel Process. Technol.,2009,90:965-970.
    [140]董琳燕.钛硅分子筛催化氧化脱除噻吩的研究:(硕士学位论文).大连:大连理工大学,2009.
    [1]Wang L Q,Wnag X S,GuoXWetal.Quick synthesis of titanium siliealite-1.Chin.J.Catal.,2001,22(6):513-514.
    [2]石油产品中碱性氮测定法.中华人民共和国石油化工行业标准,1992,SH/T 0162-92.
    [1]Zeuthen P, Knudsen K G, Whitehurst D D. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catal.Today,2001,65:307-314.
    [2]Wiel P, Knudsen K, Zeuthen P et al. Assessing Compositional Changes of Nitrogen Compounds during Hydrotreating of Typical Diesel Range Gas Oils Using a Novel Preconcentration Technique Coupled with Gas Chromatography and Atomic Emission Detection. Ind. Eng. Chem. Res.,2000,39:533-540.
    [3]Ho T C. Hydrodenitrogenation Catalysis. Catal. Rev. Sci. Eng.,1988,30(1):117-160.
    [4]Gatea B C, Topsoe H. Reactivities in deep catalytic hydrodesulfurization:challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Polyhedron.,1997,16 (18):3213-3217.
    [5]Ho T C. Property-reactivity correlation for HDS of middle distillates. Appl. Catal., A:Gen.,2003, 244(1):115-128.
    [6]Laredo G C, Altamirano E, Delos J A. Rey Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catal. Today,2001,65:307-314.
    [7]Whitehurst D D, Isoda T, Mochida I. Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds. Adv. Catal.,1998,42:345-471.
    [8]Shin S H, Yang H J, Sakanishi K et al. Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst. Appl. Catal. A:Gen.,2001,205(1-2): 101-108.
    [9]Sano Y, Choi K H, Korai Y, Mochida I. Adsorptive removal of sulfur and nitrogen species from straight run gas oil over activated carbons for its deep hydrodesulfurization. Appl. Catal. B:Environ.,2004,49(4): 219-225.
    [10]Landau M V. Deep hydrotreating of middle distillates from crude and shale oils. Catal.Today,1997, 36(4):393-429.
    [11]于道永,徐海,阙国和.石油非加氢脱氮技术进展.化工进展,2001,10:32-35.
    [12]Esposito A, Taramasso M, Neri C. US Pat.4396783,1983.
    [13]Thangaraj A, Kumar P. Catalytic properties of crystalline titanium silicalites Ⅱ. Hydroxylation of phenol with hydrogen peroxide over TS-1 zeolites. J. Catal.,1991,131(1):294-297.
    [14]Thangaraj A, Kumar P, Ratnasamy. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites. Appl. Catal.,1990,57(1):L1-L3.
    [15]Cedeno Caero L, Jorge F, Navarro A et al. Oxidative desulfurization of synthetic diesel using supported catalysts:Part II. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catal. Today,2006,116(4):562-568.
    [16]Wang D, Qian E W, Amano H et al. Oxidative desulfurization of fuel oil:Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Appl. Catal. A:Gen.,2003,253(1):91-99.
    [17]Cedeno Caero L, Hernandez E, Pedraza F et al. Oxidative desulfurization of synthetic diesel using supported catalysts:Part I. Study of the operation conditions with a vanadium oxide based catalyst. Catal. Today,2005,107:564-569.
    [18]Ishihara A, Wang D H, Duoeignil F et al, Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl. Catal. A:Gen.,2005,279(1-2):279-287.
    [19]孔令艳.钛硅分子筛催化氧化脱除噻吩类硫化物的研究:(博士学位论文).大连:大连理工大学,2005.
    [20]王云,李钢,王祥生等Ti-HMS催化氧化脱除模拟燃料中的硫化物.催化学报,2005,26(7):567-270.
    [21]Niwas R, Gupta U, Khan A A et al. The Adsorption of Phosphamidon on the Surface of Styrene Supported Zirconium (IV) Tungstophosphate:A thermodynamic study. Colloid Surf. A.,2000,164(2-3): 115-119.
    [22]Bansal R C, Donnet J B, Stoeckli F. Active Carbon, New York:Dekker.1988, p:27-118,259-333.
    [23]Shiraishi Y, Tachibana K Hirai T et al. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction. Ind. Eng. Chem. Res.,2002,41(17): 4362-4375.
    [1]Song C S, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B:Environ.,2003,41:207-238.
    [2]Whitehurst D D, Farag H, Nagamatsu T et al. Assessment of limitations and potentials for improvents in deep sesulfurization through detailed kinetic analysis of mechanistic pathways. Catal. Today,1998, 45(1-4):299-305.
    [3]Yin C, Zhi G, Xia D. The distribution of sulfur compounds in full-range FCC and RFCC naphthas. Fuel Process. Technol.,2002,79:135-140.
    [4]孔令艳.钛硅分子筛催化氧化脱除噻吩类硫化物的研究:(博十学位论文).大连:大连理工大学,2005.
    [5]Wang Y, Li G, Wang X S et al. Catalytic Oxidative Desulfurization of Model Fuel over Ti-HMS Zeolite, Chin. J. Catal.,2005,7:567-570.
    [6]Van Veen J A R, Hendriks P A J M, Romers E J G M et al. Chemistry of phosphomolybdate adsorption on alumina surfaces.1. The molybdate/alumina system. J. Phys. Chem.,1990,94(13):5275-5282.
    [7]Menseh C T J, Van Veen J A R, Van Wingerden B et al. Extended x-ray absorption fine structure study of molybdenum/alumina samples prepared by equilibrium adsorption of ammonium heptamolybdate. J. Phys. Chem.,1988,92(17):4961-4964.
    [8]Kasztelan S, Grimblot J, Bonnelle J P. Surface analysis of alumina-supported molybdenum oxide (MoO3), nickel oxide (NiO), and NiO-MoO3 by low energy ion scattering spectroscopy. J. Phys. Chem., 1987,91(6):1503-1508.
    [9]Chica A, Corma A, Domine M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor, J. Catal.,2006,242(2):299-308.
    [10]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/AI2O3-H2O2 system:The effect of system parameters on catalytic activity. Appl. Catal. A:Gen.,2008,334(1-2):366-373.
    [11]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl. Catal. A:Gen.,2006,305(1):15-20.
    [12]Riou D, Leligeny H, Pham C et al. Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta. Cryst. B.,1991,47(5):617-630.
    [13]Lopez Cordero R, Gil Llambias F J, Lopez Agudo A. Temperature-programmed reduction and zeta potential studies of the structure of MoO3/Al2O3 and MoO3/SiO2 catalysts effect of the impregnation pH and molybdenum loading. Appl. Catal.,1991,74(1):125-136.
    [14]Atanasova P, Lopez Cordero R, Mintchev L et al. Temperature programmed reduction of the oxide form of PNiMo/Al2O3 catalysts before and after water extraction. Appl. Catal. A:Gen.,1997,159(1-2): 269-289.
    [15]Burwell R L, Chung J S. Highly reduced Mo/Al2O3 catalysts. React. Kinet. Catal. Lett.,1987,35(1-2): 381-390.
    [16]Zingg D S, Makovsky L E, Tischer R E et al. A surface spectroscopic study of molybdenum-alumina catalysts using x-ray photoelectron, ion-scattering, and Raman spectroscopies. J. Phys. Chem.,1980, 84(22):2898-2906.
    [17]Oae, S. Organic Sulfur Chemistry:Structure and Mechanism, CRC Press:Boca Raton, FL,1991, M.
    [18]Wang D H, Qian E W H, Amano H et al. Oxidative desulfurization of fuel oil:Part Ⅰ. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide. Appl. Catal. A:Gen.,2003,253:91-99.
    [19]Otsuki S, Nonaka T, Takashima N et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction. Energy Fuels,2000,14(6):1232-1239.
    [20]Yan X M, Mei P, Lei J H et al. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst. J. Mol. Catal. A:Chem.,2009,304: 52-57.
    [21]Li H M, He L N, Lu J D et al. Deep Oxidative Desulfurization of Fuels Catalyzed by Phosphotungstic Acid in Ionic Liquids at Room Temperature. Energy Fuels,2009,23(3):1354-1357.
    [22]Prasad V V D N, Jeong K E, Chae H J et al. Oxidative desulfurization of 4,6-dimethyl dibenzothiophene and light cycle oil over supported molybdenum oxide catalysts. Catal. Commun.,2008, 9(10):1966-1969.
    [23]Chary K V R, Reddy K R, Kumar C P. Dispersion and reactivity of molybdenum oxide catalysts supported on titania. Catal. Commun.,2001,2(9):277-284.
    [24]Figueras F, Palomeque J, Loridant S et al. Influence of the coordination on the catalytic properties of supported W catalysts. J. Catal.,2004,226:25-31.
    [25]Teng Y, Wang A J, Li X et al. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure. J. Catal.,2009,266:369-379.
    [26]Capel-Sanchez M C, Perez-Presas P, Campos-Martin J M et al. Highly efficient deep desulfurization of fuels by chemical oxidation. Catal. Today,2010,157:390-396.
    [1]Cedeno Caero L, Jorge F, Navarro A et al. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅱ. Effect of oxidant and nitrogen-compounds on extraction-oxidation process. Catal. Today, 2006,116(4):562-568.
    [2]Shiraishi Y, Naito T, Hirai T, Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil. Ind. Eng. Chem. Res.,2003,42(24):6034-6039.
    [3]Mestl G, Srinivasan T K K. Raman Spectroscopy of Monolayer-Type Catalysts:Supported Molybdenum Oxides. Catal. Rev.-Sci. Eng.,1998,40(4):451-570.
    [4]Prins R, Beer V H J, Somorjai G A. Structure and Function of the Catalyst and the Promoter in Co-Mo Hydrodesulfurization Catalysts. Catal. Rev.-Sci. Eng.,1989,31(1-2):1-41.
    [5]Williama C C, Ekdert J G, Jehng J M et al. A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide. J. Phys. Chem.,1991,95(22):8791-8797.
    [6]Martin C, Martin I, Rives V, et al. Changes in the Structure of TiO2-Supported Molybdena Induced by Na-Doping. J. Catal.,1994,147(2):465-475.
    [7]Rajagopal S, Marini H J, Marzari J A et al. Silica-Alumina-Supported Acidic Molybdenum Catalysts-TPR and XRD Characterization. J. Catal.,1994,147(2):417-428.
    [8]Massoth F E. Characterization of Molybdena Catalysts. Characterization of Molybdena Catalysts. Adv. Catal. A:Gen.,1979,27:265-310.
    [9]Cordero R L, Llambias F J G, Agudo A L, Temperature-programmed reduction and zeta potential studies of the structure of MoO3/Al2O3 and MoO3/SiO2 catalysts effect of the impregnation pH and molybdenum loading, Appl. Catal. A:Gen.,1991,7:125-136.
    [10]Atanasova P, Cordero R L, Mintchev L, Halachev T, Agudo A L, Temperature programmed reduction of the oxide form of PNiMo/Al2O3 catalysts before and after water extraction, Appl. Catal. A:Gen.,1997, 159:269-289.
    [11]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system:The effect of system parameters on catalytic activity. Appl. Catal. A:Gen.,2008,334:366-373.
    [12]DeCanio E C, Edwars J C, Scalzo T R et al. FT-IR and solid-state NMR investigation of phosphorus promoted hydrotreating catalyst precursors. J. Catal.,1991,132(2):498-511.
    [13]Lopez R C, Lopez S G, J G L et al. Formation of Al2(MoO4)3 and MoO3 phases induced by phosphate in molybdena-phosphorus catalysts. J. Catal.,1990,126(1):8-12.
    [14]Lewis M J, Kydd A R, Boorman M P et al. Phosphorus promotion in nickel-molybdenum/alumina catalysts:model compound reactions and gas oil hydroprocessing. Appl. Catal. A:Gen.,1992,84(2): 103-121.
    [15]Kraus H, Prins R. The Effect of Phosphorus on Oxidic NiMo(CoMo)/γ-Al2O3Catalysts:A Solid State NMR Investigation. J. Catal.,1997,170(1):20-28.
    [16]陈立东.杂多酸/纳米HZSM-5复合固体酸催化剂的制备、表征及其催化性能研究:(博士学位论文)大连:大连理工大学,2007.
    [17]Seifert G, Finster J, Mueller H. SW Xa calculations and x-ray photoelectron spectra of molybdenum(II) chloride cluster compounds. Chem. Phys. Lett.,1980,75(2):373-377.
    [18]Ho S F, Contarini S, Rabalais J W. Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M=chromium, molybdenum, tungsten, vanadium, niobium and tantalum. J. Phys. Chem.,1987,91(18):4779-4788.
    [19]Teng Y, Wang A J, Li X et al. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure. J. Catal.,2009,266:369-379.
    [20]Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E et al. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on A12O3, Appl. Catal. A:Gen.,2006,305:15-20.
    [21]Iwamoto R, Grimblot J. Influence of Phosphorus on the Properties of Alumina-Based Hydrotreating Catalysts. Adv. Catal.,1999,44:417-503.
    [22]Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites. J. Mol. Catal.,1992,71:129-147.
    [23]Khouw C B, Dartt C B, Labinger J A et al. Studies on the catalytic oxidation of alkanes and alkenes by titanium silicates. J. Catal.,1994(1),149:195-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700