用户名: 密码: 验证码:
HDAC、SIRT1基因多态性及环境因素与2型糖尿病关系的病例对照研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:2型糖尿病也称成人糖尿病,患者以胰岛素分泌相对不足、胰岛功能缺陷和高血糖为主要症状,发病病因和机制非常复杂。2型糖尿病近年来无论患病率还是发病人数均呈上升趋势,已经成为继癌症、心血管疾病后的第三位重大公共卫生问题。该病发病隐匿,早期症状较轻微,并且多数以散发为主,因此大部分2型糖尿病病人是在发病多年后出现并发症(如肾衰、失明、糖尿病足、伤口愈合慢、心血管疾病等)才被诊断出来。并发症的治疗不但耗时长、治疗费用昂贵、而且给国家带来沉重的疾病负担,据世界各国对2型糖尿病疾病负担的预测,糖尿病带来的经济负担呈逐年增加的趋势。卫生组织提出,如果没有效的预防和控制策略,全球糖尿病的疾病负担会持续上升。
     中国糖尿病的预防形势也非常严峻。从近30年糖尿病的患病率来看,1980年我国的糖尿病患病率为0.67%,1994年糖尿病的患病率为2.5%,而到2007-2008年中国的糖尿病患病率已经升至9.7%,目前中国已经成为2型糖尿病人数最多的国家之一,由于糖尿病导致的疾病负担非常严重,中国糖尿病的控制刻不容缓。
     广州市位于中国南部,2型糖尿病的患病率与北京、上海等城市水平相当,是2型糖尿病的重灾区。由于广州市经济较为发达,人口众多,人群中可能影响糖尿病发生的饮食因素、行为因素以及其他的环境因素方面差别可能较大,因此,研究广州市特定人群2型糖尿病的危险因素,可为特定人群2型糖尿病的循证预防提供科学依据。
     目前认为2型糖尿病是基因与环境因素共同作用导致的疾病。在基因研究方面已经发现了超过50个基因与2型糖尿病的发生相关,但是基于已经发现的基因与2型糖尿病的归因危险度较小,而且不同民族和地区2型糖尿病的易感基因有差异,新的易感基因的发现对于人群2型糖尿病的预防依然重要。HDAC基因与SIRT1基因均属于脱乙酰蛋白酶类基因,新近文献报道HDAC基因能影响小鼠的血糖代谢,但是否与人群2型糖尿病发生相关尚需实验证明。SIRT1基因已经被证明能够影响Puma印第安人2型糖尿病的发生,基于2型糖尿病基因普遍存在种族差异,与中国人群2型糖尿病的发生是否有关联值得进一步研究;此外,SIRT1基因与HDAC基因能否共同影响2型糖尿病的发生对糖尿病的预防也至关重要。
     环境因素方面,流行病学研究发现超重或肥胖人群发生2型糖尿病相对风险增加;越来越多的流行病学研究指出增加体力活动可以降低2型糖尿病的发病率。饮酒与2型糖尿病的发生呈U型的曲线,吸烟不管主动还是被动吸烟均增加2型糖尿病的发病风险。另外,也有研究表明不同的饮食模式与2型糖尿病的发病关系不同。SIRT1基因被认为与饮食和脂肪代谢有关,这些因素是否与和HDAC基因共同作用,增加2型糖尿病的发病风险值得研究。
     本研究的目的是分析HDAC, SIRT1基因及其与环境因素的相互作用对2型糖尿病发病风险的关系,为高危人群的发现、疾病的控制策略的制定以及未来针对性的靶点药物的研发提供科学依据。
     方法:采用病例对照研究方法选择广州市某农村社区人群中的2型糖尿病病人为病例,并以同社区非糖尿病的人群为对照。病例的纳入标准为空腹血糖≥7.0mmol/L的受试者,从空腹血糖介于3.1-6.0mmol/L的研究对象中抽取对照。所有纳入研究的病例均为新发现的病例,不管病例还是对照以前均没有2型糖尿病和糖耐量异常的疾病史。病例和对照均来自同一社区。排除标准为近期患有感冒、慢性炎症、急性疾病、代谢性疾病和感染性疾病的受试者。采用Hapmap数据库进行中国汉族人群易感基因位点的选择。选择标准为中国北京汉族人群,最小等位基因频率(MAF)>0.05,连锁不平衡参数D'=1,r2>0.8。结果选取了HDAC基因rs2530223、rs11741808、rs2547547、和rs1741981共4个位点;SIRT1基因rs4746720、rs10509291、rs2236319和rs10823116共4个位点。研究对象特定基因SNPs的变异采用Taqman MGB探针法对易感基因进行检测。PCR方法被用于易感基因位点的扩增,易感基因的全序列采用测序的方法进行。贝克曼680全自动生化仪被用于研究对象的血糖、总胆固醇、甘油三酯等血清学项目的检测。血压是通过台式血压计结合听诊器由有经验的护士通过测量得出的。另外,身高和体重也是由有经验的护士通过测量得出的。研究对象的人口学特征、饮酒、吸烟、饮食因素等则通过调查员与研究对象面对面问卷调查得出,问卷调查是一对一进行的。SPSS13.0和Stata12.0被用于统计学分析。两独立样本t检验或χ2检验被用于对病例组和对照组进行均衡性检验;两独立样本t检验被用于对符合正态分布的连续变量进行统计学检验,χ2检验被用于分类变量的统计学检验中。利用非条件Logistic回归模型分析环境因素及基因多态性与2型糖尿病的关系。校正因素为性别、年龄、BMI、高血压等。基因之间的相加交互作用;高甘油三酯、高总胆固醇和高BMI与基因之间的相加交互作用用叉生分析方法。相乘交互作用通过多因素Logistic回归分析纳入乘积项进行。以P<0.05为差异有统计学意义。
     结果:共有568名研究对象参加了研究。284名糖尿病人的平均年龄为65.64±8.71岁,284名对照的平均年龄为66.83±8.91岁,两组年龄差别没有统计学意义(t=-1.605,P=0.109)。研究对象中女性有392名,病例和对照均为196人,两组性别差别没有统计学意义(χ2=0.000,P=1.000)。婚姻、教育程度和经济状况在两组间差别也没有统计学意义(χ2=0.428,P=0.513;χ2=1.464,P=0.226和Z=-0.667,P=0.505)。
     临床特征与2型糖尿病研究方面,2型糖尿病人的甘油三酯为1.91mmol/L (0.60-30.22mmol/L),正常对照为1.21mmol/L (0.50-7.39mmol/L),差别有统计学意义(Z=-7.888,P<0.001);2型糖尿病人的总胆固醇含量为5.50mmol/L (2.40-12.60mmol/L),正常对照为5.20mmol/L(2.80-8.10mmol/L),差别有统计学意义(Z=-3.401,P=0.001);2型糖尿病人的BMI为(23.77±3.50)kg/m2,正常对照为(22.86-3.51)kg/m2,两组BMI差别有统计学意义(t=3.507,P=0.003)。
     行为因素与2型糖尿病研究方面,研究对象中糖尿病组吸烟者有73人,占25.80%,对照组吸烟者有72人,占25.44%,吸烟与2型糖尿病差别没有统计学意义(χ2=0.009,P=-0.923)。在是否参加锻炼方面,2型糖尿病组每天锻炼半小时以上占50.35%,正常对照每天锻炼半小时以上的占27.56%,参加锻炼与2型糖尿病差别有统计学意义(χ2=39.685,P<0.001)。在定期检查方面,2型糖尿病组有规律检查的占32.04%,正常对照有规律检查的占17.79%,两组在定期检查方面差别有统计学意义(χ2=19.796,P<0.001)。2型糖尿病组有40.14%的对象有慢性病史,正常对照有30.04%有慢性病史,两组在慢性疾病史方面差别有统计学意义(χ2=6.355,P=0.012)。
     饮食因素与2型糖尿病研究方面,2型糖尿病组爱吃酸味食品的占11.27%,正常对照爱吃酸味食品的占19.72%,两组爱吃酸味食品构成比差别有统计学意义(χ2=7.745,P=0.005)。2型糖尿病组爱吃辣味食品的占3.17%,正常对照爱吃辣味食品的占7.04%,两组爱吃辣味食品差别有统计学意义(χ2=4.397,P=0.036)。2型糖尿病组有24.30%的对象爱喝牛奶,正常对照有35.91%爱喝牛奶,两组爱喝牛奶方面差别有统计学意义(χ2=9.111,P=0.003)。在饮食的口味上,2型糖尿病组口味偏咸的占24.65%,正常对照口味偏咸的占16.55%,两组差别有统计学意义(χ2=36.128,P<0.001)。在每天吃蔬菜方面,2型糖尿病组每天吃得少的占11.62%,正常对照每天吃得少的占8.10%,两组吃蔬菜差别有统计学意义(χ2=30.968,P<0.001)。在食用油方面,2型糖尿病组常吃动物油者占13.38%,正常对照常吃动物油占2.11%,两组常吃动物油方面差别有统计学意义(χ2=25.227,P<0.001)。在爱吃白肉方面,2型糖尿病组占43.66%,正常对照组占58.66%,两组爱吃白肉方面差别有统计学意义(χ2=12.756,P<0.001)。
     基因多态性与2型糖尿病的研究方面,HDAC基因的rs2530223、rsl1741808、rs2547547和SIRT1基因的rs4746720位点与2型糖尿病有关联。rs11741808与2型糖尿病的OR为0.54(95%CI=0.36-0.81);rs2547547与2型糖尿病的OR为1.72(95%CI=1.13-2.64);rs2530223与2型糖尿病的OR为1.96(95%CI=I.04-3.68),rs4746720与2型糖尿病的OR为1.42(95%CI=1.02-1.98)。分层分析显示在BMI≥23kg/m2,高甘油三酯和高血压的人群中携带rs11741808AG基因型发生2型糖尿病的几率比携带AA基因型的低,OR分别为0.50(95%CI=0.27-0.91)、0.38(95%CI=0.20-0.71)和0.43(95%CI=0.24-0.76)。在总胆固醇正常人群中,携带rs11741808AG基因型与携带AA基因型的研究对象比较,发生2型糖尿病的风险降低,OR为0.42(95%CI=0.25-0.70)。对于rs2547547,在总胆固醇正常和甘油三酯正常人群中,携带AG基因型的对象与携带AA基因型的对象比较发生2型糖尿病的风险增加,OR分别为1.92(95%CI=1.17-3.15)和2.24(95%CI=1.28-3.94)。对于rs4746720,高甘油三酯组,携带CC或者TT基因型发生2型糖尿病的风险比携带CT基因型的对象增加,OR为1.85(95%CI=1.06-3.23);在吃红肉组,携带CC或者TT基因型发生2型糖尿病的风险比携带CT基因型的对象增加(OR=1.43;95%CI=1.01-2.02)。同样,吸烟或者吃甜食的对象,携带CC或者TT基因型发生2型糖尿病的风险高于携带CT基因型者(OR=2.22,95%CI=1.21-4.06; OR=1.65,95%CI=1.10-2.47)。
     多因素分析结果表明高血压、高甘油三酯、高总胆固醇、BMI≥23kg/m2和rs2547547AG基因型携带者发生2型糖尿病的风险增加,OR分别为2.23(95%CI=1.53-3.27)、2.92(95%CI=1.98-4.31)、1.50(95%CI=0.97-2.32)、2.89(95%CI=1.98-4.21)和1.93(95%CI=1.14-3.27)。相反,rs2530223TT基因型vsrs2530223CT+CC基因型、rs2530223CT基因型vs rs2530223TT+CC基因型和rs11741808AG基因型vs rs11741808AA+GG基因型发生2型糖尿病的风险降低,OR分别为0.42(95%CI=0.20-0.87)、0.33(95%CI=0.16-0.69)和0.51(95%CI=0.32-0.81)。
     多因素分析结果也表明,喝牛奶、喝豆浆、吃白肉和每天吃蔬菜和低盐饮食发生2型糖尿病的几率也降低,OR分别为0.51(95%CI=0.29-0.88).0.43(95%CI=0.26-0.74)、0.51(95%CI=0.32-0.83)、0.21(95%CI=0.10-0.44)、0.28(95%CI=0.12-0.65)和0.35(95%CI=0.21-0.51)。而吃红肉、高盐饮食、BMI≥23kg/m2,吃动物油和rs4746720CC+TT基因型与rs4746720CT基因型比较,发生2型糖尿病的概率增加,OR分别为2.89(95%CI=1.38-6.01)、2.73(95%CI=1.61-4.64)、3.47(95%CI=2.28-5.28)、27.91(95%CI=9.24-84.32)和1.61(95%CI=1.06-2.44)。
     关于HDA基因与脂肪代谢的关系,我们发现rS11741808位点与高甘油三酯、BMI≥23kg/m2和高总胆固醇间没有统计学关联,其OR(95%CI)分别为1.35(95%CI=0.90-2.01)、1.00(95%CI=0.67-1.50)和0.96(95%CI=0.61-1.51)。同样我们也没有发现rs2547547及rs2530223位点与脂肪代谢有统计学关联。SITR1基因rs4746720位点与脂肪代谢也没有统计学的差异。
     结论:
     (1) HDAC基因rs11741808、rs2547547及rs2530223多态性与2型糖尿病有关:rs11741808AG基因型发生2型糖尿病的几率比携带AA基因型的低;rs2547547AG基因型发生2型糖尿病的风险比携带AA基因高;rs2530223TT基因型发生2型糖尿病的几率比rs2530223CT+CC基因型低。
     (2) HDAC基因的rs1741981位点的多态性与2型糖尿病发生没有关联。
     (3) S1RT1基因的rs4746720位点的多态性与2型糖尿病发生有关联:rs4746720CC+TT基因型与rs4746720CT基因型比较,发生2型糖尿病的概率增加。
     (4) SIRT1基因的rs10509291, rs2236319和rs10823116的多态性与2型糖尿病发生没有关联。
     (5)经常喝牛奶、爱吃蔬菜、爱吃酸味食品等是中国汉族人群2型糖尿病发生的保护因素。
     (6)经常吃红肉、高盐饮食、爱吃动物脂肪等是中国汉族人群2型糖尿病发生的危险因素。
     (7)高血压、高甘油三酯、高总胆固醇和BMI≥23kg/m2是2型糖尿病的危险因素。
     (8)未发现研究的基因位点间、基因间以及基因与环境因素间与2型糖尿病的关联存在交互影响。
Objectives:Type2diabetes mellitus (T2DM) is a metabolic disorder that is characterized by high blood sugar in the context of insulin resistance and relative lack of insulin. But the real pathogenesis and mechanism of T2DM is not known now. T2DM is rising all over the World.In2000, the number of T2DM was171million, however, there will be366million in2030. This increase will strain health systems already facing a high burden of t T2DM and its complication, such as renal failure,lose sight,diabetic foot and angiocarpy disease.From the estimation of WHO, the burden of T2DM will increase rapidly in world if we haven't effective measure. For example, the burden of T2DM is24,500million in America in2012. And this burdent was higher41%than2007. T2DM combined with cancer and cardiovascular disease had been the three serious diseases in the world.
     In these thirty years, the prevenlence of T2DM is increase rapily in China too. The prevenlence of T2DM was0.67%in1980and2.5%in1994. However, the rate was up to9.7%in2007-2008. China has been the most number of T2DM in World. During the high disease burdent of T2DM, it needed to play some mesures on T2DM control and prevention in China too.
     Guangzhou is located in the south of China. The prevance of T2DM is higher than other middle and west city. Because the economic in Guangzhou is higher and abundant of diatery ways and other environment risk factors, risk factors of T2DM in Guangzhou are needed further research.
     T2DM is a complicated disease and relate to both genetic and environmental factors interact to produce hyperglycemia.There were over50genes had been found associated with T2DM, but the population attribute risk is very small in former research, new risk genes of T2DM also worth further research.There are no data regarding the possible role of the single nucleotide polymorphism (SNP) of class I Histone deacetylases (HDACs) in T2DM. Although SIRT1gene has been reported that it can increase the risk of Puma Indian.However, we haven't found data in Chinese Han population. Furthermore, HDAC gene and SIRT1gene are deacetylases, the interaction of the two genes and T2DM worth further research.For environment risk factors, epidemiology data show that heavy weight or obesity is the risk factor of T2DM. Phicical activity including walking, exercise, etal will decrease the risk of T2DM.The relation of dringing and T2DM is U shape, little or heavy dringing had little risk of T2DM than normal dringing.Active or passive smoking will increase the risk of T2DM.Furthermore, unhealthy diatery mode will increase T2DM, however little fat and high carbohydrate will decrease T2DM. From the above, we know that T2DM is a complicated disease in which both genetic and environmental factors interact to produce hyperglycemia. We designed this study to examine whether polymorphisms of HDAC gene. SIRT1gene and other factors can be implicated in this disease.
     Methods:A community-based, case-control study was conducted, with a total of568subjects (284patients and284controls) enrolled. Eight polymorphisms of HDAC1(rs1741981), HDAC3(rs11741808, rs2547547, rs2530223) and SIRT1(rs4746720, rs10509291, rs2236319, rs10823116) were examined by the use of TaqMan technology. Dietary data were collected by an inquiring officer through a face-to-face method. Subjects' body weights, heights and blood pressure were measured and recorded by a nurse. The levels of fasting serum glucose, triglyceride and total cholesterol was measured by a specialist using a Beckman Coulter AU680. We investigated the gene locus on the linkage disequilibrium and haplotype block analysis of the HapMap project data. SPSS13.0and Stata12.0were used to do the statistic.In demographic characteristics, the differences between the cases and controls were tested using the t test for continuous variables or χ2test for categorical variables; Multivariate logistic regression models were used to assess the effects of other factors and genotype on T2DM, controlling for the demographic characteristics such as gender, age, BMI, blood pressure, family income et al. The interaction between clinical factors and genotypes on T2DM were evaluated by multiplicative models.
     Results:
     There were no significant differences in the age or sex distribution between the control and the case (P values are0.109and1.000, respectively). Marital status, education and economic status had no significant differences too (P values are0.513,0.226and0.505).Compared with control, the case subjects showed higher levels of triglyceride and cholesterol, as well as BMI value (P<0.001, P=0.001and P=0.003, respectively).
     Behavior risk factors and T2DM
     There were73(25.80%)smokers in type2diabetes mellitus group,72(25.44%) smokers in control group, no significant differences between the two groups (χ2=0.009, P=0.923). Moreover, there were50.35%population in type2diabetes mellitus group doing exercise over0.5h per day, however, in control group only27.56%population doing exercise over0.5h per day, the differences had statistical significant (x2=39.685, P<0.001).Compare with control, exam at regular interval, chronic disease history population have higher risk of type2diabetes mellitus.(χ2=19.796, P<0.001; x2=6.355, P=0.012, respectively).
     Diatary factors and T2DM
     11.27%case group population like to eat sour food,19.72%control group population like to eat sour food, there are significant differences between the two groups (x2=7.745, P=0.005). Otherwise, eating piquancy food, dringing milk, eat vegetable, plant oil and eat white meat will decrease the risk of T2DM (x2=4.397, P=0.036;x2=9.111, P=0.003;x2=30.968,P<0.001;χ2=25.227,P<0.001,χ2=12.756, P<0.001, respectively)
     We found significant association with risk of T2DM for three SNPs of HDAC3, including rs11741808[odds ratio (OR)=0.54,95%confidence interval (CI)=0.36-0.81], rs2547547[OR=1.72,95%CI=1.13-2.64], and rs2530223[OR=1.96;95%CI=1.04-3.68]. We found significant association with risk of T2DM for rs4746720CC+TT genotype compared with CT genotype [OR=1.42,95%CI=1.02-1.98].
     Subgroup analysis showed that BMI>23kg/m2, high triglyceride and high blood pressure, together with the rs11741808AG genotype, were associated with a significantly decreased risk for T2DM, with an OR of0.50(95%CI=0.27-0.91),0.38(95%CI=0.20-0.71) and0.43(95%CI=0.24-0.76) compared with AA genotype, respectively. In population with normal total cholesterol, the AG genotype was associated with a significantly decreased risk of T2DM risk, with an OR of0.42(95%CI=0.25-0.70) when compared with the persons of the AA genotype. For rs2547547, in population with normal total cholesterol and triglyceride, the AG genotype was associated with a significantly increased risk of T2DM, with an OR of1,92(95%CI=1.17-3.15) and2.24(95%CI=1.28-3.94) when compared with population carrying AA genotype. Further, we performed stratification analyses for SIRT1to explore the role of the polymorphism in the subgroup population. For rs4746720, subjects with high triglyceride harboring the CC or TT genotype had a significantly increased risk of type2DM [OR=1.85,(95%CI=1.06-3.23)] compared with subjects of the CT genotype. In subjects eat red meat more, the CC or TT genotype significantly increased type2DM risk[OR=1.43,(95%CI=1.01-2.02)] compared with subjects of the CT genotype. In analysis of the effect of sugary food or smoking, individuals with the CC or TT genotype of rs4746720had a significantly increased risk of type2DM compared with individuals carrying the CT genotype[OR=2.22,(95%CI=1.21-4.06)], and [OR=1.65,(95%CI=1.10-2.47)].
     Multiple factors tests showed that high blood pressure, high triglyceride, high total cholesterol, BMI≥23and rs2547547AG compared with rs2547547AA+GG had higher risk of T2DM, with OR of2.23(95%CI=1.53-3.27),2.92(95%CI=1.98-4.31),1.50(95%CI=0.97-2.32),2.89(95%CI=1.98-4.21),1.93(95%CI=1.14-3.27), respectively. However, compared with rs2530223CT+CC, rs2530223TT+CC and rs11741808AA+GG, rs2530223TT, rs2530223CT and rs11741808AG had lower risk of type2DM, with OR of0.42(95%CI=0.20-0.87),0.33(95%CI=0.16-0.69),0.51(95%CI=0.32-0.81), respectively. Milk, soy, white meat, vegetables and low-salt diet decrease risk of T2DM, with OR of0.51(95%CI=0.29-0.88),0.43(95%CI=0.26-0.74),0.51(95%CI=0.32-0.83),0.21(95%CI=0.10-0.44),0.28(95%CI=0.12-0.65),0.35(95%CI=0.21-0.51) respectively. Red meat, salty food, BMI≥23kg/m2, use of animal fat and rs4746720CC+TT compared with rs4746720CT yielded higher risks of T2DM, with OR of2.89(95%CI=1.38-6.01),2.73(95%CI=1.61-4.64),3.47(95%CI=2.28-5.28),27.91(95%CI=9.24-84.32) and1.61(95%CI=1.06-2.44) respectively.
     We found no significant association between rs11741808and high triglyceride, BMI or high total cholesterol, the OR were1.35(95%CI=0.90-2.01),1.00(95%CI=0.67-1.50),0.96(95%CI=0.61-1.51), respectively. Moreover, there were no association between rs2547547, rs2530223and clinical character like BMI, high triglyceride, high total cholesterol too. And there were no association between SIRT1and clinical character like BMI, high triglyceride, high total cholesterol too.
     Conclusion:
     (1)The variance of HDAC (rs2530223, rs11741808and rs2547547) contribute to an increased prevalence of T2DM.
     (2)The variance of HDAC (rs1741981) has no relation with T2DM.
     (3) The variance of SIRT1(rs4746720) contribute to an increased prevalence of T2DM.
     (4) The variance of SIRT1(rs10509291, rs2236319and rs10823116) has no relation with T2DM.
     (5)Dringing milk, eat vegetable, eat sour food, et al were protect factors of T2DM.
     (6)Eating red meat, salt food and eating animal oil were risk factors of T2DM.
     (7)High blood pressure, high triglyceride, high total cholesterol an BMI≥23kg/m2were risk factors of T2DM.
     (8)No interaction relations were found between gene, environmental factors and T2DM.
引文
1. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Prevalence of the metabolic syndrome and its components findings from a finnish general population sample and the diabetes prevention study cohort. Diabetes Care,2004; 27(9):2135-40.
    2. American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care,2013; 36(4):1033-46.
    3. Bertoldi AD, Kanavos P, Franca GV, et al. Epidemiology, management, complications and costs associated with type 2 diabetes in Brazil:a comprehensive literature review. Global Health,2013; 9:62.
    4. Ezenwaka CE, Okoye O, Esonwune C, et al. High Prevalence of Abdominal Obesity Increases the Risk of the Metabolic Syndrome in Nigerian Type 2 Diabetes Patients:Using the International Diabetes Federation Worldwide Definition. Metab Syndr Relat Disord,2014;15(2):277-82.
    5. Mokdad AH, Jaber S, Aziz MI, et al. The state of health in the Arab world, 1990-2010:an analysis of the burden of diseases, injuries, and risk factors. Lancet, 2014; 383(9914):309-20.
    6.福建省糖尿病协作组,张闿珍,王燕.福建省37,158人口糖尿病调查简报.福建医药杂志,1981;06:24-26.
    7.广州地区糖尿病调查协作组.广州地区42,789人口的糖尿病患病率调查.中山医学院学报,1981;2(4):658-669.
    8.山西省糖尿病调查协作组.山西省三万农民糖尿病患病率调查报告.山西医学院学报,1981;02:1-6.
    9.盛正妍,刘嵋,王煜非,等.上海市市区9376成人中糖尿病患病率调查研究.中国糖尿病杂志,2001;9(4):214-217.
    10.全国糖尿病防治协作组.1994年中国糖尿病患病率及其危险因素.中华内科杂志,1997;36(6):25-30.
    11. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med,2010; 362(12):1090-101.
    12.齐晓红.广州市成人糖尿病患病情况抽样调查.中国慢性病预防与控制,1998;6(3):143-3.
    13.范健文,张万方,张瑞丹,等.广州市荔湾区15岁及以上居民糖尿病流行特征及影响因素分析.华南预防医学,2011;37(4):30-2.
    14.朱凯星,栾玉明,吴辉绪,等.广州市海珠区居民糖尿病现况调查及危险因素分析.中国慢性病预防与控制,2007;15(6):561-4.
    15. Wong KC, Wang Z. Prevalence of type 2 diabetes mellitus of Chinese populations in Mainland China, Hong Kong, and Taiwan. Diabetes Res Clin Pract,2006; 73(2):126-34.
    16.胡善联,刘国恩,许樟荣,等.我国糖尿病流行病学和疾病经济负担研究现状.中国卫生经济,2008;27(8):5-8.
    17.潘冰莹,刘伟佳,罗不凡,等.广州市居民糖尿病流行特征及防治评价.疾病控制杂志,2006;10(5):489-492.
    18.上海市糖尿病研究协作组.上海地区十万人口中糖尿病调查报告.上海第一医学院学报,1980;7(2):137-138.
    19. Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults. JAMA,2013; 310(9):948-59.
    20. Boden-Albala B, Cammack S, Chong J, et al. Diabetes, fasting glucose levels, and risk of ischemic stroke and vascular events:findings from the Northern Manhattan Study (NOMAS). Diabetes Care,2008; 31(6):1132-7.
    21. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract,2010; 87(1):4-14.
    22.王克安,李天麟,向红丁,等.中国糖尿病流行特点研究-糖尿病和糖耐量低减患病率调查.中华流行病学杂志,1998;19(5):27-30.
    23.国家“九五”攻关计划糖尿病研究协作组.中国12个地区中老年人糖尿病患病率调查.中华内分泌代谢杂志,2002;18(4):30-34
    24.鲍晨辉.2001年与2007年北京市西城区糖尿病患病现状及变化趋势对比分析.中国自然医学杂志,2008;10(6):442-6
    25.陈斌,李德云,梁小冬,等.珠海市15~69岁居民糖尿病患病率及影响因素.实用预防医学,2011;18(7):1175-7.
    26.司涟,宗允南.社区糖尿病流行病学的调查及启示.中国医药导报2009;6(14):129-130
    27.洪忻,殷晓梅,梁亚琼,等.南京地区35岁以上人群2型糖尿病现况调查.职业与健康,2007;23(10):788-91.
    28.李锐,卢伟,贾伟平,等.上海市2型糖尿病患病情况现状调查.中华医学杂志,2006;86(24):1675-80.
    29.李棹圻,何兰杰,王金莲,等.银川地区常住人口2型糖尿病流行病学调查.中国糖尿病杂志,2012;20(5):336-8
    30.孙彬录,阙丹,李远元,等.重庆社区居民糖尿病危险因素分析.社区医学杂志,2011;9(9):46-8
    31.王璐,林玉娣,钱燕华,等.无锡市社区人群糖代谢异常现状及影响因素分析.现代预防医学,2010;37(10):1801-3.
    32.徐桂英.苏州市相10803例社区居民健康筛查结果分析.慢性病学杂志,2013;14(3):238-239
    33.黄超,王长江.中国安庆农村人群中糖耐量和胰岛素抵抗情况的调查.安徽医科大学学报,2009;44(4):515-518.
    34. Maruthur NM. The growing prevalence of type 2 diabetes:increased incidence or improved survival? Curr Diab Rep,2013; 13(6):786-94.
    35. Gikas A, Sotiropoulos A, Panagiotakos D, et al. Prevalence, and associated risk factors, of self-reported diabetes mellitus in a sample of adult urban population in Greece:MEDICAL Exit Poll Research in Salamis (MEDICAL EXPRESS 2002). BMC Public Health,2004; 14;4:2.
    36.胡传峰,李立明,陆美琪,等.老年2型糖尿病患者易患因素的对照分析.中国糖尿病杂志,2000;8(6):330-332.
    37.李光勇,郭艳萍,郑荣哲,等.大庆市社区居民糖尿病筛查及2型糖尿病危险因素分析.中国慢性病预防与控制,2008;16(2):176-178.
    38.潘冰莹,丘小玲,方芳,等.广州市两区居民糖尿病患病率及危险因素分析.现代预防医学,2005;32(5):516-517.
    39.沈冲,杨光,项开宝,等.2型糖尿病合并高血压危险因素的病例对照研究.疾病控制杂志,2006;10(2):120-122.
    40. Omori S, Tanaka Y, Takahashi A, et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes,2008; 57(3):791-5.
    41. Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science,2007; 316(5829):1331-6.
    42. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science,2007; 316(5829):1341-5.
    43. Bonnycastle LL, Willer CJ, Conneely KN, et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes,2006; 55(9):2534-40.
    44. Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N. Pancreatic gene variants potentially associated with dipeptidyl peptidase-4 inhibitor treatment response in Type 2 diabetes. Pharmacogenomics,2014; 15(2):235-49.
    45. Vergotine Z, Yako YY, Kengne AP, et al. Proliferator-activated receptor gamma Prol2Ala interacts with the insulin receptor substrate 1 Gly972Arg and increase the risk of insulin resistance and diabetes in the mixed ancestry population from South Africa. BMC Genet,2014; 21;15:10.
    46. Shu XO, Long J, Cai Q, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet,2010; 6:e1001127.
    47. Chiefari E, Tanyolac S, Paonessa F, et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA,2011; 305(9):903-12.
    48. Lundh M, Christensen D, Nielsen MD, et al. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia,2012; 55(9):2421-31.
    49. Noh H, Oh EY, Seo JY, et al. Histone deacetylase-2 is a key regulator of diabetes and transforming growth factor-β1-induced renal injury. Am J Physiol Renal Physiol, 2009; 297(3):F729-39.
    50. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family:What are the cancer relevant targets? Cancer Lett,2009; 277(1):8-21.
    51. Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett,2009; 280(2):168-76.
    52. Weichert W, Denkert C, Noske A, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia,2008; 10(9):1021-7.
    53. Weichert W, Roske A, Gekeler V, et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer:a retrospective analysis. Lancet Oncol,2008; 9(2):139-48.
    54. Weichert W, Roske A, Gekeler V, et al. Histone deacetylases 1,2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer,2008; 98(3):604-10.
    55. Weichert W, Roske A, Niesporek S, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer:specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res,2008; 14(6):1669-77.
    56. Sun Z, Miller RA, Patel RT, et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med,2012; 18(6):934-42.
    57. Zeng Z, Liao R, Yao Z, et al. Three single nucleotide variants of the HDAC gene are associated with type 2 diabetes mellitus in a Chinese population:a community-based case-control study. Gene,2014; 533:427-33.
    58. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhancer-binding protein transcriptional complex. J Biol Chem,2006; 281(52):39915-24.
    59. Dong Y, Guo T, Traurig M, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab,2011; 104(4):661-665.
    60. Kume S, Uzu T, Kashiwagi A, Koya D. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications.Endocr Metab Immue Disord Drug Targets,2010; 10(1):16-24.
    61. Neel JV. Diabetes mellitus:a'thrifty'genotype rendered detrimental by 'progress'? Am J Hum Genet,1962; 14:353-362.
    62. de Kreutzenberg SV, Ceolotto G, Papparella I, et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes,2010; 59(4):1006-1015.
    63. Blander G, Olejnik J, Krzymanska-Olejnik E, et al. SIRT1 shows no substrate specificity in vitro. J Biol Chem,2005; 280(11):9780-9785.
    64. Kanfi Y, Peshti V, Gozlan YM, et al. Regulation of SIRT1 protein levels by nutrient availability. FEBS Lett,2008; 582(16):2417-2423.
    65. Ishikawa S, Li G, Takemitsu H, et al. Change in mRNA expression of sirtuin 1 and sirtuin 3 in cats fed on high fat diet. BMC Vet Res,2013;27; 9:187.
    66. Azadbakht L, Mirmiran P, Esmaillzadeh A, et al. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults.Am J Clin Nutr,2005; 82(3):523-530.
    67. Beydoun MA, Gary TL, Caballero BH, et al. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am J Clin Nutr,2008; 87(6):1914-1925.
    68. Novotny R, Daida YG, Acharya S, et al. Dairy intake is associated with lower body fat and soda intake with greater weight in adolescent girls. J Nutr,2004; 134(8):1905-1909.
    69. Grontved A, Pan A, Mekary RA, et al. Muscle-Strengthening and Conditioning Activities and Risk of Type 2 Diabetes:A Prospective Study in Two Cohorts of US Women. PLoS Med,2014; 11:e1001587.
    70. Kim HJ, Giovannucci E, Rosner B. et al. Longitudinal and Secular Trends in Dietary Supplement Use:Nurses' Health Study and Health Professionals Follow-Up Study,1986-2006. J Acad Nutr Diet,2014;114(3):436-43.
    71. Montonen J, Jarvinen R, Heliovaara M, et al.Food consumption and the incidence of type Ⅱ diabetes mellitus.Eur J Clin Nutr,2005;59(3):441-8.
    72. Montonen J, Knekt P, Harkanen T, et al. Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol,2005; 161 (3):219-27.
    73. Hussain TA, Mathew TC, Dashti AA, et al. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition,2012; 28(10):1016-21.
    74. Villegas R, Yang G, Gao YT, et al. Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women:the Shanghai Women's Health Study. Int J Epidemiol,2010; 39(3):889-99.
    75. Katz DL. Diet and Diabetes:Lines and Dots. J Nutr,2014;144(4 Suppl):567S-570S.
    76. Neumann A, Norberg M, Schoffer O, et al. Risk equations for the development of worsened glucose status and type 2 diabetes mellitus in a Swedish intervention program. BMC Public Health,2013; 13:1014.
    77. Hart CL, Hole DJ, Lawlor DA, Davey Smith G. How many cases of Type 2 diabetes mellitus are due to being overweight in middle age? Evidence from the Midspan prospective cohort studies using mention of diabetes mellitus on hospital discharge or death records. Diabet Med,2007:24(1):73-80.
    78. Laaksonen MA, Knekt P, Rissanen H, et al. The relative importance of modifiable potential risk factors of type 2 diabetes:a meta-analysis of two cohorts. Eur J Epidemiol,2010; 25(2):115-24.
    79. Li G. Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study:a 20-year follow-up study. Lancet,2008; 37t(9626):1783-9.
    80. Richter EA, Galbo H. Diabetes, insulin and exercise. Sports Med,1986; 3(4):275-88.
    81. Kowall B, Rathmann W, Strassburger K, et al. Association of passive and active smoking with incident type 2 diabetes mellitus in the elderly population:the KORA S4/F4 cohort study. Eur J Epidemiol,2010; 25(6):393-402.
    82. Ko KP, Min H, Ahn Y, et al. A prospective study investigating the association between environmental tobacco smoke exposure and the incidence of type 2 diabetes in never smokers. Ann Epidemiol,2011; 21(1):42-7.
    83. Bruin JE, Gerstein HC, Morrison KM, Holloway AC. Increased pancreatic beta-cell apoptosis following fetal and neonatal exposure to nicotine is mediated via the mitochondria. Toxicol Sci,2008; 103(2):362-70.
    84. Joseph J, Svartberg J, Njolstad I, Schirmer H. Incidence of and risk factors for type-2 diabetes in a general population:the Tromso Study. Scand J Public Health, 2010;38(7):768-75.
    85. Koppes LL, Dekker JM, Hendriks HF, et al. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies. Diabetes Care,2005; 28(3):719-25.
    86.隗金城,刘赫,赵聪,等.空腹血糖减损的流行病学调查.辽宁实用糖尿病 杂志,2004;12(3):36-7.
    87.陈玉,周玲,徐耀初,等.2型糖尿病与遗传和环境因素相互关系的研究.中华预防医学杂志,2002;36(3):48-51
    88.唐晓君,张素华,李革,等.重庆地区社区人群2型糖尿病现况调查.中国临床康复,2006;10(12):10-2.
    89. Li Q, Li H, Wang M, et al. Multi-susceptibility genes associated with the risk of the development stages of esophageal squamous cell cancer in Feicheng County. BMC Gastroenterol,2011; 11:74.
    90. Zheng J, Chen L, Xiao F, et al. Three single nucleotide variants of the SIRT1 gene are associated with overweight in a Chinese population:a case control study. Endocr J, 2012;59(3):229-237.
    91. Choi HS, Lee JH, Park JG, Lee YI. Trichostatin A, a histone deacetylase inhibitor, activates the IGFBP-3 promoter by upregulating Spl activity in hepatoma cells: alteration of the Sp1/Sp3/HDAC1 multiprotein complex. Biochem Biophys Res Commun,2002; 296(4):1005-1012.
    92. Kimura K, Yamada T, Matsumoto M, et al. Endoplasmic reticulum stress inhibits STAT3-dependent suppression of hepatic gluconeogenesis via dephosphorylation and deacetylation. Diabetes,2012; 61(1):61-73.
    93. Yang Z, Zhou L, Wu LM, et al. Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy. Clin Chem Lab Med,2010; 48(12):1785-1791.
    94. Farooq M, Sulochana KN, Pan X, et al. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol,2008; 317(1):336-53.
    95. Aerts JM, Boot RG, van Eijk M, et al. Glycosphingolipids and insulin resistance. Adv Exp Med Biol,2011; 721:99-119.
    96. Price NL, Gomes AP, Ling AJY, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab,2012; 15(5):675-690.
    97. Zhang W-G, Bai X-J, Chen X-M. SIRT1 variants are associated with aging in a healthy Han Chinese population.Clin Chim Acta,2010; 411 (21-22):1679-1683.
    98. Zillikens MC, van Meurs JBJ, Sijbrands EJG, et al. SIRT1 genetic variation and mortality in type 2 diabetes:interaction with smoking and dietary niacin.Free Radic Biol Med,2009; 46(6):836-841.
    99. Dong Y, Guo T, Traurig M, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians.Mol Genet matab,2011; 104(4):661-665.
    100. Dali-Youcef N, Lagouge M, Froelich S, et al. Sirtuins:the'magnificent seven', function, metabolism and longevity. Ann Med,2007; 39(5):335-345.
    101. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity:Handb Exp Pharmacol,2011; 206:125-62.
    102. Palermo A, Maggi D, Maurizi AR, et al. Prevention of type 2 diabetes mellitus: is it feasible? Diabetes Metab Res Rev,2013; 30(Suppl 1):4-12.
    103. Choi HK, Willett WC, Stampfer MJ, et al. Dairy consumption and risk of type 2 diabetes mellitus in men:a prospective study.Arch Intern Med,2005; 165(9):997-1003.
    104. Montonen J KP, Harkanen T, Jarvinen R, Heliovaara M, Aromaa A, Reunanen A. Dietary patterns and the incidence of type 2 diabetes.Am J Epidemiol,2005; 161(1):219-227.
    105. Villegas R, Yang G, Gao Y-T, et al. Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women:the Shanghai Women's Health Study. Int J Epidemiol,2010; 39(3):889-899.
    106. Morimoto Y, Steinbrecher A, Kolonel LN, Maskarinec G. Soy consumption is not protective against diabetes in Hawaii:the Multiethnic Cohort.Eur J Clin Nutr, 2011;65(2):279-282.
    107. Steinbrecher A, Erber E, Grandinetti A, et al. Meat consumption and risk of type 2 diabetes:the Multiethnic Cohort.Public Health Nutr,2011; 14(4):568-574.
    108. van Dam RM, Rimm EB, Willett WC, et al. Dietary patterns and risk for type 2 diabetes mellitus in US men.Ann Intern Med,2002; 136(3):201-209.
    109. Lopez-Ridaura R, Willett WC. Rimm EB, et al. Magnesium intake and risk of type 2 diabetes in men and women.Diabetes Care,2004; 27(1):134-140.
    110. Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes:a prospective study and meta-analysis.Arch Intern Med,2007; 167(9):956-65.
    111. Liu J, Hanley AJG, Young TK, et al. Characteristics and prevalence of the metabolic syndrome among three ethnic groups in Canada.Int J Obes (Lond),2005; 30(4):669-76.
    112. Wirflat E, Hedblad B, Gullberg B, et al. Food patterns and components of the metabolic syndrome in men and women:a cross-sectional study within the Malmo Diet and Cancer cohort. Am J Epidemiol,2001; 154(12):1150-9.
    113. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women.N Engl J Med,2001; 345(11):790-7.
    114. Panwar H, Calderwood D, Grant IR, et al. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha-and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr,2014;12.
    115. Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Prevalence of the metabolic syndrome and its components:findings from a Finnish general population sample and the Diabetes Prevention Study cohort. Diabetes Care,2004; 27(9):2135-40.
    116.杜玮南.中国北方汉族人群2型糖尿病易感基因的精细定位.中国协和医科大学.2001.
    117.杜玮南,孙红霞,王姮,等.中国汉族人群Ⅱ型糖尿病家系1号染色体易感基因的精细定位.中国医学科学院学报,2002;24(3):234-7.
    118.杜玮南,孙红霞,熊墨淼,等.中国北方汉族人群Ⅱ型糖尿病家系1号染色体易感基因位点定位的确证(英文)Chinese Medical Journal,2001;114(8):93-5.
    119. Wang CR, Hu C, Zhang R, et al. Association of a common haplotype of hepatocyte nuclear factor 1 alpha with type 2 diabetes in Chinese population. Biomed Environ Sci,2007; 20(1):41-6.
    120. Qin W, Zhang R, Hu C, et al. A variation in NOS1AP gene is associated with repaglinide efficacy on insulin resistance in type 2 diabetes of Chinese. Acta Pharmacol,2010; 31(4):450-4.
    121. Gao F, Zhang R, Hu C, et al. Association of-6735T->C variant of glucokinase-associated dual-specificity phosphatase 12 gene with type 2 diabetes in Chinese. Zhonghua Yi Xue Za Zhi,2008; 88(32):2250-3.
    122. Gu Y, Luo T, Yang J, et al. The-822G/A polymorphism in the promoter region of the MAP4K5 gene is associated with reduced risk of type 2 diabetes in Chinese Hans from Shanghai. J Hum Genet,2006; 51(7):605-10.
    123. Wang C, Hu C, Zhang R, et al. Common variants of hepatocyte nuclear factor 1 beta are associated with type 2 diabetes in a Chinese population. Diabetes,2009; 58(4):1023-7.
    124. McCarthy MI, Hattersley AT. Learning from molecular genetics:novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes, 2008;57(11):2889-98.
    125. Genuth S. The UKPDS and its global impact. Diabet Med,2008; 25(Suppl 2):57-62.
    126. Stieglmayr S, Khayyat AH, Bodlaj G, et al. Comparable outcomes in type 2 diabetic patients with diabetic or vascular nephropathy treated by hemodialysis. Nephron Clin Pract,2010; 114:c104-7.
    127. Haigis MC, Sinclair DA. Mammalian sirtuins:biological insights and disease relevance. Annu Rev Pathol,2010; 5:253-95.
    128. Kume S, Uzu T, Kashiwagi A, Koya D. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr Metab Immune Disord Drug Targets,2010; 10(1):16-24.
    129. Potente M, Urbich C, Sasaki K, et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest,2005; 115(9):2382-92.
    130. Nakae J, Kitamura T, Kitamura Y, et al. The forkhead transcription factor Foxol regulates adipocyte differentiation. Dev Cell,2003; 4(1):119-29.
    131. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,2004; 303(5666):2011-5.
    132. Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem,2004; 279(39):41114-23.
    133. Farmer SR. The forkhead transcription factor Foxol:a possible link between obesity and insulin resistance. Mol Cell,2003; 11(1):6-8.
    134.卢忠燕,甘立霞,缪洪明,等FOXO1在胰岛p细胞中的表达及对增殖凋亡功能的影响.中国生物化学与分子生物学报,2009;25(1):50-6.
    135. Wang F, Han XY, Ren Q, et al. Effect of genetic variants in KCNJ11, ABCC8, PPARG and HNF4A loci on the susceptibility of type 2 diabetes in Chinese Han population. Chin Med J (Engl),2009; 122(20):2477-82.
    136. Sakamoto Y, Inoue H, Keshavarz P, et al. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet,2007; 52(10):781-93.
    137. Feng Y, Mao G, Ren X, et al. Ser1369A1a variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care,2008; 31(10):1939-44.
    138. He YY, Zhang R, Shao XY, et al. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients. Acta Pharmacol Sin,2008; 29(8):983-9.
    139. Yang M, Huang Q, Wu J, et al. Effects of UCP2-866 G/A and ADRB3 Trp64Arg on rosiglitazone response in Chinese patients with Type 2 diabetes. Br J Clin Pharmacol,2009; 68(1):14-22.
    140.龚鹤琴,张茂镕,邱俊,等.钙蛋白酶10基因多态性与2型糖尿病遗传性.中国公共卫生,2005;21(11):98-9.
    141. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet,2000; 26(2):163-75.
    142.孙红霞,张奎星,杜玮南,等.中国人CAPN10基因单核苷酸多态性的分布及其在北方汉族2型糖尿病人群中的关联分析.中国医学科学院学报,2002;24(3):228-233.
    143.周青.钙蛋白酶10基因多态性与汉族人2型糖尿病遗传易感性的相关性研究.皖南医学院学报,2008;27(4):246-249.
    144.李琳琳,张月明,杜景玉,等.CAPN-10基因与新疆维吾尔族及哈萨克族人群2型糖尿病的相关性.中华糖尿病杂志,2005;13(2):118-119.
    145. Lee YH, Kang ES, Kim SH, et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet,2008; 53(11-12):991-8.
    146.王娟,陈莉明,孙红喜,等.CDKAL1基因rs7754860位点G    147.娄青林,卞茸文,解雨春,等.TCF7L2基因单核甘酸多态性与汉族2型糖尿病遗传易感性关系的研究.中国糖尿病杂志,2009;12:895-898.
    148.王玉萍.TCF7L2基因rs7903146 (C/T)多态与延边地区朝鲜族和汉族2型糖尿病相关性研究.延边大学.2012.
    149.张留伟,陈大方.TCF7L2和KCNQ1基因多态性与2型糖尿病易感性的Meta分析.中国慢性病预防与控制,2010;18(6):554-559.
    150.赵雪单,乔虹.TCF7L2基因多态性与2型糖尿病相关性.医学研究生学报,2010;23(3):305-307.
    151.朱晖,王佑民,许敏,徐振山.生物芯片快速检测糖尿病风险基因TCF7L2rs290487位点.安徽医科大学学报,2011;46(1):20-24.
    152.丁晓慧,杨泽.2型糖尿病易感基因研究进展.中国糖尿病杂志,2010;4:311-313.
    153. Risch N, Kidd KK, Tishkoff SA. Response:genetic data and the african origin of humans. Science,1996; 274(5292):1548b-9b.
    154. Whitfeld PR. A method for the determination of nucleotide sequence in polyribonucleotides. Biochem J,1954; 58(3):390-6.
    155. Sanger F, Coulson AR. The use of thin acrylamide gels for DNA sequencing. FEBS Lett,1978;87(1):107-10.
    156. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA,1977; 74(2):560-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700