用户名: 密码: 验证码:
显性雄性核不育亚麻雄性不育相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻(Linium usitatissimum L.)是我国北方地区重要的油料作物和纤维作物或油纤兼用作物。亚麻籽和亚麻籽油具有保健和药用功效。亚油酸具有降低血液中的胆固醇的作用,而α-亚麻酸是生成二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahexaenoic acid,DHA)的前提物质,EPA和DHA的适当的混合物具有降低血脂和减少血栓形成的作用。亚麻木酚素具有调节人体激素平衡、抑制癌症等功效。近年来,亚麻的保健、医药功能不断得到开发,对优质品种的需求不断提高。但由于亚麻是自花授粉作物,其遗传变异的扩大和杂种优势的利用却受到限制。因此,亚麻花药、花粉发育过程中有关基因及其启动子的研究对获得基因工程亚麻雄性不育系及亚麻杂种优势的利用具有重要的意义。本文采用同源序列克隆法,从亚麻花蕾中克隆出与拟南芥雄性不育基因-MS2同源的亚麻MS2-F基因并对其进行了序列和表达分析以及蛋白质结构和功能预测。构建MS2-F基因RNAi表达载体,通过农杆菌介导法进行亚麻的遗传转化。同时,开展了显性雄性核不育亚麻可育、不育花蕾mRNA差异表达以及差异表达基因片段序列分析和功能预测等研究,为揭示显性雄性核不育亚麻不育分子机理提供了有价值的线索。研究结果如下:
     (1)根据拟南芥等其他植物中雄性不育相关基因氨基酸序列的保守性,应用同源序列克隆法,首先在亚麻花蕾中扩增出258bp的一段序列,然后以该序列为基础,通过RACE技术扩增了基因的5′、3′端序列,其大小分别为975bp和869bp。拼接后获得了1911bp的cDNA序列。
     (2)根据该cDNA序列,设计基因特异引物,扩增基因的全长cDNA和gDNA。测序结果表明,cDNA为1709bp,gDNA为2696bp,序列分析结果显示,该基因含有8个内含子和9个外显。
     (3)该cDNA中包含一个1608 bp的ORF,编码535个氨基酸,5′非编码区70bp,3′非编码区31bp。推导的蛋白质序列中包含两个雄性不育保守区:NAD结合区域和雄性不育C-末端区域。该基因与油菜、拟南芥雄性不育基因的一致性分别为59.65%和59.16%,为花蕾特异表达基因,推测在亚麻花粉发育过程中与脂酰辅酶A还原酶有相似功能。因此,成功获得了亚麻雄性不育相关基因,将其命名为MS2-F。其cDNA序列及其对应的gDNA序列的基因库登录号分别为EU363493和EU365361。
     (4)构建了两个MS2-F基因的RNA干扰载体,一个含有该基因非雄性不育保守区序列;另一个含该基因雄性不育保守区序列。并利用农杆菌介导法,将构建的MS2-F基因的RNA干扰载体导入亚麻中,获得了卡那霉素抗性再生苗,现在正在进行生根诱导培养,有望获得抑制MS2-F表达的转基因亚麻植株,为研究MS2-F基因的功能奠定基础。
     (5)在显性雄性核不育亚麻不育花蕾和可育花蕾mRNA差异显示研究中,共获得有或无差异片段42条。其中29条为不育差异片段,其余的13条为可育差异片段。对这42条差异片段进行反向Northern杂交验证,最终获得了5条不育花蕾阳性片段:G—E07—100、G—E07—330、G—E07—830、G—S273—500、A-S267—300;2条可育花蕾阳性片段G—S274—250、G—S274—450。
     (6)这些阳性片段经克隆、测序和BLAST序列分析,结果显示:G-E07-100与植物GTP结合蛋白高度同源,在细胞信号转导过程中有调节作用;G-E07-330与已公布的亚麻花蕾的一段cDNA有较高的同源性;G-E07-830与β—木糖苷酶同源性很高,它可能影响了亚麻花药、花粉中碳水化合物的代谢;G-S273-500与NAD+ADP核糖转移酶有很高的同源性;A-S267-300与分泌蛋白高度同源,推测它可能参与了核不育亚麻信号传导途径、形态发生、细胞凋亡等过程,最终影响了雄性不育的发生;G-S274-250和G-S274-450与已知植物的核苷酸碱基序列和氨基酸序列同源性很低,推测它们可能是与育性有关的新基因。
     (7)将G-E07-100、G-E07-330和G+E07+830阳性差异片选定为3个候选基因,并经过Northern杂交表达分析,进一步证明,这3个基因在不育花蕾中特异表达。
Flax ( Linium usitatissimum L.) is one of the important crops in the northern region of China for oil and fiber. Flaxseed and flaxseed oil have health function and medicinal effects. Flaxseed linoleic acid can reduce the cholesterol level in the blood andα-linolenic acid(ALA), an essential fatty acid that generates eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has a function of lowering blood lipids and reducing the formation of the thrombosis. Lignan in flaxseed plays a role in the prevention of cancer. In recent years, more and more wealth and medical function of flaxseed has been developed, demanding more quality varieties. But the expansion of genetic variation and the use of heterosis have been restricted, as flax is a crop of self-pollinaton. So Researching genes and promoters related to pollen and anther development in flax has become significantly important for creating genetically modified male sterile flax line and heterosis utilization in production. In this study, male sterility related gene MS2-F, homologous to Male Sterility 2 (MS2) in Arabidopsis thaliana was isolated by sequence homology cloning method, and its sequence and expression analysis were carried out. Structure and function of the deduced protein were also predicted. Two plant expressing vectors of RNA interference (RNAi) were constructed, using different fragments of MS2-F, and were used in genetic transformation of flax, resulting in Kanamycin resistant regenerated plants. The mRNA differential expression was compared by mRNA differential display technology between male sterile and fertile flower buds of dominant genomic male sterile flax, providing some valuable information for the revealing of the molecular mechanism of male sterility in flax. The results are as follows:
     1. A gene conserved fragment of 258 bp was amplified in flax flower buds according to the male sterility related genes in other plants including Arabidopsis thaliana by sequence homologous cloning method. Then, 5'and 3' ends of this gene were amplified based on the nucleotide sequence of the gene conserved fragment, by rapid amplification of cDNA ends technology. They were 975bp and 869bp respectively in size and a cDNA sequence of 1911 bp was obtained after splicing the sequences.
     2. A pair of gene specific primers was designed according to the cDNA sequence, and was used to amplify full length of cDNA and gDNA corresponding to the cDNA, The sequencing results proved that the complete cDNA and gDNA were 1709bp and 2696bp respectively. The results of sequence analysis revealed that the gene consisted of 8 introns and 9 exons.
     3. The complete cDNA contained an ORF of 1608 bp, which encoded a protein of 535 amino acids including two male sterile conserved domains: NAD-binding domain and male sterile C-terminal domain. MS2-F amino acid sequence identities to MS2Bnap in Brassica napus and MS2 in Arabidopsis thaliana were 59.65% and 59.16% respectively. The gene was exclusively expressed in flower buds and may act as an acyl CoA reductase during flax pollen development.
     In conclution, a male-sterility related gene, named MS2-F, was isolated in flax. The GenBank Accession Numbers of the cDNA and the gDNA are EU363493 and EU365361.
     4. Two RNAi vectors of MS2-F gene were constructed, one using a gene fragment that does not contain the male sterile conserved domains in the gene and the other using a gene fragment containing a piece of the male sterile conserved domain in the gene. By agrobacterium-mediated method, several kanamycin resistant regenerated plants were obtained. The construction of RNAi vectors and subsequent genetic transformation of flax were carried out in the hope of producing transformed flax in which the expression of MS2-F gene is interfered, and thus providing some useful clues for revealing the function of MS2-F gene during pollen development in flax.
     5. In the study of mRNA differential expression in male and fertile flower buds, seven positive differential fragments were confirmed by Reverse Northern Dot Blotting, and then sequence analysis of these fragments was carried out: 5 fragments were specific to male sterile flower buds: G-E07-100, G-E07-330, G-E07-830, G-S273-500, A-S267-300; the other 2 fragments were specific to male fertile flower buds: G-S274-250, G-S274-450.
     6. The positive fragments were sequenced and analyzed with BLAST. G-E07-100, homologous to GTP-binding protein of plant, may play an important role in signal transduction. G-E07-330 has a high identity with a known cDNA sequence that is specifically expressed in flax flower buds. G-E07-830, which is most homologous to the sequence of Beta-D-xylosidase, may influence carbon hydrate metabolism in flax anther and pollen, resulting in pollen abortion. G-S273 -500 is homologous to NAD+ ADP-ribosyltransferase. A-S267-300, homologous to a secreted protein, may play roles in such process as signal transduction, Morphogenesis and Apoptosis in male sterility flax and finally lead to male sterility. G-S274-250 and G-S274-450 had no significant similarity with any known genes in plants, so they may be newly found genes related to fertility in flax.
     7. G-E07-100, G-E07-330, G-E07-830 were selected as candidate genes. Expression analysis by Northern hybridization confirmed that they were exclusively expressed in the male sterile young flower buds of flax.
引文
[1]陈鸿山.核不育油用亚麻研究初报[J].华北农学报,1E86,1(1):87-91。
    [1]陈鸿山,王宜林,张辉,等.核不育亚麻的研究及利用.内蒙古农业科技[J],1989,3:1-2.
    [3]张辉,陈鸿山,王宜林,等.核不育亚麻不育株与可育株同功酶分析.作物学报,1991,17(3):198-203.
    [4]张辉,陈鸿山,王宜林.显性核不育亚麻的雄性不育研究[J].北京农业大学学报,1993,19(增刊):144-146.
    [5]张辉,张慧敏,丁维,等.核不育亚麻不育性与标记性状的遗传观察.华北农学报,1997,12(3):73-76.
    [6]张辉,王宜林,张慧敏,等.亚麻雄性不育系后代遗传规律探讨Ⅰ:测交、兄妹交、回交后代育性表现.内蒙古农牧学院学报,1997,18(3):38-42.
    [7]张辉,张慧敏,丁维,等.亚麻雄性不育系后代遗传规律探讨Ⅱ:可育株自交后代育性表现.内蒙古农牧学院学报,1998,19(2):43-47.
    [8]高凤云,张辉,斯钦巴特尔.亚麻显性雄性核不育基因的RAPD标记[J].华北农学报,2007,22(1):129-131
    [9]Hammond S M,Berstein E,Beach D,Harmon G J.An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells.Nature,2000,404:293-296.
    [10]Sayda M E,Jens H,Winfried L.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature,2001,411:494-498.
    [11]刘乐承,曹家树.白菜雄性不育相关基因BcMF3tBcMF3的A9启动子的基因沉默植物表达载体的构建.长江大学学报(自然版)农学卷,2007,4(2):48-53.
    [12]Andrew G F,Ravi S K,Peder Z.Functional genomic analysis ofC.elegans chromosome I by systematic RNA interference.Nature,2000,408:325.330.
    [13]Kaul MLH.Male Sterility in higher plants,Springer-Verla Press,Berlin,1988.
    [14]Sear E R.Genetics and farming[M].USDA Yearbook,1947,245-255.
    [15]傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育的选育研究[J].华中农业大学学 报,1989,(8)3:201-207.
    [16]杨世周.辣椒雄性不育两用系的选育[J].园艺学报,1981,8(3):49-53.
    [17]方智远,孙培田.新甘蓝一代杂种“双金”、“园春”、“晚丰”[J].农业科技通讯,1979,(12):14-15
    [18]Rhoades M.Cytoplasmic inheritance of male sterility in Zea mays[J].Science,1930,(73):340-341
    [19]Jones A.and Emsweller SL.A male-sterile onion[J].Proc Amer Soc Hort Sci,1936,(34):582-585
    [20]彭谦,李汝松,吕英华,等.菜心雄性不育研究初报[J].中国蔬菜,1989,(1):22-24
    [21]柯桂兰,赵稚雅,宋胭脂,等.大白菜异源胞质雄性不育系CMS3411-7的选育及应用[J].园艺学报,1992,19(4):333-340
    [22]李殿荣.甘蓝型油菜雄性不育系、保持系、恢复系选育成功并已大面积推广[J].中国农业科学,1986,19(5):94
    [23]黄晋玲,安泽伟,樊冬丽.棉花晋A细胞质雄性不育系及其保持系的同工酶分析[J].山西农业大学学报,2001,21(3):233-235
    [24]Ahokas H.A simple and rapid screening method for the determination of protein and tryptophan in kernel halves and small samples of barley mea l[J].Sci Food Agric,1978,(29):47-52
    [25]张改生,杨天章.偏型、粘型和易型小麦雄性不育系的初步研究[J].作物学报,1989,15(1):1-10
    [26]李传友,伏健民,金德敏,等.小麦胞质突变型雄性不育系85EA与其保持系线粒体DNA的比较研究[J].遗传学报,1999,26(5):558-562
    [27]张琪,刘志敏,肖日新.辣椒抗疫病育种研究进展.辣椒杂志,2005,4:13-15.
    [28]Shimotsuma M.Cytogenetical studies in the genus Citrullus.Ⅶ.Inheritance of several characters in watermelons[J].Breeding,1968,(13):235-240
    [29]Salgare S A and Suwarna Gawde.Effect of copper sulphate on pollen germination of successive flowers of Vigna unguiculata(L.)[J].Ad.Plant Sci,1989,2:72-78
    [30]凌定厚,马镇荣,陈梅芳,等.籼稻体细胞无性系雄性不育突变类型[J].遗传学报,1991,18(2):132-139
    [31]Mariani C,Gossele V,de Bcuckeleer M,et al.A chimaeric ribonuclease inhibitor gene restores to male sterile plants[J].Nature,1992,357:384-387
    [32]Van der Meer,Stam M E,van Tunen A J,et al.Antisense Inhibition of Flavonoid Biosynthesis in Petunia Anthers Results in Male Sterility[J].Plant Cell,1992,(4):253-262
    [33]曹墨菊,荣廷昭,胡长远.三个新选玉米雄性不育胞质花药败育的超微结构观察[J].四川农业大学学报,2002,20(20):84-87
    [34]Levings C.S,Pring D.R.Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male sterile maize[J].Science,1976,193:158-160
    [35]Scbnable P.S,Wise R.P.The molecular basis of cytoplasmic male sterility and fertility restoration[J].Trends Plant Sci,1999,(3):175-180
    [36]张海艳,于元杰,周玉亮.植物细胞质雄性不育的生物学研究进展[J].山东农业大学学报(自然科学版),2004,35(1):137-141
    [37]Graves P.V,Bu D,Velours J,et al.Direct protein sequencing of wheat mitochondrial ATP-synthase submit 9 confirms RNA editing in plants[J].Journal of Molecular Biology,1990,214:1-6
    [38]Frankel R,Scoewcroft W.R.,Whiffeld P.R.Chloroplast DNA variation of isonuclear male-sterile lines of nicotiana[J].Mol Gen Genet,1979,169:128-135
    [39]Kadowaki K,Suzuki T,Kazama S.A Chimeric gene containing the 5' portion of atp6 is associated with cytoplasmic male sterility of rice[J].Mol Gen Genet,1990,224(1 ):10-16
    [40]Liu D.F.The theoretical studies on the restoration for dominant genic male sterility in plants [J].Heriditas,1992,14(6):31-36
    [41]Aarts M,Dirkse W G,Stiekema W J.Transposon tagging of a male sterility gene in Arabidopsis.Nature,1993,363:715 -717
    [42]Wilson Z A,Morroll S M,Dawson J,et al.The Arabidopsis MALE STERILITY1(MS1)gene is a transcriptional regulator of male gametogenesis.Plant Journal,2001,28:27-39
    [43]Lakshrni P.M.,Thangaraj M.Effect of growth regulators and chemicals on pollen sterility in TGMS lines of rice[J].Plant Growth Regulation,2005,46(2):117-124
    [44]Sarria R,Lyznik A,Vallejos E,et al.A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated[J].Plant Cell,1998,10(7):1217-1228
    [45]Berdinger P.The remarkable biology of pollen.Plant Cell,1992,4:879-887.
    [46]Berdinger P A,Hardeman K J,Loukides C A.Traveling in style:the cell biology of pollen.Trends Cell Biol.,1994,4:132-138.
    [47]McCormick S.Male gametophyte development[J].Plant Cell,1993,5:1265-1275.
    [48]Horvitz R,Herskowitz I.Mechanisms of asymmetric cell division:Two Bs or nor two Bs,that is the question.Cell,1992,68:237-255.
    [49]Mascarenhas N T,Bashe D,Eisenberg A,et al.Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth.Ther Appl Genet,1984,68:323-326.
    [50]Franklin-Tong N,Bryant J.P4C1-Plant Reproductive Biology.Elservier Abstracts,2002,S125-S137.
    [51]Bhandari,N.N..The microsporangium.In Embryology of Angiosperms,B.M.Johri,ed (Berlin:Springer-Verlag),1984,53-121.
    [52]胡适宜.被子植物生殖生物学.北京;高等教育出版社,2005
    [53]徐奇元,韩翠芳,杨经略.糜子绒毡层及雄性配子体的超微结构.内蒙古农牧学院学报,1994,15(2):51-55.
    [54]利容千.几种农作物雄性不育的细胞学研究[J].武汉大学学报,1978,(1):83-96.
    [55]Pacini,E.,Franchi,G.G.,and Hesse,M..The tapetum:Its form,function,and possible phylogeny in Embryophyta.Plant Syst.Evol.1985,149:155-185.
    [56]Mariani,C.,De Beuckeler,M.,Truettner,J.,Leemans,J.,and Goldberg,R.B..Induction of male sterility in plants by a chimaeric ribonuclease gene.Nature,1990,374:737-741.
    [57]Goldberg,R.B.,Beals,T.P.,and Sanders,P.M..Anther development:basic principles and practical applications.Plant cell 1993,5:1217-1229.
    [58]Nava E B and Sawhney.V K Enzymatic changes in post-meiotic anther development in Petunia hybrid.I.Anther ontogeny and isozyme analysis.[J].Plant Physiol.,1986,125:451-465.
    [59]Reznickova S A.Histochemical studies of reverse nutrient substances in anthers of Lilium Candidum,C.R.Acad.Bulg.Sci.,1978,31:1067-1070.
    [60]Sawhney V K,Nava E B.Enzymatic changes in post-meiotic anther development in Petunia hybrid.Ⅱ.Histochemical localization of esterase,peroxidase,malate- and alcohol-dehydrogenase.J.P Jlant Physiol..1986,125:467-473.
    [61]Mepham R H,Lane G R.Observations on the fine structure and developing microspores of Tradescantia bracteata.Protoplasma.1970,70:1-20.
    [62]Izhar S,Frankel R.Mechanism of male sterility in Petunia:The relationship between pH,callase activity in the anthers and the breakdown of the microsporogenesis.Theoretical and Applied Genetics.1971,141:104-108.
    [63]Buchen B,Sievers A.Sporogenesis and pollen formation in O Kiermaver(Ed).Cytomorphogenesis.Cell Biology Monographa.Springer Verlag,1981,8.:349-376.
    [64]Mo,Y.,Nagel,C.,Taylor,L.P.Biochemical complementation of chalcone synthase mutanat defines a role for flavonols in functional pollen.Proc.Natl.Acad.Sci.USA.1992,89,7213-7217.
    [65]Mariani C.Induction of male sterility in plants by a chimaeric ribonuclease gene[J].Nature,1990,347:737-741
    [66]粟翼玫,赵双宜,张燕君,等.萝卜雄性不育系小泡子发生的细胞形态学研究[J].园艺学报,1995,22(4):348-352
    [67]张宪省,吴淑云,刘连航,等.非菜可育与不育花药和花粉发育的细胞学观察[J].山东农业大学学报,1991,22(3):237-243
    [68]耿二省,土志源,蒋健咸.辣椒雄性不育系小孢子发生的细胞学观[J].园艺学报,1994,21(2):165-169
    [69]秦泰辰,刘大文.玉米雄性不育系小孢子发生过程中的细胞学特性[J].上海农业学报,1990,6(1):9-14
    [70]Bowman,J.L.,Smyth,D.R.,Meyerowitz,E.M.Cenes directing flower development in Arabidopsis.Plant Cell,1989,1:37-52.
    [71]Hill,J.P.,Lord,E.M..Floral development in Arabidopsis thaliana,comparison of the wild-type and the homeotic pistillata mutant.Can.J.Bot.1989,6:2922-2936.
    [72]Jack,T.,Brockman,L.L.,Meyerowitz,E.M..The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed ha petals and stamens.Cell 1992,68:683 -697.
    [73]Coen,E.S.,Carpenter,R..The metamorphosis of flowers.Plant Cell,1993,5:1175-1181.
    [74]Weijer,J.A catalogue of genetic maize types together with a maize bibliography.Bibl.Genet.1952,14:189-425.
    [75]Duvick,D.N..Cytoplasmic pollen sterility in corn.Adv.Genet.1965,13:1-56.
    [76]Allison,D.C.,Fisher,W.D..A dominant gene for male sterility in upland cotton.Crop.Sci.1964,4:548-549.
    [77]Estelle,E.A.,Somerville,C.R.Aucxin-resistant mutants of Arabidopsis with an altered morphology.Mol.Gen.Genet.1987,206:200-206.
    [78]Sawhney,V.K.,Bhadula,S.K..Microsporogenesis in the normal and male-sterile stamenless mutant of tomato(Lycopersicon esculentum).Can.J.Bot.1988,66:2013-2021.
    [79]Sawhney,V.K.,Greyson,R.I..Mophogenesis of the stamenless-2 mutants in tomato-comparative description of the flowers and ontogeny of the stamens in the normal and the mutant plants.Am.J.Bot.1973,60:514-523.
    [80]Chaudhury,A.M.,Cralg,S.,Farrell,L.,et al.Genetic control of male sterility in higher plants.Aust.J.Plant Physiol.1992,19:419-425.
    [81]Levings,C.S.Ⅲ.Thoughts on cytoplasmic male sterility in cms-T maize.Plant Cell.1993,5:1285-1290.
    [82]Dawson,J.,Wilson,Z.A.,Aarts,M.G.M.,et al.Microspore and pollen development in six male sterile mutants of Arabidopsis thaliana.Can.J.Bot.1993,71:629-638.
    [83]Rick,C.M.Genetics and development of nine male-sterile tomato mutants.Hilgardia 1948,18:599-633.
    [84]Albertsen,M.C.,Phillips,R.L.Developmental cytology of 13 genetic male-sterile loci in maize.Can.J.Genet.Cytol.1981,23:195-208.
    [85]Staiger,.Microfilament distribution in maize meiotic mutants correlates with microtubule organization.Plant Cell.1991,3:637-644.
    [86]Van der Veen,J.H.,Wirtz,P.EMS-induced genic male-sterility in Arabidopsis thaliana:A model selection experiment.Euphtica,1968,17:371-377.
    [87]Moffatt,B.,Somerville,C.Positive selection for male-sterile mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity.Plant Physiol.1988,86:1150-1154.
    [88]Regan,S.M.,Moffatt,B.A.Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant.Plant Cell,1990,2:877-889.
    [89]Moffatt,B.,Pethe,C.,Laloue,M..Metabolism of denzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyltransferase activity.Plant Physiol.1991,95:900-908.
    [90] Larsen, R.F., Paur, S. The description and inheritance of a functionally male sterile flower mutant in tomato and its probable value in hybrid tomato seed production. Proc. Am. Sco. Hort. Sci. 1948, 52: 355-365.
    [91] Roath, W.W., Hockett, E.A. Genetic male steriliy in barley. III. Pollen and anther characteristics. Crop Sci. 1971,11: 200-203.
    [92] Preuss, D., Lemieux, B., Yen, G., et al. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dew. 1993, 7: 974-985.
    [93] Coe, E.H., McCormick, S.M., Modena, S.A. White pollen in maize. J. Heredity , 1981, 72: 318-320.
    [94] Taylor, P.L., Jorgensen, R. Conditional male sterility in chalcone synthase-deficient petunia. J. Heredity, 1992,83:11-17.
    [95] van der Meer, I.M., Stam, M.E., van Tunen, A.J., et al. Antisense inhibition of flavonoid biosynthesis in petunia anther results in male sterility. Plant Cell, 1992, 4: 253-262.
    [96 Mo, Y., Nagel, C., Taylor, L.P. Biochemical complementation of chalcone synthase mutants defines a role for flalonals in functional pollen. Proc. Natl. Acad. Sci. USA. 1992, 89: 7213-7217.
    [97] Laughnan, J.R., Gabay, S.J. Nuclear and cytoplasmic mutations to fertility in S-male sterile maize. In maize Breeding and Genetics, D.B. Walden ed (New York: Wiey), 1978, pp. 427-446.
    [98] Twell, D., Yamaguchi, J., and McCormick, S. Pollen-specific gene expression in transgenic plants: Coordinate regulation of two differert tomato gene promoters during microsporogenesis. Development, 1990, 109: 705-713
    [99] Schiefthaler U, Balasubramanian S, Sieber P, et al. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenosis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999.96:11664-11669
    [100] Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encode a putative leucine-rich reprat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16:2021-2031
    
    [101] Canales C, Bhatt A M, Scott R, et al. EXS, a putative LRR receptor kinse, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis.Curr Biol,2002,12:1718-1727.
    [102]Yang S L,Xie L F,Mao H Z,et al.TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther.Plant Cell,2003,15(12):2792-2804
    [103]Yang W C,Ye D,Xu J,et al.The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encode a novel nuclear protein.Genes Dev,1999,13(16):2108-2117
    [104]Motamayor J C,Vezon D,Bajon C,et al.Switch(swil),an Arabidopsis thaliana mutant affected in the female meiotic switch.Sex Plant Reprod,2000,12(4):209-218
    [105]Mercier R,Vezon D,Bullier E,et al.Switch 1(SWI 1):a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis.Gene Dev,2001,15(14):1859-1871
    [106]Agashe B,Prasad C K,Siddiqi I.Identification and analysis of DYAD:a gene required for meiotic chromosome organization and female meiotic progression in Arabidopsis.Development,2002,129:3935-3943
    [107]Mercier R,Armstrong S J,Horlow C.The meiotic protein SWII is required for axial element formation and recombination initiation in Arabidopsis.Development,2003,130:3309-3318.
    [108]Couteau F,Belzile F,Horlow C,et al.Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmcl mutant of Arabidopsis.Plant Cell,1999,11:1623-1634
    [109]Grelon M,Vezon D,Gredrot G,et al.AtSPO11-1 is necessary for efficient meiotic recombination in plants.EMBO J,2001,20:589-600.
    [110]Klimyuk V I,Jones J D.AtDMC1,the Arabidopsis homologue of the yeastDMC1 gene:characterization,transposon-induced allelic variation and meiosis-associated expression[J].Plant J,1997,11:1-14.
    [111]Doutriaux M P,Couteau F,Bergounioux C,et al.Isolation ang characterization of the RAD51 and DMC1 homologs from Arabidopsis thaliana.Mol Gen Genet,1998,257:283-291.
    [112]Sato S,Hotta Y,Tabata S,Structural analysis of a RecA-like gene in the genome of Arabidopsis thaliana.DNA Research,1995,2:89-93.
    [113]Bishop DK,Park D,Xu L,Kleckner N.DMC1:a meiosis-specific yeast homolog of E.coli RecA required for recombination,synaptonemal complex formation,and cell cycle progression.Cell,1992,69:439-456.
    [114]Bleuyard JY,White CI.The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis.EMBO J,2004,23(2):439-449.
    [115]Yang M,McCormick S,The Arabidopsis MEI1 gene likely encodes a protein with BRCT domains.Sex Plant Report,2002,14:355-357.
    [116]Yang M,Hu Y,Lobhi M,et al.The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation.Proc Natl Acad Sci USA,1999,96:11416-11421
    [117]Zhao D Z,Han T,Risseeuw E,et al.Conservation and divergence of ASK1 and ASK2 gene functions during male meiosis in Arabidopsis thaliana.Plant Mol Biol,2003,53(1-2):163-173
    [118]Chen C B,Marcus A,Li W X,et al.The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis.Development,2002,129:2401-2409
    [119]Mitsui H,Yamaguchi-Shinozaki K,Shinozaki K,et al.Identification of a gene family(kat)encoding kinesin-like proteins in Arabidopsis thaliarta and the characterization of secondary structure of KatA.Mol.Gen.Genet,1993,238:362-368.
    [120]Sharp D J,Rogers G C,Scholey J M.Microtubule motors in mitosis.Nature,2000,407:41-47.
    [121]Magnard JL,Yang M,Chen YCS,et al.The Arabidopsis gene TARDY ASYNCHRONOUS MEIOSIS is required for the normal pace and synchrony of cell division during male meiosis.Plant Physiol.,2001,127:1157-1166.
    [122]Hulskamp M,Nikesh SP,Grini P,et al.The STUD gene is required for male-specific cytokinesis after telophase Ⅱ of meiosis in Arabidopsis thaliana.Dev.Biol.1997,187:114-124.
    [123]Spielman M,Preuss D,Li FL,et al.TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana.Development,1997,124:2645-2657.
    [124]Ross K J,Framsz P,Armstrong S J,et al.Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines.Chromosome Res.1997,5:551-559.
    [125]Sanders P M,Bui A Q,Weterings K,et al.Anther developmental defects in Arabidopsis thaliana male-sterile mutants.Sex Plant Reprod,1999,11(6):297-322
    [126]Takegami,MH,Yoshioka M,Tanaka I,et aL Characteristics of isolated microsporocytes from liliaceous plants for studies of the meiotic cell cycle in vitro.Plant Cell Physiol,1981,22:1-10.
    [127]Kapoor S,Kobayashi A,Takatsuji H.Silencing if the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia.Plant Cell,2002,14:2353-2367
    [128]Wilson Z A,Morroll S M,Dawson J,et al.The Arabidopsis MALE STERILITY 1(MS1)gene is a transcriptional regulator of male gametogenesis,with homology to the PHD-finger family of transcription factors.Plant J,2001,28(1):27-39
    [129]Higginson T,Li S F,Roger W,et aL AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana.Plant J,2003,35(2):177-192
    [130]Twell D,Park S K,Lalanne E.Asymmetric division and cell-fate determination in developing pollen.Trends in Plant Science,1998,3(8):305-310.
    [131]Franklin T N,Bryant J.P4C1-Plant Reproductive Biology.Elsevier Abstracts,2002:S125-S137.
    [132]孙万仓,党占海,安惠贤,等.世界油料作物,兰州大学出版,1991
    [133]王玉富.我国亚麻生物技术的发展[J].中国麻业,2005,27(2):60-65
    [134]Bateson W,Cairdyner A.E.Male Sterility in flax[J].Gnet,1921,(11):269-275
    [135]Gairdyner A E.Male sterility in flax Ⅱ.A case of reciprocal crosses in F2[J].Genet,1929,21:117-124
    [136]Kumar S,Singh S P.Inheritance of male sterility in some introduced varieties of linseed (Linum.usitassimum L)[J].Indian.J.Agric.Sci,1970,40:184-191
    [137]Thompson,E.Cytoplasmic male-sterility flax with open corollas[J].Hered,1977,68:185-187
    [138]Dang Z-H,Zhang J-P,She X C.Induction male sterility in linseed by antibiotics treatment[J].Chinese Journal of Oil Crop Sciences,2000,22(1):46-48.
    [139]Liang P,Paradee A B.Differential display of eukaryotic messrnger RNA by means of the polymerase chain reaction[J].Science,1992,257(5072):967-970
    [140]Liang P,Lidia A,Arthur B P.Distribution and cloning of eukaryotic mRNA by means of differential display:refinements and optimization[J].Nucleic Acids Research,1993,21(14):3269-3275
    [141]Liang P,Weimin Zhu,Xiaoying Zhang,et al.Differential display using one-base anchored oligo-dT primers[J].Nucleic Acids Research,1994,22(25):5763-5764
    [142]Bertioli D J,Schlichter U H A,Adams M J,et al.An analysis of differential display shows a strong bias towards high copy number mRNAs[J].Nucleic Acids Research,1995,23(21):4520-4523
    [143]Sompayrac L,Jane S,Burn T C,et al.Overcoming limitations of the mRNA differential display technique[J].Nucleic Acids Research,1995,23(22):4738-4739
    [144]张玉强,梅长林.探寻mRNA的新方法-差别显示法[J].生物技术,1997,7(1):38-39
    [145]王学德,朱英国.水稻雄性不育与可育花粉的mRNA差异显示和cDNA差别片段的分析[J].中国科学C辑,1998,28(3):257-263
    [146]石锐,郭长虹.聚丙烯酰胺凝胶中DNA的银染方法[J].生物技术,1998,8(5):46-48
    [147]Guimaraces M J,Lee F,Zlotnik A,et al.Differential display by PCR:novel findings and applications[J].Nucleic Acids Research,1995,23(10):1832- 1833
    [148]Frohman,M.A.,Dush,M.K.,Martin,G.R.Rapid production of full - length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer[J].Proc.Natl.Acad.Sci.USA,1988,85:8998-9002
    [149]Sokolov P,Darwin J P.A rapid and simple PCR-based method for isolation of cDNAs from differentially expressed genes[J].Nucleic Acids Research,1994,22(19):4009-4015
    [150]崔凯荣,邢更生.利用mRNA差别显示技术分析枸杞体细胞胚发生早期基因的差别表达[J].遗传学报,1998,20(5):16-19
    [151]庄楚雄,徐是雄,卢永根,等.运用cDNA缩减杂交法克隆水稻花粉发育有关的cDNA[J].科学通报,1999,44(17):1842-1846
    [152]米志勇,王树生,吴乃虎.水稻低分子量GTP结合蛋白基因osTACD的分离[J].科学通报,2000,45(19):2047-2055
    [153]曹家树,叶纨芝,张明,等.白菜核雄性不育两用系花蕾的mRNA差别显示及其cDNA 差异片段分析[J].浙江大学学报(农业与生命科学版),2001,27(6):596-599
    [154]赵昌平,张立平,李云伏,等.小麦光温敏雄性不育相关基因的DDRT-PCR分析及功能预测[J].中国生物化学与分子生物学报,2007,23(1):56-62
    [155]Napoli C,Lemieux C,Jorgensen RA.Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans.Plant Cell,1990,2:279-289
    [156]Romano N,Macino G,Queling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences.Mol.Microbiol.,1992,6:3343-3353.
    [157]Fire A.,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391:806-811.
    [158]Jorgensen R.Altered gene expression in plants due to trans interaction between hologous gene[J].Trends Bio.1990,8:340-344.
    [159]Marx J.Interfering with gene expression.Science,2000,288:1370-1371.
    [160]Romano N,Macino G.Quelling:transient inactivation of gene expression in Neutostora crassa by transformation with homologous sequences[J].Mol Microbiol,1994,6:3343-3353.
    [161]Cogoni,C.Homology-dependent gene silencing mechanism in fungi.Annu Rev Microbiol,2001,55:381-406.
    [162]Bernstein E,Caudy A A,Hammond S M,et al.Role for a bidentate rebonuclease in the initiation step of RNA entergerence[J].Nature,2001,409:363-366.
    [163]Hammond S M,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post transcriptional gene silencing in drosophila cell[J].Nature,2000,404:293-296.
    [164]Zilbrtmsn D,Cao Xiao-feng,Jacobsne S E.Argonaute 4 control of locus-specific siRNA accumulation and DNA and histons methylation[J].Science,2003,299:716-719.
    [165]Hammond S M,boettcher S,Caudy A A,et al.Argonaute2:A link between genetic and biochemical analyses of RNAi[J].Science,2001,293:1146-1150.
    [166]Tabara H,Sarkissina M,Kellyw G,et al.The rde-1 gene,RNA interference,and transposon silencing in C·elegans[J].Cell,1999,99:123-132.
    [167]Catalanotto C,Azzallin G,Macino G,et al.Transcription:Gene silencing in worms and fungi[J].Nature,2000,404:245.
    [168]Fagard M,Boutet S,Morel J B,et al.AGO1,QDE-2,and RDE-1 are related proteins required for post-transcriptional gene silencing in plants,quelling in fungi,and RNA interference in animals[J].Proc Nat Acad Sci USA,2002,97:11650-11654.
    [169]Sijen T,Simmer F,Fire A.et al.On the role of RNA amplifica-tion in dsRNA-triggered gene silencing[J].Cell,2001,107(4):65-76.
    [170]Lipardi C,Wei Q,Paterson BM.RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are de-gradel to generate new siRNAs [J].Cell,2001,107(3):297-307.
    [171]Sui G,Soohoo C,Affarel B,et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc Natl Acad Sci USA,2002,99(8):5515-5520.
    [172]王水亮,兰凤华,傅继梁.基于载体的RNA干涉介导人核受体hLRH-1的表达抑制实验研究[J].遗传学报,2006,33(1):26-31.
    [173]Fukusaki E,Kawasaki K,Kajiyama S,et al.Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference.J.Biotechnol.,2004,111:229-240.
    [174]Fraser AG,Kamath RS,Zipperien P,et al.Functional genomic analysis of C.elegans chromosome I by systematic RNA interference.Nature,2000,408:325-330.
    [175]Gonczy P,Echeverri C,Oegema K,et al.Functional genomic analysis of cell division in C elegans using RNAi of genes on chromosome Ⅲ.Nature,2000,408:331-336.
    [176]Ogita S,Uefuji H,Yamaguchi Y,Koizumi N,Sano H.Producing decaffeinated coffee plants [J].Nature,2003,423:823.
    [177]Liu Q,J Am Coll Nutr,2002,21(Suppl.3):S205-S211.
    [178]Ganga R D,Ageeth V T,Paul D F,et al.Fruit-specific RNAi-mediated suppression of DET1enhances carotenoid and flavonoid content in tomatoes.Nature Biotechnology,2005,23(7):890 - 895
    [179]Masahiro N,Takashi N,Saburo Y.FEBS Letters,2005,579:6074-6078.
    [180]Morris JC,Wang ZF,Drew ME,et al.Glycolysis modulates trypanosome glycoprotein `expression as revealed by an RNAi library.EMBO J,2002,21:4429-4438.
    [181]Clemensy JC,Worby CA,Simonson-Leff N,et al.Use of double-stranded RNA interference `in Drosophila cell lines to dissect signal transduction pathways.Proc Natl Acad Sci USA,2000,97(12):6499-6503.
    [182]Jacque J M,Triques K,Stevenson M.Modulation of HIV-1 replication by RNA interference.Nature,2002,418:435-438.
    [183]McCaffrey A P,Meuse L,Pham T T,et al.RNA interference in adult mice.Nature,2002,418:38-39.
    [184]周琼,白明,金阳,等.RNA干扰技术抑制PoLo-Like激酶1表达对A549细胞的影响[J].中国生物化学与分子生物学,2005,21(5):665-672.
    [185]王瑞瑛,梅柱中,董燕,等.RNA干扰抑制存活素表达并诱导helas3细胞凋亡的研究[J].吉林大学学报,2005,43(5):691-695.
    [186]Aarts M G M,Hodge R,Kalsntldls K,et al.The Arabidopsis MALE STERILITY2 protein shares similarity with reductase in elongation/condensation complexes.The plant Journal,1997,12(3):615-623
    [187]Mets J G,Pollard,M R,Lassner,M W.Fatty acyl reductase.US Patent 5370996,published,1994,Dec.6,1994
    [188]Shockey J M,Rajasekharan R,Kemp J D.Photoaffinity labeling of developing jojoba seed microsomal membranes with a photoreactive analog of acyl-coenzyme A(acyl-CoA).Plant Physiol,1995,107:155-160
    [189]Hodge R,Paul W,Draper J,et al.Cold-plaque screening:a simple technique for the isolation of the low abundance,differentially expressed transcripts from conventional cDNA libraries.Plant J,1992,2:257-260
    [190]陈军方,任正隆,孔秀英,等.小麦中雄性不育同源序列的分离、鉴定及表达分析.遗传学报,2005,32(6):566-570
    [191]Rose T M,Schultz E R,Henikoff J G,et al.Consensus - degenerate hybrid oligonucleotide primers for amplification of distantly - related sequences.Nucleic Acids Research,1998,26(7):1628 - 1635
    [192]Richmond T.Designing degenerate PCR primers.CODEHOP:consensus - degenerate hybrid oligonucleotide primers.Genome Biology,2000,1(1):240
    [193]S.W.Hu,Y.F.Fan,H.X.Zhao,et al.Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis Thaliana in two dominant digenic male sterile accessions of oilseed rape(Brassica napus L.).Theor Appl Genet,2006,113:397-406
    [194]Willing R P,Bashe D,Mascarenhas J P.An analysis of the quantity and diversity of messenger RNAs from pollen and shoots of Zea mays[J].Theor Appl Genet,1988,75:751-753.
    [195]Willing R P,Mascarenhas J P.Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia[J].Plant Physiol.,1984,75:865-868.
    [196]Smith N A,Singh S P,Wang M B,Stoutjesdijk P A,Green A G,Waterhouse P M.total silencing by intron-spliced hairpin RNAs.Nature,2000,407:319-320.
    [197]Chris Helliwell,Peter Waterhouse.Constructs methods for high-throughput gene silencing in plants.Methods,2003,30:289-295.
    [198]Andrew P.Gleave.A versatile binary vector system with a T-DNA organisational structure conductive to efficient integration of cloned DNA into the plant genome.Plant Molecular Biology,1992,20:1203-1207.
    [199]Wang M B,Li Z Y,Matthews P R,Upadhyaya N M,Waterhouse P M.Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants.Acta.Hort.,1998,461:401-407.
    [200]Wang M B,Waterhouse P M.High-efficiency silencirg of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but independent of DNA methylation.Plant Mol.Biol.,2000,43:67-82.
    [201]Smith N A,Singh S P,Wang M B,et al.Total silencing by intron-spliced hairpin RNAs.Nature,2001,407:319-320.
    [202]Wesley S V,Helliwell C A,Smith N A,et al.Construct design for efficient,effective and high-throughput gene xilencing in plants.Plant J.,2001,27:581-590.
    [203]Miyagishi M,Taira K.U6 promoter driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.Nature Boitechnol.,2002,20:497-500.
    [204]Kittler R,Pelletier L,Ma C L et al.RNA interference rscue by bacterial articieial chromosome transgenesis in mammalian tissue culture cells.Proc Natl Acad Sci USA,2005,102(7):2396-2401.
    [205]Liang P,Paradee A B.Differential display of eukaryotic messrnger RNA by means of the polymerase chain reaction[J].Science,1992,257(5072):967-970
    [206]米志勇,王树生,吴乃虎.水稻低分子量GTP结合蛋白基因osTACD的分离[J].科学 通报,2000,45(19):2047-2055
    [207]Rodbell M.The role of hormone receptors and GTP-regulatory proteins in membrane transduction[J].Nature,1980,284:17-22.
    [208]Hasunuma K,Furukawa,K Tomita K,et al.GTP-binding proteins in etiolated epicotyls of Pisum sativum(Alaska) seedlings[J].Biochem Biophys Res Commun,1987,148:133-139
    [209]Kaufman L S.GTP-binding signaling proteins in higher plants.Biochm Photobiol B:Biol.1994,22:3-7.
    [210]Freissmuth M,Casey P J,Gilman A G.G proteins control diverse pathways of transmembrane signaling.FASEB,1989,3:2125-2132.
    [211]Simon M I,Strathmann M P,Gautam N.Diversity of G proteins in signal transduction.Science,1991,252:802-808.
    [212]Clement C,Audran J C.Anther and Pollen From Biology to Biotechnology[M].Springer Heidelberg,1999,69-90.
    [213]Cl(?)ment C.,Chavant L.,Burrus M,.et al.Anther starch variations in Linium during pollen development.Sex.Plant Reprod.1994,7:347-356
    [214]Liang L-Z,Zhuang Z-Y.DNA damage in peripheral mononuclear blood cells of ovarian cancer patients during combining chemotherapy with cyclophospha-mide carboplatin[J].Chinese Pharmacol Toxicol,1999,13(2):152-155.
    [215]粟翼玫,赵双宜,张燕君,等.萝卜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,1995,22(4):348-352
    [216]张宪省,吴淑云,刘连航,等.非菜可育与不育花药和花粉发育的细胞学观察[J].山东农业大学学报,1991,22(3):237-243
    [217]Mariani C.Induction of male sterility in plants by a chimaeric ribonuclease gene[J].Nature,1990,347:737-741

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700