用户名: 密码: 验证码:
七叶皂苷和多奈哌齐对鼠脑缺血损伤及血管性痴呆的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:脑血管疾病是危害人类生命健康的常见病和多发病,具有发病率高、致残率高、死亡率高和复发率高的特点,是中老年人致死、致残的主要疾病,已成为危害人类健康的重要原因,造成了极大的经济和社会负担。
     血管性痴呆是以认知损害为特征的一种综合征,主要表现为认知功能障碍,包括学习、记忆、思维功能的降低等。脑血管疾病,特别是缺血所致的脑损伤是导致血管性痴呆(vascular dementia,VD)的重要原因。
     药理学和临床研究证明,包括多奈派齐在内的胆碱酯酶抑制剂可明显缓解痴呆病人的症状,改善生活质量。但由于胆碱酯酶抑制剂可引起以胃肠道症状为主的严重不良反应,其临床使用受到了很大的限制。
     脑缺血损伤后产生的炎症和水肿,以及随之发生的神经损伤与血管性痴呆发生密切相关。七叶皂苷钠是从中药娑罗子中提取的三萜皂苷类化合物,具有很强的抗炎抗水肿作用,临床上广泛用于脑血栓的治疗。
     脑血栓形成后,抗炎治疗是否能够减少脑缺血损伤,降低缺血所致的痴呆的发生,以及七叶皂苷钠作为抗炎抗水肿是否适合用于脑缺血损伤的治疗;若七叶皂苷钠可以改善脑缺血损伤引起的学习记忆障碍,其机制是什么?胆碱酯酶抑制剂多奈派齐早期给药是否可以改善脑缺血所致的学习记忆障碍,M—受体阻断剂是否可以降低多奈派齐的消化道不良反应,而不影响多奈派齐对痴呆的治疗作用(理论上,M—受体阻断剂进入中枢可以加重痴呆的症状)。药物在脑缺血损伤时,对炎症相关基因和神经递质受体及调控因子基因,又产生什么影响?
     本论文以七叶皂苷钠和多奈哌齐为代表,研究抗炎和胆碱酯酶抑制剂对脑缺血损伤及血管性痴呆的作用,并对这两种药物使用中可能存在的不良反应及其防治进行研究。
     研究方法:本论文分为两大部分。第一部分研究七叶皂苷钠对缺血性脑损伤的作用及其机制;第二部分研究胆碱酯酶抑制剂多奈哌齐的神经保护作用及不良反应的防治。
     一、七叶皂苷钠对缺血性脑损伤的作用及机制研究
     1.采用两种大鼠缺血性损伤模型研究七叶皂苷钠对缺血致神经损伤的影响。第一种采用经典栓线致大鼠大脑中动脉阻塞(MCAO)方法造成局灶性脑缺血再灌注损伤,以Longa's神经功能学评分法检测动物神经损伤程度;以氯化四唑(TTC)染色法测定脑梗死面积百分比,观察七叶皂苷钠对脑缺血性损伤的保护作用。第二种采用双侧颈总动脉永久结扎大鼠脑缺血模型,结扎后,静脉注射七叶皂苷钠,每天1次,连续给药3天,进行学习记忆观察;另取大鼠手术后,连续给药3天,末次给药6小时后,麻醉取脑,观察线粒体结构功能变化。
     2.采用小鼠短暂性缺血致脑损伤(记忆障碍)模型研究七叶皂苷钠对血管性痴呆学习记忆的影响。实验时分离双侧颈总动脉,用动脉夹夹闭同时放血。假手术组只分离颈总动脉,不夹闭和放血。手术次日开始给药,假手术组给予生理盐水,阳性药对照组给予多奈哌齐,实验组分别给予不同剂量的七叶皂苷钠。连续给药3天后,开始Morris迷宫训练,连续5天,记录每只小鼠的记忆潜伏期等,评价学习记忆成绩。取海马,以比色法测定乙酰胆碱酯酶活性。
     3.以脑含水量评价七叶皂苷钠对大鼠缺血再灌注致脑水肿的影响。证明七叶皂苷钠的抗缺脑水肿作用后,以大鼠足跖肿模型和小鼠腹腔毛细血管通透性模型研究其抗炎抗水肿作用特点;以去肾上腺大鼠研究七叶皂苷钠抗炎作用和肾上腺皮质激素的关系。
     4.以基因芯片,研究观察缺血和给药对NFκB通路基因和神经递质受体及调控因子基因水平的影响。以蛋白芯片,观察缺血对NFκB通路蛋白表达的影响。
     二、胆碱酯酶抑制剂多奈哌齐的神经保护作用及其不良反应防治
     胃肠运动功能亢进是胆碱酯酶抑制剂引起消化道不良反应的主要原因。胃排空和肠推进常被用作观察动物胃肠运动的指标。
     1.以胃排空和小肠推进实验,评价M-受体阻断剂溴丙胺太林对胆碱酯酶抑制剂多奈哌齐增强胃肠运动所致的消化道不良反应的影响。
     2.以能降低多奈哌齐胃肠道不良反应的溴丙胺太林的剂量,观察溴丙胺太林对多奈哌齐治疗效应的影响。
     采用小鼠短暂性脑缺血致损伤(记忆障碍)模型,研究多奈哌齐对血管性痴呆学习记忆的影响。手术次日开始给药,假手术组动物给予生理盐水,实验组分别给予阳性药对照药多奈哌齐,溴丙胺太林,溴丙胺太林和多奈哌齐。连续给药3天后,开始Morris迷宫训练,连续5天,记录每只小鼠的记忆潜伏期。
     取固定区域的皮层,测定乙酰胆碱酯酶活性。
     以学习记忆指标,评价多奈哌齐对血管性痴呆的治疗作用,以及溴丙胺太林对多奈哌齐治疗作用的影响。
     3.以基因芯片,研究缺血、胆碱酯酶抑制剂多奈哌齐或溴丙胺太林和多奈哌齐联用,对神经递质受体及调控因子基因水平的影响。
     结果:
     1.在大鼠大脑中动脉阻塞(MCAO)局灶性脑缺血再灌注损伤模型,七叶皂苷钠可以明显降低缺血所致神经功能评分的升高,降低缺血致坏死面积,表明七叶皂苷钠对缺血再灌注损伤具有一定的保护作用。
     2.在大鼠双侧颈总动脉结扎模型,七叶皂苷钠改善脑缺血损伤所致的学习记忆障碍。这种保护与改善线粒体呼吸功能有关。连续3天静脉注射七叶皂苷钠0.9mg/kg可以抑制线粒体膜结构和呼吸能力受损,升高呼吸能力(S3),降低基础氧耗(S4),升高呼吸链活性(RCR)。
     3.小鼠短暂性脑缺血致脑损伤模型研究显示,七叶皂苷钠可明显改善缺血所致的学习记忆障碍。七叶皂苷钠对短暂性脑缺血损伤有一定的防护作用,但该作用与脑内乙酰胆碱酯酶活性无关。
     4.七叶皂苷钠具有明显的抗缺血致脑水肿作用。
     5.在大鼠足跖肿模型和小鼠毛细血管通透性模型,七叶皂苷钠均具有较强的抗炎作用,其作用起效相对缓慢,但维持时间长达24 h。七叶皂苷钠无致胃肠粘膜损伤作用,对应激性溃疡形成具有一定的抑制作用。七叶皂苷钠对体液免疫、细胞免疫均无抑制作用。在去肾上腺大鼠,七叶皂苷钠不显示抗炎作用,表明七叶皂苷钠的抗炎作用依赖于肾上腺的存在;但静脉注射七叶皂苷钠并不升高大鼠体内皮质酮的水平;低剂量的皮质酮和七叶皂苷钠均无抗炎作用,而低剂量联合给药显示明显的协同效应,表明七叶皂苷钠不是通过刺激肾上腺皮质激素的的释放发挥抗炎效应,而可能是通过放大糖皮质激素的抗炎效应而显示抗炎作用。
     6.基因芯片研究显示,缺血可致部分神经递质和受体基因发生明显变化,七叶皂苷钠可在一定程度上调节这些变化。特别是NFκB通路相关的基因,七叶皂苷钠下调致炎性和致脑损伤相关的基因,上调脑损伤保护相关的基因水平。在缺血的晚期,对NFκB蛋白表达无直接抑制作用。
     7.小鼠肠推进实验显示,多奈哌齐能够明显提高肠推进速度,而溴丙胺太林明显减慢肠推进速度;以不同剂量的溴丙胺太林与多奈哌齐联合使用,溴丙胺太林2mg/kg给药时,可明显缓解多奈哌齐所致的胃肠运动亢进,表明适当剂量的M-受体阻断剂可以降低胆碱酯酶抑制剂对胃肠运动的影响,降低消化道不良反应的发生。
     8.溴丙胺太林与多奈哌齐联合使用对多奈哌齐治疗效应影响研究显示,短暂性脑缺血损伤可致小鼠学习记忆障碍:多奈哌齐对缺血致记忆障碍具有一定的改善作用;溴丙胺太林单独使用对学习记忆障碍无明显影响,与多奈哌齐联合使用,不降低多奈哌齐的治疗作用。脑缺血损伤后第8天,脑皮层的胆碱酯酶活性升高,多奈哌齐抑制胆碱酯酶的活性,溴丙胺太林不改变多奈哌齐对胆碱酯酶的抑制程度。表明多奈哌齐用药的初始阶段,选择不易透过血脑屏障的M-受体阻断剂与胆碱酯酶抑制剂联合使用,既可降低胆碱酯酶抑制剂胃肠道不良反应,又不影响治疗痴呆的药理效应。
     9.在短暂性脑缺血小鼠,使用胆碱酯酶抑制剂多奈哌齐、M-受体阻断剂溴丙胺太林,或联合使用两种药物,对神经递质受体及调控因子基因产生复杂的调节。缺血和药物对胆碱酯酶系统的调节表现为,不影响乙酰胆碱酯酶基因水平;对胆碱能受体基因的调节十分复杂。短暂性脑缺血和药物对胆碱能系统以外的受体如多巴胺、甘丙肽、神经肽Y等也具有显著的调节作用。
     10.基因芯片研究的结果还显示,缺血和药物对递质受体及调控因子基因发生复杂的调节作用。溴丙胺太林与多奈哌齐联用与多奈哌齐单独使用相比,基因水平上显示了一定的差异。
     结论:
     1.七叶皂苷钠对缺血性脑损伤具有保护作用,对脑缺血所致的学习记忆障碍具有改善作用。该作用可能与抗脑水肿,线粒体保护,减轻神经损伤有关;而与乙酰胆碱酯酶活性无关。
     2.七叶皂苷钠对缺血海马组织炎症损伤因子如补体C3、趋化因子、TNF和CD40基因的下调和损伤保护因子GM-CSF基因的上调,可能是其神经损伤保护的重要机制。
     3.七叶皂苷钠的抗炎作用与糖皮质激素相似。其抗炎作用依赖于肾上腺的存在,但并不刺激体内糖皮质激素的释放,放大糖皮质激素抗炎效应可能是七叶皂苷钠抗炎作用的重要机制。七叶皂苷钠在发挥抗炎作用的同时,既不抑制机体的免疫功能,又不引起消化道粘膜的损伤,且对应激性溃疡有一定的防治作用,因此适合用于脑缺血疾病的治疗。
     4.多奈哌齐可改善缺血所致的学习记忆障碍。不易透过血脑屏障的季胺类M-受体阻断剂溴丙胺太林,可明显降低多奈哌齐的消化道不良反应,而对其治疗学效应无明显影响。脑缺血、多奈哌齐、多奈派齐和溴丙胺太林两者联合使用对神经递质受体及调控因子基因产生复杂的影响。
     本研究的意义与创新点是:
     本研究明确了临床常用于缺血性脑中风治疗的抗炎抗水肿药物七叶皂苷钠能够降低缺血致痴呆的发生,明确了其抗炎作用的特点和初步机制,为科学合用药奠定了理论基础;明确了老年性痴呆治疗药物多奈哌齐早期给药具有降低缺血致痴呆的作用,提出了解决胆碱酯酶抑制剂消化道不良反应的方案,为更合理地应用胆碱酯酶抑制剂治疗血管性痴呆提供了实验依据。
     主要创新点:(1)首次明确七叶皂苷钠的神经保护作用可以减少脑缺血引起的血管性痴呆的发生;(2)首次明确七叶皂苷钠可以同时上调神经损伤保护因子的基因,下调致炎症损伤因子的基因;(3)首次提出七叶皂苷钠放大糖皮质激素抗炎效应抗炎作用的新机制;(4)证明了不能透过血脑屏障的M-受体阻断剂溴丙胺太林既可降低多奈哌齐的不良反应,又不影响多奈哌齐的疗效。
Objective::Cerebrovascular diseases have the characteristics of high morbidity, high rate of mutilation and high mortality.They are the main causes resulting in cripplehood and death in middle and elder man,therefore has given rise to an enormous socioeconomic burden.
     Vascular dementia is a degenerative cerebrovascular disease that leads to a progressive decline in memory and cognitive functioning.It occurs when the blood supply carrying oxygen and nutrients to the brain is interrupted by a blocked or diseased vascular system.Signs and symptoms are varied and usually reflect increasing difficulty to perform everyday activities,such as eating,dressing,shopping, etc.
     Alzheimer's disease(AD) and vascular dementia(VD) are the two main causes of dementia.The incidence of VD is the second most common form of dementia in the elderly after AD.Pharmacological experiments and controlled clinical trials with cholinesterase inhibitors,such as donepezil,galantamine and rivastigmine in VD and AD,have demonstrated improvements in cognition,behavior and activities of daily living.However,the cholinesterase inhibitor agents may cause a broad spectrum of adverse events-nausea,vomiting,and diarrhoea,and so on,which make many patients withdrawn themselves from taking CHI agents.
     Vascular dementia is associated with the inflammation,edema and neural lesion resulted from cerebral ischemia.Escin(Sodium aescinate) is prescribed to treat ischemic stroke and traumatic brain injury.Donepezil,a cholinesterase inhibitor,is administered to the patients with dementia in the world.In this study,we investigated the effects of both escin and donepezil on cerebral ischemic injury and dementia in rodent animals,and the prevention of adverse action of these drugs.
     Methods:There are two parts of our study.One is about the effects and it's mechanism of escin on cerebral ischemic injury;the other is about the effects of donepezil on vascular dementia,and prevention of adverse action of donepezil.
     1.The effect of escin on cerebral ischemic injury and dementia
     In rats,two animal models were used to study the effect of escin on the cerebral ischemic injury and dementia.
     The first rat model,typical rat thread model,performed by middle cerebral artery occlusion(MCAO),was used to induce the reversible focal cerebral ischemia/reperfusion injury.Focal cerebral ischemia/reperfusion injury group which were subject to 2 hours of ischemia followed by 22 hours of reperfusion.The behavioral tests were used to evaluate the damage to central nervous system.2,3, 5-triphenyl tetrazolium chloride(TTC) staining method was used to assess the percentage of brain infarct area.H&E staining was used to observe the pathologic histological changes of hippocampus.
     The second rat model,rats were subjected to 2VO surgery.Briefly,under anesthesia,the bilateral common carotid arteries of rats were exposed and carefully separated from the carotid sheath and cervical sympathetic and vagus nerves through a ventral cervical incision,and ligated with silk thread.The animals in sham group received the same surgical operation without ligation of the carotid arteries served as sham-operated controls.The drugs were administered and Morris performance was carried out.In another experiment,six hours after occlusion,escin was given by vein every day for 3 days.To isolate brain mitochondria,rats were anesthetized with 10% chloral hydrate and killed by cardiac perfusion.The forebrain tissue was removed immediately and homogenized.The homogenate was immediately centrifuged to separate mitochondria.Mitochondrial swelling was assayed by measuring the decrease in absorbance at 540 nm.Mitochondrial respiratory control ratio(RCR) was measured.
     In mice,transient cerebral ischemia was induced by bilateral common carotid occlusion.The mice were anesthetized.Then the common carotid arteries were exposed and occluded with artery clips for 20 min.While the arteries were clamped, 0.3 ml of blood was withdrawn from the tail vein.Sham-operated mice were subjected to the same procedure without carotid clamping and withdrawal of blood.
     Mice alive 24 hr after operation were used in the Morris water maze task.Dally learning consisted of four trials in which the mouse was placed in the water from four different starting points and the latency of escape onto the platform was recorded. This was conducted for 5 consecutive days.A maximum of 60 sec was allowed during which the mouse had to find the platform and climb onto it.When the mouse reached the platform,it was allowed to remain on it for 20 sec.If the mouse failed to find the platform within 60 sec,it was removed from the water and placed on the platform for 20 sec.All latency for a given day was calculated by averaging the four trials.For cholinesterase activity assay,mice were killed by decapitation after the Morris water maze task had been carried out.The cerebral cortex from the right hemisphere was dissected on ice and homogenized.Cholinesterase activity in the homogenates was measured using the spectrophotometric methods.
     The brain edema was evaluated by the water content in the brain.The anti-inflammation characteristics of escin administered by intravenous injection,was observed by carrageenan-induced paw edema model in rats and vascular permeability induced by acetic acid in mice.The relationship between the effect of escin and adrenal gland was investigated by observing the anti-inflammatory effect of it in rats with adrenalectomy.
     The neurotransmitter receptors and regulators microarray were used to observe the change of gene regulation in the course of inflammation and anti-inflammation. The signal pathway of NFκB was also observed by ELISA.
     2.Neuroprotection of Acetylcholinesterase inhibitor donepezil and prevention of it's adverse action
     In mice,transient cerebral ischemia was induced by bilateral common carotid occlusion as above.
     Mice alive 24 hr after operation were used in the Morris water maze task.Daily learning consisted of four trials in which the mouse was placed in the water from four different starting points and the latency of escape onto the platform was recorded. This was conducted for 5 consecutive days.A maximum of 60 sec was allowed during which the mouse had to find the platform and climb onto it.When the mouse reached the platform,it was allowed to remain on it for 20 sec.If the mouse failed to find the platform within 60 sec,it was removed from the water and placed on the platform for 20 sec.All latency for a given day was calculated by averaging the four trials.For cholinesterase activity assay,mice were killed by decapitation after the Morris water maze task had been carded out.The cerebral cortex from the right hemisphere was dissected on ice and homogenized.Cholinesterase activity in the homogenates was measured using the spectrophotometric methods.
     In order to investigate how attenuate the side reaction of CHI agent while without affecting its efficacy,the effects of propantheline bromide(PB) co-administered with donepezil,such as the gastric emptying(GE) and gastrointestinal transit(GIT),the markers of gastrointestinal motility,and brain cholinesterase(ChE) activities,maze tasks of mice with vascular dementia induced by transient ischemia,were observed.
     The effects of ischemia and drugs(donepezil,propantheline alone,or co-administration of them) on the gene associated with neurotransmitter and receptor were investigated by real time PCR.
     Results:
     1.Compared with sham-operate group,rats with MCAO showed significant increase of neurological scores,significant increase of infarct area ratio.Escin could attenuate these changes.It suggested that escin could have a protection against ischemic injury.
     Twenty eight days after occlusion,in rats subjected to 2VO surgery,the memory of rat was decreased by ischemia and ameliorated by escin.Six hour after occlusion, escin could protect the respiratory energy system and increase the RCR.
     Mice subjected to transient cerebral ischemia took a longer time to locate the hidden platform than the sham-operated control mice during the learning trials, although the ischemia did not affect the swimming ability of the mice in the pretraining trial in the water maze.Treatment of mice with escin shortened the latency of escape onto the platform during the learning,as compared with the ischemia model control.
     Escin could attenuate the brain edema significantly for 12 h.In acute inflammatory animal models,escin inhibited carrageenan-induced paw edema in rats and vascular permeability induced by acetic acid in mice.The results demonstrated that the anti-inflammatory effect of escin was similar to dexamethasone,beginning from 4 h to 24 h after it was given.
     The anti-inflammatory effect of escin would be abolished by adrenalectomy in rats.The Corticosterone in sera was not increased by escin administered intravenously. These findings suggest the effect of escin depend on the adrenal gland and may amplify,the anti-inflammatory effect of glucocorticoids in vivo.
     2.Neuroprotection of acetylcholinesterase inhibitor donepezil and prevention of adverse action of donepezil
     GIT was accelerated significantly by donepezil 0.625 mg/kg during 30-60 min after it was given.The maximal acceleration of 26%was achieved 60 min after administration.Thus in experiments the effects of donepezil were observed 60 min after it was administered.Donepezil increased GIT,but GIT was inhibited by PB. When donepezil and PB were administered simultaneously,PB attenuated the GIT promoted by donepezil.At a dose of 2 mg/kg,PB restored GIT to the same level as in the saline group.This dose was equivalent to the therapeutic one in patients based on body surface area.Thus in the measurement of GE,the dose of PB was 2 mg/kg.
     Donepezil 0.625 mg/kg accelerated GE.PB co-administered with donepezil attenuated the increase of in GE.At dose of 2 mg/kg,PB restored GE to nearly normal level.
     About 30%of mice with transient cerebral ischemia were died within 24 hr after operation.Mice subjected to transient cerebral ischemia took a longer time to locate the hidden platform than the sham-operated control mice during the learning.(?) although the ischemia did not affect the swimming ability of the mice(?) pretraining trial in the water maze.Treatment of mice with donepezil signifi(?) shortened the latency of escape onto the platform during the learning,especia(?) the 5th learning day,as compared with the ischemia model control.PB alone di(?) have any effect on the latency.Co-administration of PB and donepezil did not(?) the effects of donepezil on the latency of escaping onto the platform in the(?) maze performance,showing that PB had no effect on the therapeutic eff(?) donepezil.
     After administration of donepezil or both donepezil and PB for 8 days,(?) activity in the brain was decreased compared with that in the ischemia model(?) However,there was no difference between the donepezil alone and donepezil pl(?) groups.This suggested that PB could not change the ability of donepezil to pen(?) through the blood-brain barrier and the inhibitory effects of donepezil on brain(?) activity.
     The muscarinic receptor blocker PB is unable to penetrate the blood-brain(?) and when co-administered with a cholinesterase inhibitor attenuates its side(?) without affecting its therapeutic effects,and thus may be beneficial for patients(?) VD.
     The gene of acetylcholinesterase was not changed by drugs mentioned above.(?) effects of co-administered with PB and donepezil was different from that of don(?) given alone,which suggested that clinical trial shoud be carried out to know the(?) effect of co-administration.
     Conclusion:
     1.Escin could protect rat brains against ischemia injury and attenuate the vas(?) dementia in the rodemt.
     2.The anti-inflammatory effect of eacin is similar to dexamethasone.(?) anti-inflammatory mechanism of escin may be associated with amplifying(?) anti-inflammatory effect of glucocorticoids in vivo.
     3.The muscarinic receptor blocker PB is unable to penetrate the blood-brain barrier and when co-administered with a cholinesterase inhibitor attenuates its side effects without affecting its therapeutic effects,and thus may be beneficial for patients with VD.
引文
1. Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA1999; 281:1401-6.
    2. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet. 1976; 2:1403.
    3. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer's disease and senile dementia : loss of neurons in the basal forebrain. Science. 1982; 215:1237-9.
    4. Bartus RT, Dean III RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982; 217:408-14.
    5. Nordberg A, Nilsson-Hakansson L, Adem A, Hardy J, Alafuzoff I,Lai Z, et al. The role of nicotinic receptors in the pathophysiology of Alzheimer's disease. Prog Brain Res. 1989; 79:353-6.
    6. Kalaria RN, Ballard C. Overlap between pathology of Alzheimer's disease and vascular dementia. Alzheimer Dis Assoc Disord: 1999; 13(Suppl3):S 115-23
    7. Erkinjuntti T.Cerebrovascular dementia. Pathophysiology, diagnosis and treatment. CNS Drugs. 1999; 12:35-48.
    8. Erkinjuntti T.Clinical deficits of Alzheimer's disease with cerebrovascular disease and probable VaD. Int J Clin Pract. 2001; 120 (Suppl): 14-23.
    9. Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Truyen L,et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008; 70:2024-35.
    10. Galvin JE, Cornblatt B, Newhouse P, Ancoli-Israel S, Wesnes K, Williamson D, et al. Effects of galantamine on measures of attention: results from 2 clinical trials in Alzheimer disease patients with comparisons to donepezil. Alzheimer Dis Assoc Disord. 2008; 2:30-8.
    11. Sakka P, Tsolaki M, Hort J, Hager K, Soininen H, Lopez Pousa S, et al. Effectiveness of open-label donepezil treatment in patients with Alzheimer's disease discontinuing memantine monotherapy.Curr Med Res Opin. 2007; 23:3153-65.
    12. Ma X, Tan C, Zhu D, Gang DR, Xiao P. Huperzine A from Huperzia species--an ethnopharmacolgical review.J Ethnopharmacol. 2007; 113:15-34.
    13. Matsuda O. Cognitive stimulation therapy for Alzheimer's disease: the effect of cognitive stimulation therapy on the progression of mild Alzheimer's disease in patients treated with donepezil. Int Psychogeriatr. 2007; 19:241-52.
    14. Wang R, Yan H, Tang XC. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin. 2006; 27:1-26.
    15. Feldman H, Gauthier S, Hecker J, Vellas B, Xu Y, Ieni JR et al. Efficacy and safety of donepezil in patients with more severe Alzheimer's disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 2005; 20:559-69.
    16. Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer's disease. Neurosignals. 2005; 14: 71-82.
    17. Hemendinger RA, Armstrong EJ 3rd, Persinski R, Todd J, Mougeot JL, Volvovitz F et al. Huperzine A provides neuroprotection against several cell death inducers using in vitro model systems of motor neuron cell death. Neurotox Res. 2008; 13:49-61.
    18. Lorrio S, Sobrado M, Arias E, Roda JM, Garcia AG, Lopez MG. Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther. 2007; 322:591-9.
    19. Meunier J, Ieni J, Maurice T. The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigmal receptor.Br J Pharmacol. 2006; 149:998-1012.
    20. Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H, Akaike A. Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons.J Pharmacol Exp Ther. 2003; 306:772-7
    21. Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology. 1998; 50:136-45.
    22. Doody RS, Corey-Bloom J, Zhang R, Li H, Ieni J, Schindler R. Safety and tolerability of donepezil at doses up to 20 mg/day: results from a pilot study in patients with Alzheimer's disease.Drugs Aging. 2008; 25:163-74.
    23. Edwards K, Royall D, Hershey L, Lichter D, Hake A, Farlow M et al. Efficacy and safety of galantamine in patients with dementia with Lewy bodies: a 24-week open-label study. Dement Geriatr Cogn Disord. 2007; 23:401-5.
    24. Goldsmith DR, Scott LJ. Donepezil: in vascular dementia. Drugs Aging. 2003; 20:1127-36.
    25. Passmore AP, Bayer AJ, Steinhagen-Thiessen E. Cognitive, global, and functional benefits of donepezil in Alzheimer's disease and vascular dementia: results from large-scale clinical trials. J Neurol Sci. 2005; 229-230,141-6.
    26. Messer WS, Bachmann KA, Dockery C, El-Assadi AA, Hassoun E, Haupt N, et al. Development of CDD-0102 as a selective M1 agonist for the treatment of Alzheimer's disease. Drug Develop Res. 2002; 57: 200-13.
    27. Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, et al. Discovery of an ectopic activation site on the Ml muscarinic receptor. Mol Pharmacol. 2002; 61: 1297-302.
    28. Langmead,C.J.,Fry,V.A.,Forbes,I.T.,Branch,C.L.,Christopoulos,A.,Wood,M. D.,etal. Probing the molecular mechanism of interaction between 4-n-butyl-l-[4-(2-methylphenyl)-4-oxo-l-butyl]-piperidine (AC-42) and the muscarinic Ml receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol. 2006; 69:236-46.
    29. Hernandez CM, Terry AV Jr. Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience. 2005; 130: 997-1012.
    30. Zhang C, Wang SZ, Zuo PP, Cui X, Cai J. Protective effect of tetramethylpyrazine on learning and memory function in D-galactose-lesioned mice. Chin Med Sci J. 2004; 19: 180-4.
    31. Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, et al. Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res. 2006; 171: 9-16.
    32. Fu AL, Dong ZH, Sun MJ. Protective effect of N-acetyl-L-cysteine on amyloid beta-peptide-induced learning and memory deficits in mice. Brain Res. 2006; 1109: 201-6.
    33. Yasuyama K, Salvaterra PM. Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech. 1999; 45: 65-79.
    34. Ellis, J. Muscarinic receptors. In M. N. Pangalos & C.H. Davies (Eds.) Understanding G Protein-Coupled Receptors and their Role in the CNS Oxford University Press. 2002. 349-71
    35. Rouse. S.T., Thomas, T.M., Levey,A.I. Muscarinic acetylcholine receptor subtype, M: diverse functional implications of differential synaptic localization. Life Sci. 1997; 60: 1031-8.
    36. Raiteri, M, Marchi, M, Paudice,P. Presynaptic muscarinic receptors in the central nervous system. Ann NY Acad Sci. 1990; 604,113-29.
    37. Vilaro, M.T., Palacios, J.M., Mengod,G. Localization of M 5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett. 1990; 114: 154-9.
    38. Changeux JP The nicotinic acetylcholine receptor:an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci. 1990; 11:485-92.
    39. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, et al. Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev. 1998; 26:198-216.
    40. Saito Y, Murayama S. Neuropathology of mild cognitive impairment. Neuropathology. 2007; 27:578-84.
    41. Schroder H, Giacobini E, Struble RG, Zilles K, Maelicke A.Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer's disease. Neurobiol Aging. 1991; 12:259-62.
    42. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG. et al. Alteration in nicotine binding sites in Parkinson'sdisease, Lewy body dementia and Alzheimer'sdisease: possible index of early neuropathology. Neuroscience. 1995; 64:385-95.
    43. Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price DL,etal. Nicotinic acetylcholine binding sites in Alzheimer'disease. Brain Res. 1986; 371:146-51.
    44. Nordberg A, Alafuzoff I, Winblad B. Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res. 1992; 31:103-11.
    45. Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B. Kinetic analysis of regional(S)(-)11C-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord. 1995; 9:21-7.
    46. Togashi H, Matsumoto M, Yoshioka M, Hirokami M, Minami M, Saito H. Neurochemical profiles in cerebrospinal fluid of stroke-prone spontaneously hypertensive rats. Neurosci Lett. 1994; 166:117-20.
    47. Kimura S, Saito H, Minami M, Togashi H, Nakamura N, Nemoto M,etal. Pathogenesis of vascular dementia in stroke-prone spontaneousl y hypertensive rats.Toxicology. 2000; 153:167-78.
    48. Gottfries CG, Blennow K, Karlsson I, Wallin A.The neurochemistry of vascular dementia. Dementia. 1994;5:163-7.
    49. Wallin A. Blennow K, Gottfries CG Neurochemical abnormalities in vascular dementia. Dementia. 1989; 1:120-30.
    50. Kumaran D, Udayabanu M, Kumar M, Aneja R, Katyal A. Involvement of angiotensin converting enzyme in cerebral hypoperfusion induced anterograde memory impairment and cholinergic dysfunction in rats. Neuroscience. 2008; 155: 626-39.
    51. Wallin A. Sjogren M, Blennow K, Davidsson P. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia. Dement Geriatr Cogn Disord. 2003; 16: 200-7.
    52. Tayebati SK, Di Tullio MA, Amenta F. Effect of treatment with the cholinesterase inhibitor rivastigmine on vesicular acetylcholine transporter and choline acetyltransferase in rat brain. Clin Exp Hypertens. 2004; 26:363-73.
    53. Tohgi H, Abe T, Kimura M, Saheki M, Takahashi S. Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with Alzheimer-type dementia. J Neural Transm. 1996; 103:1211-20.
    54. Sobrado M, Roda JM, Lopez MG, Egea J, Garcia AG. Galantamine and memantine produce different degrees of neuroprotection in rat hippocampal slices subjected to oxygen-glucose deprivation. Neurosci Lett. 2004; 365:132-6.
    55. Zhao X, Yeh JZ, Narahashi T. Post-stroke dementia. Nootropic drug modulation of neuronal nicotinic acetylcholine receptors. Ann N Y Acad Sci. 2001;939:179-86.
    56. Zhao X, Kuryatov A, Lindstrom JM, Yeh JZ, Narahashi T. Nootropic drug modulation of neuronal nicotinic acetylcholine receptors in rat cortical neurons. Mol Pharmacol. 2001;59:674-83.
    57. McVeigh C, Passmore P. Vascular dementia: prevention and treatment.Clin Interv Aging. 2006; 1:229-35.
    58. Thavichachart N, Phanthumchinda K, Chankrachang S, Praditsuwan R, Nidhinandana S, Senanarong V, et al. Efficacy study of galantamine in possible Alzheimer's disease with or without cerebrovascular disease and vascular dementia in Thai patients: a slow-titration regimen. Int J Clin Pract. 2006; 60:533-40.
    59. Ballard CG. Advances in the treatment of Alzheimer's disease: benefit of dual cholinesterase inhibition. Eur Neurol. 2002; 47:64-70.
    60. Darreh-Shori T, Almkvist O, Guan ZZ, Garlind A, Strandberg B, SvenssonAL, et al. Sustained cholinesterase inhibition in [Alzheimer's disease] patient receiving rivastigmine for 12months. Neurology. 2002; 59:563-72.
    61. Liu WH, Song JL, Liu K, Chu DF, Li YX. Preparation and in vitro and in vivo release studies of Huperzine A loaded microspheres for the treatment of Alzheimer's disease. J Control Release. 2005; 107:417-27.
    62. Fu XD, Gao YL, Ping QN, Ren T. Preparation and in vivo evaluation of huperzine A-loaded PLGA microspheres. Arch Pharm Res. 2005; 28:1092-6.
    63. Chu D, Tian J, Liu W, Li Z, Li Y. Poly(lactic-co-glycolic acid) microspheres for the controlled release of huperzine A: in vitro and in vivo studies and the application in the treatment of the impaired memory of mice. Chem Pharm Bull (Tokyo). 2007; 55:625-8.
    64. Wang C, Zhang T, Ma H, Liu J, Fu F, Liu K. Prolonged effects of poly(lactic-co-glycolic acid) microsphere-containing huperzine A on mouse memory dysfunction induced by scopolamine. Basic Clin Pharmacol Toxicol. 2007; 100:190-5.
    65. Fu AL, Zhang XM, Sun MJ. Antisense inhibition of acetylcholinesterase gene expression for treating cognition deficit in Alzheimer's disease model mice. Brain Res. 2005; 1066:10-5.
    66. Clader, JW, Yang,Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Curr Pharm Des. 2005; 11:3353-61.
    67. Langmead CJ,Fry VA,Forbes IT,Branch CL,Christopoulos A,Wood MD,et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-l-butyl]-piperidine (AC-42) and the muscarinic Ml receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol. 2006; 69:236-46.
    68. Haring,R.,Fisher, A.,Marciano,D.,Pittel,Z.,Kloog, Y.,&Zuckerman,A. Mitogen-activated proteinkinase-dependent and protein kinase C-dependent pathways link the M muscarinic receptor to amyloid precursor proteins ecretion. J Neurochem. 1998; 71:2094-103.
    69. Fisher,A.,Pittel,Z.,Haring,R.,Bar-Ner,N.,Kliger-Spatz,M.,Natan,N.,etal. M1 muscarinic agonists can modulate some of the hallmarks of Alzheimer's disease. J Mol Neurosci. 2003; 20,349-56.
    70. Levin ED, Christopher NC. Persistence of nicotinic agonist RJR2403 induced working memory improvement in rats. Drug Dev Res. 2002;55:97-103
    71. Young J,Finalyson K,Spratt C,Marston H,Crawford N,Kelly J,Sharkey J. Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology. 2004;29:891-900
    72. Levin ED, Bettegowda C, BlosserJ, Gordon J. AR-R17779,and alpha7 nicotinic agonist, improves learning and memory in rats. Behav Pharmacol. 1999; 10:675-80.
    73. Billard W, Binch H III, Crosby G, McQuade R. Identification of the primary muscarinic autoreceptor subtype in rat striatum as M2 through a correlation of in vivo microdialysis and in vitro receptor binding. J Pharmacol Exp Ther. 1995; 27: 273-9.
    74. Clader JW, Yang,Y. Muscarinic receptor agonists and antagonists in the treatment of Alzheimer'sdisease. Curr Pharm Des. 2005; 11: 3353-61.
    75. Fu AL, Huang SJ, Sun MJ. Complementary remedy of aged-related learning and memory deficits via exogenous choline acetyltransferase. Biochem Biophys Res Commun. 2005; 336:268-73.
    1. Hu D, Sun Y. Epidemiology, risk factors for stroke, and management of atrial fibrillation in China. J Am Coll Cardiol. 2008; 52: 865-8.
    2. Feigin VL, Lawes CM, Bennett DA, Anderson CS: Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003; 2: 43-53.
    3. Goldbourt U, Schnaider-Beeri M, Davidson M. Socioeconomic status in relationship to death of vascular disease and late-life dementia. J Neurol Sci. 2007; 257:177-81.
    4. Erkinjuntti T. Clinical deficits of Alzheimer's disease with cerebrovascular disease and probable VaD. Int J Clin Pract. 2001; 120 (Suppl): 14-23.
    5. Erkinjuntti T. Cerebrovascular dementia. Pathophysiology, diagnosis and treatment. CNS Drugs. 1999;12: 35-48.
    6. Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Truyen L, et al. Safety and efficacy of galantamine in subjects with mild cognitive impairment. Neurology. 2008; 70:2 024-35.
    7. Sakka P, Tsolaki M, Hort J, Hager K, Soininen H, Lopez Pousa S, et al. Effectiveness of open-label donepezil treatment in patients with Alzheimer's disease discontinuing memantine monotherapy.Curr Med Res Opin. 2007; 23:3153-65.
    8. Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer's disease. Neurosignals. 2005; 14: 71-82.
    9. Lorrio S, Sobrado M, Arias E, Roda JM, Garcia AG, Lopez MG. Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther. 2007; 322:591-9.
    10. Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology. 1998; 50:136-45.
    11. Doody RS, Corey-Bloom J, Zhang R, Li H, Ieni J, Schindler R. Safety and tolerability of donepezil at doses up to 20 mg/day: results from a pilot study in patients with Alzheimer's disease.Drugs. Aging. 2008; 25:163-74.
    12.Passmore AP,Bayer AJ,Steinhagen-Thiessen E.Cognitive,global,and functional benefits of donepezil in Alzheimer's disease and vascular dementia:results from large-scale clinical trials.J Neurol Sci.2005;229-230,141-6.
    13.Fu F,Hou Y,Jiang W,Wang R,Liu K:Escin:inhibiting inflammation and promoting gastrointestinal transit to attenuate formation of postoperative adhesions.World J Surg.2005;29:1614-20.
    14.Sirtori CR:Aescin:pharmacology,pharmacokinetics and therapeutic profile.Pharmacol Res.2001;44:183-93.
    15.Bougelet C,Roland IH,Ninane N,Arnould T,Remacle J,Michiels C.Effect of aescine on hypoxia-induced neutrophil adherence to umbilical vein endothelium.Eur J Pharmacol.1998 Mar 12;345(1):89-95.
    16.Grau-Olivares M,Bartrés-Faz D,Arboix A,Soliva JC,Rovira M,Targa C,Junqué C.Mild cognitive impairment after lacunar infarction:voxel-based morphometry and neuropsychological assessment.Cerebrovasc Dis.2007;23:353-61.
    17.Leys D,Hénon H,Mackowiak-Cordoliani MA,Pasquier F.Poststroke dementia.Lancet Neurol.2005;4:752-9.
    18.Longa EZ,Weinstein PR,Carlson S.Cummins R.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke.1989;20:84-91.
    19.Bederson JB,Pitts LH,Germano SM.Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats.Stroke.1986;17:1304-8.
    20.Ohta H,Nishikawa H,Kimura H,Anayama H,Miyamoto M.Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats.Neuroscience.1997;79:1039-50.
    21.Watanabe H,Zhao Q,Matsumoto K,Tohda M,Murakami Y,Zhang SH,et al.Pharmacological evidence for antidementia effect of Choto-san(Gouteng-san),a traditional Kampo medicine.Pharmacol.Biochem.Behav.2003;75,635-43.
    22.Dodd PR,Hardy JA,Oakley AE,Edwardson JA,Perry EK,Delaunoy JP.A rapid method for preparing synaptosomes:comparision with alternative procedures.Brain Res.1981;226:107-18.
    23.高中洪,黄开勋,卞曙光,徐辉碧.黄芩黄酮对自由基引起的大鼠脑线粒体损伤的保护作用.中国药理学通报.2000;16:81-3.
    24.Hunter Jr,Gebiiki JM,Hoffsten PE,Weinstein J,Scott A.Swelling and lysis of rat liver mitochondria induced by ferrous ions.J Biol Chem.1963;238:828-35.
    25.Clark JB,Nicklas WJ.The metabolism of rat brain mitochondria.J Biochem.1970;245:4724-31.
    26.Du C,Hu R,Hsu CY,Choi DW.Dextrorphan reduces infarct volume,vascular injury,and brain edema after ischemic brain injury.J Neurotrauma.1996;13:215-22.
    27.Murakami Y,Zhao Q,Harada K,Tohda M,Watanabe H,Matsumoto K.Choto-san,a Kampo formula,improves chronic cerebral hypoperfusion-induced spatial learning deficit via stimulation of muscarinic M1 receptor.Pharmacol.Biochem.Behav.2005;81:616-25.
    28.樊敬峰,王伟斌,吕佩源,梁翠萍,尹昱.血管性痴呆小鼠海马胆碱乙酰转移酶mRNA表达特征研究.中华神经医学杂志.2006;5:986-8.
    29.Tan-No K,Nakajima T,Shoji T,Nakagawasai O,Niijima F,Ishikawa M,et al.Anti-inflammatory effect of propolis through inhibition of nitric oxide production on carrageenin-induced mouse paw edema.Biol Pharm Bull.2006;29:96-9.
    30.Olajide OA,Awe SO,Makinde JM,Ekhelar AI,Olusola A,Morebise O,et al.Studies on the anti-inflammatory,antipyretic and analgesic properties of Alstonia boonei stem bark.J Ethnopharmacol.2000:71:179-86.
    31.徐叔云,卞如濂,陈修.药理实验方法学.第3版.北京:人民卫生出版社,2005,1331-2.
    32.Guth PH,Aures D,Panlsen G..Topical aspirin plus HCl gastric lesions in the rat.Gastroedterology.1979;76:88 -93.
    33.杨巍,刘丹,于春雷,王莉,李一.STZ诱导小鼠糖尿病模型中T、B淋巴细胞功能的变化.中国免疫学杂志.2006;22:754-7.
    34.周源,杨小红,盛习锋,王珊珊.丹皮酚对水应激所致小鼠胃溃疡保护作用的实验研究.湖南师范大学学报.2007;4:11-13.
    35.Siaud P,Maurel D,Lucciano M,Kosa E,Cazals Y.Enhanced cochlear acoustic sensitivity and susceptibility to endotoxin are induced by adrenalectomy and reversed by corticosterone supplementation in rat.Eur J Neurosci.2006;24:3365-71.
    36.Corsini E,Di Paola R,Viviani B,Genovese T,Mazzon E,Lucchi L,et al.Increased carrageenan-induced acute lung inflammation in old rats Immunology.2005;115:253-61.
    37.Amercham公司,皮质酮放射免疫测定试剂盒说明书。
    38.康成生物工程有限公司,产品及技术服务指南。
    39.林坚,王子栋.血管性痴呆动物模型.中国应用生理学杂志.1998;14:89-90.
    40.Kollmar R,Sch(a|¨)bitz WR,Heiland S,Georgiadis D,Schellinger PD,Bardutzky J,et al.Neuroprotective effect of delayed moderate hypothermia after focal cerebral ischemia:an MRI study.Stroke.2002;33:1899-904.
    41.Farkas E,Luiten PG,Bad F.Permanent,bilateral common carotid artery occlusion in the rat:a model for chronic cerebral hypoperfusion-related neurodegenerative diseases.Brain Res Rev.2007;54:162-80.
    42.Yoshizaki K,Adachi K,Kataoka S,Watanabe A,Tabira T,Takahashi K,et al.Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice.Exp Neurol.2008;210:585-91.
    43.Saito H,Togashi H,Yoshioka M,Nakamura N,Minami M,Parvez H.Animal models of vascular dementia with emphasis on stroke-prone spontaneously hypertensive rats.Clin Exp Pharmacol Physiol Suppl.1995;22:S257-9.
    44.Plaschke K,Martin E,Bardenheuer HJ.Effect of propentofylline on hippocampal brain energy state and amyloid precursor protein concentration in a rat model of cerebral hypoperfusion.J Neural Transm.1998;105:1065-77.
    45.Yamamoto H,Schmidt-Kastner R,Hamasaki DI,Yamamoto H,Parel JM.Complex neurodegeneration in retina following moderate ischemia induced by bilateral common carotid artery occlusion in Wistar rats.Exp Eye Res.2006;82:767-79.
    46.O'Connell AW,Fox GB,Kjφller C,Gallagher HC,Murphy KJ,Kelly J,et al.Anti-ischemic and cognition-enhancing properties of NNC-711,a gamma-aminobutyric acid reuptake inhibitor.Eur J Pharmacol.2001;424:37-44.
    47.Yanpallewar S,Rai S,Kumar M,Chauhan S,Acharya SB.Neuroprotective effect of Azadirachta indica on cerebral post-ischemic reperfusion and hypoperfusion in rats.Life Sci.2005;76:1325-38.
    48.王志菲,唐希灿.脑缺血损伤的炎症反应及治疗策略展望.中国新药与临床杂志.2007;26:454-61.
    49.Zheng Z,Yenari MA.Post-ischemic inflammation:molecular mechanisms and therapeutic implications.Neurol Res.2004;26:884-92.
    50.Barone FC,Parsons AA.Therapeutic potential of anti-inflammatory drugs in focal stroke.Expert Opin Investig Drugs.2000;9:2281-306.
    51.彭昕,董志.脑缺血再灌注损伤的炎症反应机理研究进展.中国临床药理学与治疗学.2006;114:366-8.
    52.Hess DC,Howard E,Cheng C,Carroll J,Hill WD,Hsu CY.Hypertonic mannitol loading of NF-kappaB transcription factor decoys in human brain microvascular endothelial cells blocks upregulation of ICAM-1.Stroke.2000;31:1179-86.
    53.Mocco J,Mack WJ,Ducruet AF,Sosunov SA,Sughrue ME,Hassid BG,et al.Complement component C3 mediates inflammatory injury following focal cerebral ischemia.Circ Res.2006;99:209-17.
    54.Rahpeymai Y,Hietala MA,Wilhelmsson U,Fotheringham A,Davies I,Nilsson AK,et al.Complement:a novel factor in basal and ischemia-induced neurogenesis.EMBO J.2006;25:1364-74.
    55.Cha JK,Jeong MH,Jang JY,Bae HR,Lim YJ,Kim JS,et al.Serial measurement of surface expressions of CD63,P-selectin and CD40 ligand on platelets in atherosclerotic ischemic stroke.A possible role of CD40 ligand on platelets in atherosclerotic ischemic stroke.Cerebrovasc Dis.2003;16:376-82.
    56.Benveniste EN,Nguyen VT,Wesemann DR.Molecular regulation of CD40gene expression in macrophages and microglia.Brain Behav Immun.2004;18:7-12.
    57.Ishikawa M,Vowinkel T,Stokes KY,Artmaugam TV,Yilmaz G,Nanda A,et al.CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion.Circulation.2005;111:1690-6.
    58.Garlichs CD,Kozina S,Fateh-Moghadam S,Handschu R,Tomandl B,Stumpf C,et al.Upregulation of CD40-CD40 ligand(CD154) in patients with acute cerebral ischemia.Stroke.2003;34:1412-8.
    59.Minami M,Satoh M.Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci. 2003; 74: 321-7.
    60. Buschmann IR, Busch HJ, Mies G, Hossmann KA. Therapeutic induction of arteriogenesis in hypoperfused rat brain via granulocyte-macrophage colony-stimulating factor. Circulation. 2003; 108: 610-5.
    61. Kleinschnitz C, Schroeter M, Jander S, Stoll G. Induction of granulocyte colony-stimulating factor mRNA by focal cerebral ischemia and cortical spreading depression. Brain Res Mol Brain Res. 2004; 131: 73-8.
    62. Hossmann KA, Buschmann IR. Granulocyte-macrophage colony-stimulating factor as an arteriogenic factor in the treatment of ischaemic stroke. Expert Opin Biol Ther. 2005; 5: 1547-56.
    63. Schabitz WR, Kruger C, Pitzer C, Weber D, Laage R, Gassier N, et al. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J Cereb Blood Flow Metab. 2008; 28: 29-43.
    64. Xiao GM, Wei J. Effects of beta-Aescin on the expression of nuclear factor-kappaB and tumor necrosis factor-alpha after traumatic brain injury in rats. J Zhejiang Univ Sci B. 2005; 6: 28-32.
    65. Sooriakumaran P. COX-2 inhibitors and the heart: are all coxibs the same? Postgrad Med J. 2006; 82: 242-5.
    66. 中华人民共和国药典(一部).2005年版.北京.化学工业出版,2005,206.
    
    67. Hu XM, Zhang Y, Zeng FD. Effects of sodium beta-aescin on expression of adhesion molecules and migration of neutrophils after middle cerebral artery occlusion in rats. Acta Pharmacol Sin. 2004; 25: 869-75.
    68. Hu XM, Zhang Y, Zeng FD. Effects of beta-aescin on apoptosis induced by transient focal cerebral ischemia in rats. Acta Pharmacol Sin. 2004; 25:1267-75.
    69. Amira, S., Soufane, S. and Gharzouli, K. Effect of sodium fluoride on gastric emptying and intestinal transit in mice. Exp. Toxicol. Pathol. 2005; 57: 59-64.
    70. Matsuda, H., Li, Y. and Yoshikawa, M. Roles of endogenous prostaglandins and nitric oxide in inhibitions of gastric emptying and accelerations of gastrointestinal transit by escins Ia, Ib, IIa, and IIb in mice. Life Sci., 2000; 66: PL 41-6.
    71. Murakami T, Nakamura J, Kageura T, Matsuda H. Yoshikawa M. Bioactive saponins and glycosides. XVII. Inhibitory effect on gastric emptying and accelerating effect on gastrointestinal transit of tea saponins:structures of assamsaponins F,G,H,I,and J from the seeds and leaves of the tea plant.Chem.Pharm.Bull.2000;48:1720-5.
    72.陈玲,王宁娟,宋春风,吕佩源,郭宗成,李玲.血管性痴呆小鼠海马神经元蛋白激酶C表达特征.疑难病杂志.2008:7:259-61.
    73.J.萨姆布鲁克.分子克隆实验指南(生命科学实验指南系列).第3版.北京,科学出版社,2007
    74.Perry,E.,Ziabreva,I.,Perry,R.,Aarsland,D.and Ballard,C.Absence of cholinergic deficits in "pure" vascular dementia.Neurology.2005;64:132-3.
    75.Wallin,A.,Sjogren,M.,Blennow,K.and Davidsson,P.Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia.Dement Geriatr.Cogn.Disord.2003;16:200-7.
    76.Goldsmith,D.R.and Scott,L.J.Donepezil:in vascular dementia.Drugs Aging.2003:20:1127-36.
    77.Moretti,R.,Torre,P.,Antonello,R.M.,Cazzato,G.and Bava,A.Rivastigmine in subcortical vascular dementia:an open 22-month study.J.Neurol.Sci.2002;203-204:141-6.
    78.Thomas AJ,Burn DJ,Rowan EN,Littlewood E,Newby J,Cousins D,et al.A comparison of the efficacy of donepezil in Parkinson's disease with dementia and dementia with Lewy bodies.Int J Geriatr Psychiatry.2005;20:938-44.
    79.Corey-Bloom,J.Galantamine:a review of its use in Alzheimer's disease and vascular dementia.Int.J.Clin.Pract.2003;57:219-23.
    80.Roman,G.C.,Wilkinson,D.G.,Doody,R.S.,Black,S.E.,Salloway,S.P.and Schindler,R.J.Donepezil in vascular dementia:combined analysis of two large-scale clinical trials.Dement.Geriatr.Cogn.Disord.2005;20:338-44.
    81.Thavichachart N,Phanthumchinda K,Chankrachang S,Praditsuwan R,Nidhinandana S,Senanarong V,et al.Efficacy study of galantamine in possible Alzheimer's disease with or without cerebrovascular disease and vascular dementia in Thai patients:a slow-titration regimen.Int.J.Clin.Pratt.2006;60:533-40.
    82.Corey-Bloom,J.,Anand,R.and Veach,J.A randomized trial evaluating the efficacy and safety of ENA 713(rivastigmine tartrate),a new acetylcholinesterase inhibitor,in patients with mild to moderately severe Alzheimer's disease.Int.Geriatr.Psychopharmacol.1998;2:55-65.
    83.Black S,Román G.C,Geldmacher DS,Salloway S,Hecker J,Bums A,et al.Efficacy and tolerability of donepezil in vascular dementia:positive results of a 24-week,multicenter,international,randomized,placebo-controlled clinical trial.Stroke.2003;34:2323-30.
    84.Todorova A,Vonderheid-Guth B,Dimpfel W.Effects of tolterodine,trospium chloride,and oxybutynin on the central nervous system.J.Clin.Pharmacol.2001;41:636-44.
    85.赵菁,徐超,王忠诚.多巴胺D2、D3受体在大鼠暂时性局灶性脑缺血中的作用.中华神经外科杂志.2002;18:160-3.
    86.Zhang K,Weinberg JM,Venkatachalam MA,Dong Z.Glycine protection of PC-12 cells against injury by ATP-depletion.Neurochem Res.2003;28:893-901.
    87.Nagatomi A,Sakaida I,Matsumura Y,Okita K.Cytoprotection by glycine against hypoxia-induced injury in cultured hepatocytes.Liver.1997;17:57-62.
    88.Gundlach AL,Burazin TC.Galanin-galanin receptor systems in the hypothalamic paraventrieular and supraoptic nuclei.Some recent findings and future challenges.Ann N Y Acad Sci.1998;863:241-51.
    89.张烨,单良,娄向新,袁崇刚.甘丙肤提高离体海马神经细胞在过氧化氢损伤中的存活率.分子生物学报.2006:39:391-7.
    90.Ferraro L,Tanganelli S,O′Connor WT,Francesconi W,Loche A,Gessa GL,et al.gamma-Hydroxybutyrate modulation of glutamate levels in the hippocampus:an in vivo and in vitro study.J Neurochem.2001;78:929-39.
    91.Kaga T,Fujimiya M,Inui A.Emerging functions of neuropeptide Y Y(2)receptors in the brain.Peptides.2001;22:501-6.
    92.吴海科,顾卫,谭峰,黄涛,谭峰,孙景波(作者出现重复,原文如此,可能有误).脑缺血再灌注损伤大鼠脑内神经肽Y的动态变化.中华老年医学杂志.2005:24:694.
    93.Vikman P,Edvinsson L.Gene expression profiling in the human middle cerebral artery after cerebral ischemia. Eur J Neurol. 2006; 13:1324-32.
    94. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006; 26: 1089-102.
    95. Lu XC, Williams AJ, Yao C, Berti R, Hartings JA, Whipple R, et al. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J Neurosci Res. 2004; 77:843-57.
    96. Kury P, Schroeter M, Jander S. Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex. Eur J Neurosci. 2004; 19: 1708-20.
    97. Kim YD, Sohn NW, Kang C, Soh Y. DNA array reveals altered gene expression in response to focal cerebral ischemia. Brain Res Bull. 2002; 58: 491-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700