用户名: 密码: 验证码:
桃叶珊瑚苷在大鼠糖尿病脑病模型中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在探讨桃叶珊瑚苷在糖尿病脑病大鼠模型和过氧化氢(H_2O_2)诱导PC12细胞凋亡模型中的作用及机制。
     将Wistar大鼠一次性腹腔注射链脲佐菌素(STZ;60mg/kg),建立糖尿病模型。糖尿病大鼠在正常饲养条件下,检测不同时期的大鼠血糖、体重,认知能力,海马神经元细胞的凋亡情况,确定糖尿病脑病发病时间。研究表明,STZ诱导形成的糖尿病大鼠饲养65d后表现出学习、记忆能力下降,海马CA1区神经元细胞大量死亡,因此糖尿病大鼠引发脑病时间确定为糖尿病发病后第65d。
     给患糖尿病脑病的大鼠腹腔注射不同剂量的桃叶珊瑚苷,确定桃叶珊瑚苷的药物剂量和药用时间,通过Y迷宫检测大鼠的认知能力,HE染色检测大鼠海马神经元细胞的凋亡情况。结果表明,1mg/kg桃叶珊瑚苷组与糖尿病脑病组相比具有一定的保护作用,大鼠的学习、记忆功能得到一定的改善。随着药物剂量的增加,其保护作用也增强。而5mg/kg和10mg/kg桃叶珊瑚苷组,海马CA1区存活神经元细胞数量与脑病组相比明显增多,大鼠学习、记忆功能得到很大程度的改善,但5mg/kg和10mg/kg两个剂量组之间无显著性差异。因此,以5mg/kg剂量对不同给药时间进行了检测,结果表明15d和30d两个剂量组之间无论在体重、血糖,还是在认知功能上均无显著性差异,故本实验确定桃叶珊瑚苷的给药剂量为5mg/kg,给药时间为15d。
     进一步运用电子显微镜、原位细胞死亡检测技术、免疫组化技术、Western blotting检测技术和紫外分光光度仪探讨桃叶珊瑚苷的神经保护作用机制。结果表明,糖尿病脑病大鼠的海马内GSH-PX、SOD和CAT酶活性显著降低,NOS酶和MDA活性明显增强,Bcl-2蛋白的表达减少,Bax蛋白表达和凋亡细胞数量均明显增加;而桃叶珊瑚苷治疗组海马内GSH-PX、SOD和CAT酶活力明显提高,Bcl-2蛋白表达量增加,抑制了NOS酶和MDA活性和Bax蛋白表达,大大降低了海马神经元细胞的凋亡数量。这些结果表明,桃叶珊瑚苷能够通过调控海马内抗氧化酶活性,清除海马内过多的自由基,通过调节NOS酶的活性,减少自由基的生成,降低体内自由基含量,并通过有效调节线粒体中Bcl-2和Bax蛋白的表达,从而抑制了海马神经元的细胞凋亡,最终实现对海马神经元细胞的保护。
     利用H_2O_2(0.25mM)诱导PC12细胞建立体外细胞凋亡模型之后,用桃叶珊瑚苷进行处理观察其对PC12细胞的作用。结果表明,桃叶珊瑚苷能够抑制H_2O_2对PC12细胞的毒性。荧光染色检测发现桃叶珊瑚苷治疗组与H_2O_2组相比细胞存活数量明显增多,凋亡数量明显减少;透射电镜观察H_2O_2处理组细胞呈现核固缩、胞质空泡化、但胞膜仍保持完整;桃叶珊瑚苷与H_2O_2共培养,细胞的形态只发生轻微变化;流式细胞仪分析细胞凋亡率,H_2O_2组为35.1±3.0%,桃叶珊瑚苷治疗组为23.1±1.1%;与H_2O_2组相比桃叶珊瑚苷治疗组的Bcl-2蛋白的表达明显增加,Bax蛋白的表达明显降低;Westernblotting检测结果与流式细胞仪分析结果相似;桃叶珊瑚苷治疗组的半胱氨酸酶-3活性明显降低;分光光度法检测LDH释放率的结果表明H_2O_2使得LDH的释放率明显增高,桃叶珊瑚苷有效缓解了LDH的释放。上述结果说明,桃叶珊瑚苷抑制H_2O_2诱导PC12细胞凋亡的机制,体现在保护细胞膜的功能,抑制Bcl-2蛋白表达的下降和Bax蛋白表达的升高,拮抗Caspase-3的激活。
The purpose of this study mainly aims at observation the effects of aucubin and its action mechanism in diabetic encephalopathy rat model and H_2O_2-induced PC12 cells.
     In this study, we determined the effect and therapeutic mechanism of aucubin on diabetic encephalopathy. With the exception of a control group, all rats were received intraperitoneal injections of streptozotocin (STZ; 60 mg/kg) to induce Type 1 DM. From d 65 after induction of diabetes, rats were treated with various doses and different injective time of aucubin. Cognition function was assayed by Y maze and morphological changes in hippocampal neurons were observed. In diabetic rats, the function of learning and memory was impaired and the neuron density was remarkably decreased. Various dose of aucubin significantly reduced the working errors during behavioral testing, and attenuated neuron loss in hippocampal region in diabetic encephalopathy rats. Aucubin showed a significant neuroprotective effect and improved learning in diabetic encephalopathy rats.
     Neuroprotection was estimated by the indexes of behavior and histology. Behavioral testing was performed in a Y-maze and the surviving neurons in CA1 to SC of the hippocampus were counted under a microscope. In addition, the apoptotic neurons in the CA1 of the hippocampus were also examined by using the TUNEL staining. In order to clarify the mechanism of aucubin's neuroprotection, the activities of endogenous antioxidants and nitric oxide synthase (NOS) together with the content of lipid peroxide in the hippocampus were assayed. The results proved that aucubin significantly reduced the content of lipid peroxide, regulated the activities of antioxidant enzymatic and decreased the activity of NOS and MDA. All these effects indicated that aucubin was a potential neuroprotective agent and its neuroprotective effects were achieved, at least in part by promoting endogenous antioxidant enzymatic activities. Hippocampi were excised for visual (light and transmission electron microscopic) and immunochemical (Western blot; immunohistochemical) assessments of the CA1 subfield for apoptosis and expression of regulatory proteins Bcl-2 and Bax. Treatment responses to all the parameters examined (body weight, plasma glucose, Y-maze error rates, pyramidal cell ultrastructure, proportions of apoptotic cells, levels of expression of Bcl-2 and Bax, and survivability of neuronal cells) were identical: These findings confirm the association of apoptosis with the encephalopathic effects of diabetes mellitus, and suggest a major role of the expression levels of Bcl-2 and Bax in the regulation of apoptotic cell death. All of the results suggest that aucubin could effectively inhibit apoptosis by modulating the expressions of Bcl-2 and Bax genes.
     In this study, the effect of aucubin on H_2O_2-induced apoptosis (0.25 mM) was studied by using a rat pheochromocytoma (PC12) cell line. Hoechst 33258 assays revealed the appearance of a collection of multiple chromatin and fragmented apoptotic nuclei upon H_2O_2 treatment. however, the incidence of apoptotic nuclei was significantly reduced when cells were treated with aucubin. Transmission electron microscopy was found preferable to alternatives for distinguishing between nuclei and organelles. Obvious apoptotic morphological changes were observed in the H_2O_2 induced cells. Addition of aucubin to the H_2O_2 clearly enlarged the apoptotic nuclei, which were also smoother and resembled those of the control cells. When the apoptotic cells were analyzed quantified using flow cytometry, when PC12 cells were concurrently treated with aucubin, the percentage of apoptotic cells decreased from 35.1±3.0 to 23.1±1.1%. Bcl-2 protein increased and Bax protein declined in aucubin treatment. Western blot analysis confirmed the changes in anti-apoptotic and pro-apoptotic proteins in PC12 cells, as did Bcl-2 and Bax levels, which coincided with the flow cytometry results. H_2O_2 treatment caused a time-dependent increase in caspase-3 proteolytic activity, when aucubin was added caspase-3 activity declined. On the basis of these findings, we speculate that the neuroprotective effects of aucubin may be achieved by the regulation of Bcl-2 family members, as well as modulating the caspases cascade activation.
引文
[1]Parone P,Priault M,James D,et al.Apoptosis:bombarding the mitochondria,Essays Biochem,2003,39:41-51.
    [2]Gillardon F,Wickert H,Zimmermann M.Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain,Neurosci Lett,1995,192:85-88.
    [3]Gillardon F,Lenz C,Waschke KF,et al.Altered expression of Bcl-2,Bcl-X,Bax,and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats,Brain Res Mol Brain Res,1996,40:254-260.
    [4]Antonsson B,Conti F,Ciavatta A,et al.Inhibition of Bax channel forming activity by Bcl-2,Science,1997,277:370-376.
    [5]Kluck R M,Bossy-Wetzel E,Green D R,et al.The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis,Science,1997,275:1132-1136.
    [6]Joza N,Susin S A,Daugas E,et al.Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death,Nature,2001,410:549-554.
    [7]Hatakeyama T,Matsumoto M,Brengman J M,et al.Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils,Stroke,1988,19:1526-1534.
    [8]Hatip-Al-Khatib I,Iwasaki K,Chung E H,et al.Inhibition of poly(ADP-ribose) polymerase and caspase-3,but not caspase-1,prevents apoptosis and improves spatialmemory of rats with twice-repeated cerebral ischemia,Life Sci,2004,75:1967-1978.
    [9]Niwa M,Hara A,Iwai T,et al.Caspase activation as an apoptotic evidence in the gerbil hippocampal CAl pyramidal cells following transient forebrain ischemia,Neurosci Lett,2001,300:103-106.
    [10]Nitatori T,Sato N,Waguri S,et al.Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis,J Neurosci,1995,15:1001-1011.
    [11]Martinou J C,Dubois-Dauphinm M,Staplem J K,et al.Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia,Neuron,1994,13:1017-1030.
    [12]Gillardon F,Kiprianova I,Sandkuhler J,et al.Inhibition of caspases prevents cell death of hippocampal CAl neurons,but not impairment of hippocampal long-term potentiation following global ischemia,Neuroscience,1999,93:1219-1222.
    [13]Shigeno T,Yamasaki Y,Kato G,et al.Reduction of delayed neuronal death by inhibition of protein synthesis,Neurosci Lett,1990,120:117-119.
    [14]Colboume F,Sutherland G R,Auer R N.Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia,J Neurosci,1999,19:4200-4210.
    [15]Tichy A,Zaskodova D,Pejchal J,et al.Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid,release of cytochrome c,and activation of caspase-8and caspase-9,Int J Radiat Biol,2008,84(6):523-530.
    [16]Martin S,Ella B W,Joshua C G,et al.p53 Induces Apoptosis by Caspase Activation through Mitochondrial Cytochrome c Release,J.Biol.Chem,2000,275:7337-7342.
    [17]Jiang X,Wang X.Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1,J.Biol.Chem,2000,275:31199-31203.
    [18]Kuida K,Zheng T S,Na S,et al.Decreased apoptosis in the brain and premature lethality in CPP32deficient mice,Nature,1996,384:368-372.
    [19]Honarpour N,Du C,Richardson R J A,et al.Adult Apaf-1-deficient mice exhibit male infertility,Dev.Biol,2000,218:248-258.
    [20]Kuida K,Haydar T F,Kuan C Y,et al.Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9,Cell,1998,94:325-337.
    [21]Chautan M,Chazal G,Cecconi F,et al.Interdigital cell death can occur through a necrotic and caspase-independent pathway,CurrBiol,1999,9:967-970.
    [22]Wu G,Chal J,Suber T L,et al.Structural basis of IAP recognition by Smac/DIABLO,Nature,2000,408:1008-1012.
    [23]Srinivasula S M,Hegde R,Saleh A,et al.A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis,Nature,2001,410:112-116.
    [24]Chai J,Shiozaki E,Srinivasula S M,et al.Structural basis of caspase-7 inhibition by XIAP,Cell,2001,104:769-780.
    [25]Joza N,Susin S A,Daugas E,et al.Essential role of the mitochondrial apoptosis inducing factor in programmed cell death,Nature,2001,410:549-554.
    [26]Susin S A,Lorenzo H K,Zamzami N,et al.Molecular characterization of mitochondrial apoptosis inducing factor,Nature,1999,397:441-446.
    [27]Joza N,Susin S A,Daugas E,et al.Essential role of the mitochon- drial apoptosis-inducing factor in programmed cell death,Nature,2001,410:549-554.
    [28]Li L L,Luo X,Wang X.Endonuclease G(EndoG) is an apoptotic Dnase when released from mitochondria,Nature,2001,412:95-99.
    [29]Cote J,Ruiz-Carrillo A.Primers for mitochondrial DNA replication generated by endonuclease G,Science,1993,261:765-769.
    [30]Kataoka A,Kubo taM,W akazono Y,et al.Association of high molecular w eigh tDNA fragmentation with apoptotic or non-apoptotic cell death induced by Calcium ionophore,FEBS Lett,1995,364:264-267.
    [31]Zhang J,Liu X,Scherer D C,et al.Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor,Proc.Natl.Acad.Sci.USA,1998,95:12480-12485.
    [32]Zhou P,Chou J,Olea R S,et al.Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD:astructurai basis for specific adaptor/caspase interaction,Proc.Natl.Acad.Sci. USA,1999,96:11265-11270.
    [33]Saikumar P,Dong Z,Mikhailov V,et al.Apoptosis:definition,mecha- nism,and relevance to disease,Am.J.Med,1999,107(5):489-506.
    [34]Buckley C D,Pilling D,Henriquez N V,et al.Christopher D.RGD peptides induces apoptosis by directs caspase-3 activation,Nature,1999,397:534-539.
    [35]Machleidt T,Geller P,Schwandner R,et al.Caspase 7-induced cleavage of kinection in apoptotic cells,FEBS.Lett,1998,436(1):51-54.
    [36]Cheng E H Y,Kitsch D G,Clem R J,et al.Conversion of Bcl-2 to a Bax-like death effector by caspases,Science,1997,278(5345):1966-1968.
    [37]Kirsch D G,Doseff A,Chau B N,et al.Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome C mitochondrial cytochrome release,J.Biol.Chem,1999,274(30):21155-21161.
    [38]Robert M,Friedlander M D.Apoptosis and Caspasesin Neurodegenerative Diseases,N Engl J Med,2003,348:1365-1375.
    [39]代海滨,常耀明,李金声,等.糖尿病早期大鼠海马和皮质星形胶质细胞的变化.中国临床康复,第9卷第7期.
    [40]路军章,刘毅.益气活血中药对链脲佐菌素致糖尿病脑病小鼠行为学的改善作用.中国康复理论与实践,2005,11(6):443-444.
    [41]Pierson C R,Zhang W,Sima A A.Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration,J Neuropathol Exp Neurol,2003,62(7):765-779.
    [42]Shuli S,Yongmei Z,Zhiwei Z,et al.beta-Amyloid and its binding protein in the hippocampus of diabetic mice:effect of APP17 peptide,Neuroreport,2001,12(15):3317-3319.
    [43]Sima A A,Kamiya H.Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curt Drug Targets,2008,9(1):37-46.
    [44]Duarte J M,Oses J P,Rodrigues R J,et al.Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats,Neuroscience,2007,149(2):382-391.
    [45]Saravia F,Revsin Y,Lux-Lantos V,Beauquis J,Homo-Delarche F,De Nicola AF.Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice,J Neuroendocrinol,2004,16(8):704-710.
    [46]Sima A A,Kamiya H,Li Z G.Insulin,C-peptide,hyperglycemia,and central nervous system complications in diabetes,Eur J Pharmacol,2004,490(1-3):187-197.
    [47]Sima A A,Li Z G.The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats,Diabetes,2005,54(5):1497-1505.
    [48]Li Z G,Zhang W,Sima A A.The role of impaired insulin/IGF action in primary diabetic encephalopathy,Brain Res,2005,1037(1-2):12-24.
    [49]Li Z G,Sima A A.C-peptide and central nervous system complications in diabetes,Exp Diabesity Res,2004,5(1):79-90.
    [50]Sharma K,Mehra R D.Long-term administration of estrogen or tamoxifen to ovariectomized rats affords neuroprotection to hippocampal neurons by modulating the expression of Bcl-2 and Bax,Brain Res,2008,1204:1-15.
    [51]Allsopp T E,Wyatt S,Paterson M F,et al.The protooncogene bcl-2 can selectively rescue neurotrophic factor-dependentneurons from apoptosis,Cell,1993,73:295-307.
    [52]Saravia F E,Beauquis J,Revsin Y,et al.Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment,Cell Mol Neurobiol,2006,26(4-6):943-957.
    [53]Rizk N N,Myatt-Jones J,Rafols J,et al.Insulin like growth factor-1(IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats,Endocrine,2007,31(1):66-71.
    [54]Kang J O,Kim S K,Hong S E,et al.Low dose radiation overcomes diabetes-induced suppression of hippocampal neuronal cell proliferation in rats,J Korean Med Sci,2006,21(3):500-505.
    [55]Davis K L,Mohs R C,Matin D,et al.Cholinergic markers in elderly patients with early signs of Alzheimer disease,J Am Med Assoc,1999,281:1401-1406.
    [56]Soncrant T T,Holloway H W,Greig N H,et al.Regional brain metabolic responsivity to the muscarinic cholinergic agonist arecoline is similar in young and aged Fischer-344 rats,Brain Res,1989,487:255-266.
    [57]Zhang C,Shen W,Zhang G.N-methyl-D-aspartate receptor and L-type voltage-gated Ca(2+)channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia,Neurosci Lett,2002,328:265-268.
    [58]Batistatou A,Greene L A.Aurintricarboxylic acid rescues PC 12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation:correlation with suppression of endonuclease activity,J Cell Biol,1991,115:461-471.
    [59]赖虹,吕永利.海马与衰老.解剖科学进展,1995,1:91-96.
    [60]宿宝贵,许鹿希.大鼠海马结构在空间辨别性学习记忆时的突触形态可塑性的定量研究,解剖学研究,2000,22:40-41.
    [61]汪家政,柳川,华仲慰,等.大鼠隔-海马通路损伤对海马内递质含量及酶活力的影响,生理学报,1990,42:289-294.
    [62]章子贵,徐晓虹,吴馥梅.东莨菪碱所致的记忆障碍的脑内突触机制,心理学报,1998,30:332-336
    [63]Patil C S,Singh V P,Kulkarni S K.Modulatory effect of sildenafil in diabetes and electroconvulsive shock-induced cognitive dysfunction in rats,Pharmacol Rep,2006,58(3):373-380.
    [64]Zhang X M,Han S,Zhou L.The investigation of Syn and NPY expression in brain tissues of diabetic model rat induced by streptozotocin,Shi Yan Sheng Wu Xue Bao,2004,37(6):449-455.
    [65]Nitta A,Murai R,Suzuki N,et al.Diabetic neuropathies in brain is induced by deficiency of BDNF,Neurotoxicol Teratol,2002,24(5):695-701.
    [66]Kuhad A,Chopra K.Effect of sesamol on diabetes-associated cognitive decline in rats,Exp Brain Res,2008,185(3):411-420.
    [67]Kuhad A,Chopra K.Curcumin attenuates diabetic encephalopathy in rats:behavioral and biochemical evidences,Eur J Pharmacol,2007,576(1-3):34-42.
    [68]Biessels G J,Kamal A,Urban I J,et al.Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats:effects of insulin treatment,Brain Res,1998,800(1):125-135.
    [69]Dalal P M,Parab P V.Cerebrovascular disease in type 2 diabetes mellitus,Neurol India,2002,50(4):380-385.
    [70]Nakajima S,Nogchi T,Tska T,et al.A global platelet test of thrombosis and thrombolysis detects a prothrombotic state in some patients with non insulin dependent diabetes and in some patients with stroke, Platelets, 2000,11:59-466.
    [71] Cabou C, Cani P D, Campistron G, et al. Central insulin regulates heart rate and arterial blood flow: an endothelial nitric oxide synthase-dependent mechanism altered during diabetes, Diabetes, 2007, 56(12):2872-2877.
    [72] Zheng H, Bidasee K R, Mayhan W G, et al. Lack of central nitric oxide triggers erectile dysfunction in diabetes, Am J Physiol Regul Integr Comp Physiol, 2007, 292 (3):R1158-1164.
    [73] Fouyas I P, Kelly P A, Ritchie I M, et al. Cerebrovascular responses to pathophysiological insult in diabetic rats, J Clin Neurosci, 2003,10 (1):88-91.
    [74] Van Deutekom A W, Niessen H W, Schalkwijk C G, et al. Increased Nepsilon-(carboxymethyl)-lysine levels in cerebral blood vessels of diabetic patients and in a (streptozotocin-treated) rat model of diabetes mellitus, Eur J Endocrinol, 2008, 158 (5):655-660.
    [75] Dai J, Vrensen G F, Schlingemann R O. Blood-brain barrier integrity is unaltered in human brain cortex with diabetes mellitus, Brain Res, 2002, 954 (2):311-366.
    [76] Liu H, Liu X, Jia L, et al. Insulin therapy restores impaired function and expression of P-glycoprotein in blood-brain barrier of experimental diabetes, Biochem Pharmacol, 2008, 75 (8):1649-1658.
    [77] Hawkins B T, Lundeen T F, Norwood K M, et al. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases, Diabetologia, 2007, 50 (1):202-211.
    [78] Minamizono A, Tomi M, Hosoya K. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes, Biol Pharm Bull, 2006, 29 (10):2148-2150.
    [79] Bouchard P, Ghitescu L D, Bendayan M. Morpho-functional studies of the blood-brain barrier in streptozotocin-induced diabetic rats, Diabetologia, 2002,45 (7):1017-1025.
    [80] Mooradian A D, Haas M J, Batejko O, et al. Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats, Diabetes, 2005, 54 (10):2977-2982.
    [81] Horani M H, Mooradian A D. Effect of diabetes on the blood brain barrier, Curr Pharm Des, 2003, 9 (10):833-840.
    [82] Takeuchi M, Yamagishi S. TAGE (toxic AGEs) hypothesis in various chronic diseases, Med Hypotheses, 2004, 63 (3):449-452.
    [83] Dukic-Stefanovic S, Schinzel R, Riederer P, et al. AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology, 2001,2 (1):19-34.
    [84] Schmidt A M, Weidman E, Lalla E, et al. Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes, J Periodontal Res, 1996, 31 (7):508-515.
    [85] Sato T, Shimogaito N, Wu X, et al. Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease, Am J Alzheimers Dis Other Demen, 2006, 21 (3):197-208.
    [86] Vlassara H, Palace M R. Glycoxidation: the menace of diabetes and aging, Mt Sinai J Med, 2003, 70 (4):232-241.
    [87] Richter T, Münch G, Lüth H J, et al. Immunochemical crossreactivity of antibodies specific for "advanced glycation endproducts" with "advanced lipoxidation endproducts", Neurobiol Aging, 2005, 26 (4):465-474.
    [88] Grzeda E, Wi(?)niewska R J, Wi(?)niewski K. Effect of an NMDA receptor agonist on T-maze and passive avoidance test in 12-week streptozotocin-induced diabetic rats, Pharmacol Rep, 2007, 59 (6):656-663.
    [89] Bean L, Zheng H, Patel K P, et al. Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain, Brain Res, 2006, 1115 (1):217-222.
    [90] Tomiyama M, Furusawa K, Kamijo M, et al. Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus, Brain Res Mol Brain Res, 2005,136 (1-2):275-281.
    [91] Sposato V, Manni L, Chaldakov G N, et al. Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain, Arch Ital Biol, 2007,145 (2):87-97.
    [92] Nonomura T, Tsuchida A, Ono-Kishino M, et al. Brain-derived neurotrophic factor regulates energy expenditure through the central nervous system in obese diabetic mice, Int J Exp Diabetes Res, 2001, 2 (3):201-209.
    [93] Inoki K, Haneda M, Maeda S, et al. TGF-beta 1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells, Kidney Int, 1999, 55 (5):1704-1712.
    [94] Batistatou A, Greene L A. Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity, J Cell Biol, 1991, 115:461-471.
    [95] Allsopp T E, Wyatt S, Paterson M F, et al. The protooncogene bcl-2 can selectively rescue neurotrophic factor-dependentneurons from apoptosis, Cell, 1993, 73:295-307.
    [96] Rosini P, De Chiara G, Lucibello M, et al. NGF withdrawal induces apoptosis in CESS B cell line through p38 MAPK activation and Bcl-2 phosphorylation, Biochem Biophys Res Commun, 2000, 278:753-759.
    [97] Muranyi M, Fujioka M, He Q, et al. Diabetes activates cell death pathway after transient focal cerebral ischemia, Diabetes, 2003, 52 (2):481-486.
    [98] Li G Y, Osborne N N. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly (ADP-ribose)polymerase and apoptosis-inducing factor, Brain Res, 2008,1188:35-43.
    [99] Xiao C Y, Chen M, Zsengellér Z, et al. Poly (ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor, J Pharmacol Exp Ther, 2004, 310 (2):498-504.
    [100] Mattson M P, Goodman Y, Luo H, et al. Activationof NFkB protects hippocampal neurons against oxidativestress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrate production and protein tyrosine nitration, J Neurosci Res, 1997, 49:681-697.
    [101] Winkler J, Thal L J. Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid, and AMPA, Exp Neurol, 1995, 136:234-250.
    [102] Urbano F J, Buno W. Neurotrophin regulation of sodium and calcium channels in human neuroblastoma cells,Neuroscience,2000,96:439-443.
    [103]Schabitz W R,Sommer C,Zoder W,et al.Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia,Stroke,2000,31:2212-2217.
    [104]Madeddu F,Naska S,Bozzi Y.BDNF down-regulates the caspase 3 pathway in injured geniculo-cortical neurons,Neuroreport,2004,15:2045-2049.
    [105]Zhang W R,Kitagawa H,Hayashi T,et al.Topical application of neurotrophin-3 attenuates ischemic brain injury after transient middle cerebral artery occlusion in rats,Brain Res,1999,842:211-214.
    [106]Katoh S,Mitsui Y,Kitani K,Suzuki T.The rescuing effect of nerve growth factor is the result of up-regulation of bcl-2 in hyperoxia-induced apoptosis of a subclone of pheochromocytoma cells,PC12h.Neurosci Lett.1997,232:71-74.
    [107]Kiprianova I,Freiman T M,Desiderato S,et al.Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat,J Neurosci Res,1999,56:21-27.
    [108]Tahirovic I,Sofic E,Sapcanin A,et al.Reduced brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer's disease and diabetes mellitus,Neurochem Res,2007,32(10):1709-1717.
    [109]Mastrocola R,Restivo F,Vercellinatto I,et al.Oxidative and nitrosative stress in brain mitochondria of diabetic rats,J Endocrinol,2005,187(1):37-44.
    [110]Pari L,Latha M.Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats,BMC Complement Altern Med,2004,4:16.
    [111]Tan S,Sagara Y,Liu Y,et al.The regulation of reactive oxygen species production during programmed cell death,J Cell Biol,1998,141:1423-1432.
    [112]Shibata N,Kobayashi M.The role for oxidative stress in neurodegenerative diseases,Brain Nerve,2008,60(2):157-170.
    [113]Troy C M,Shelanski M L.Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells,Proc Natl Acad Sci USA,1994,91:6384-6387.
    [114]Hockenbery D M,Oltvai Z N,Yin X M,et al.Bcl-2 functions in an antioxidant pathway to prevent apoptosis,Cell,1993,75:241-251.
    [115]Trauernicht A K,Sun H,Patel K P,et al.Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats,Stroke,2003,34(11):2698-2703.
    [116]Yanardag R,Tunali S.Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats,Mol Cell Biochem,2006,286(1-2):153-159.
    [117]Hsieh R H,Lien L M,Lin S H,et al.Alleviation of oxidative damage in multiple tissues in rats with streptozotocin-induced diabetes by rice bran oil supplementation,Ann N Y Acad Sci,2005,1042:365-371.
    [118]Like A A,Rossini A A.Streptozotocin-induced pancreatic insulitic:new model of diabetes mellitus,Science,1976,193(4251):415-417.
    [119]施新猷编.医用实验动物学,陕西科学技术出版社,1989,66-116.
    [120]Rabinowe S L,Eisenbarth G S.Type I diabetes mellitus:a chronic autoimmune disease? Pediatr Clin North Am,1984,31(3):531-543.
    [121]严济,薄家璐.山医群体中国地鼠自发的遗传性糖尿病模型,中国病理生理杂志,1988,4:262。
    [122]Picarel-Blanchot F.Berthelier C,Builbe D,et al.Imparied insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat,Am J Physiol,1996,271(4pt1):E755-E762.
    [123]Van Zwieten P A,Kam K L,Pijl A J,et al.Hypertensive diabetic rats in pharmacological studies,Pharmacol Res,1996,33(2):95-105.
    [124]Ueda H,Ikegami H,Yamato E,et al.The NSY mouse:a new animal model of spontaneous NIDDM with moderate obesity,Diabetologia,1995,38(5):503-508.
    [125]Duhault J.Boulanger M.Espinal,J.et al.Latent autoimmune diabetes mellitus in adult humans with non-insulin-dependent diabetes:is Psammomys obesus a suitable animal model? Acta Diabetol,1995,32:92-94.
    [126]Andre I,Gonzalez A,Wang B,et al.Checkpoints in the progression of autoimmune disease:Lessons from diabetes mellitus,Proc.Natl,Acad.Sei USA,93,2260-2263.
    [127]Moller D E.Perspective in diabetes transgenic approaches to the pathogenesis of NIDDM,Diabetes,1994,43:1394-1401.
    [128]Biessels G J,Kamal A,Ramakers G M,et al.Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rat,Diabetes,1996,45:1259-1266.
    [129]Biessels G J,Kamal A,Urban I J,et al.Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats:effects of insulin treatment,Brain Res,1998,800:125-135.
    [130]Gispen W H,Biessels G J.Cognition and synaptic plasticity in diabetes mellitus,Trends Neurosci,2000,23:542-549.
    [131]Gillett M,Davis W A,Jackson D,et al.Prospective evaluation of carotid bruit as a predictor of first stroke in type 2 diabetes:the Fremantle Diabetes Study,Stroke,2003,34(9):2145-2151.
    [132]Cardoso C R,Salles G F,Deccache W.QTc interval prolongation is a predictor of future strokes in patients with type 2 diabetes mellitus,Stroke,2003,34(9):2187-2194.
    [133]Manschot S M,Biessels G J,Cameron N E,et al.Angiotensin converting enzyme inhibition partially prevents deficits in water maze performance,hippocampal synaptic plasticity and cerebral blood flow in streptozotocin-diabetic rats,Brain Res,2003,966(2):274-282.
    [134]Li Z G,Zhang W,Sima A A.C-peptide prevents hippocampal apoptosis in type 1 diabetes,Int J Exp Diabetes Res,2002,3(4):241-245.
    [135]Li Z G,Zhang W,Grunberger G,et al.Hippocampal neuronal apoptosis in type 1 diabetes,Brain Res,2002,946(2):221-231.
    [136]钱玉英,赵志伟.记忆增强肽对糖尿病小鼠学习、记忆功能及海马NT-3神经元的影响,《中国糖尿病杂志》,1999,0702 p94.
    [137]王蓉.APP17肽对Aβ导致神经元毒性作用的影响,首都医科大学学报,2001年03期.
    [138]盛树力,赵咏梅,赵志炜,姬志娟,王晶.APP17肽对D-半乳糖性脑老化模型小鼠学习、记忆功能和海马神经元NT-3、NGF表达的影响,Chinese Journal of Pathophysioiogy,2000,第06期.
    [139]张琴,张桂芬,黎俊英.复方丹参注射液临床新用概况,中国中医药信息杂志,2002,9:79-81.
    [140]廖维靖,杨万同,周云峰,Wiegand F,Dirnagl U.当归对大鼠脑缺血损伤保护作用的实验研究,中草药,1999,30:273.
    [141]程嘉艺,李降筱,柳倩.刺五加提取物对实验性急性脑缺血的保护作用,中草药,2003, 34:358-359.
    [142]张英鸽,刘天培.人参皂苷Rb1和Rg1对大鼠可逆性局灶性脑缺血的影响,中国药理学报,1996,17:44-48.
    [143]陈群,曾因明,王建国.黄芩苷的脑保护作用和对微管运动蛋白免疫活性的影响,中国药理学通报,2001,17:117-118.
    [144]魏佑震,姚志彬,陈以慈.小檗碱对大鼠海马CA1区迟发性神经元坏死的影响,中风与神经疾病杂志,1996,13:75-77.
    [145]杜冠华,张均田.丹酚酸A对小鼠脑缺血再灌注致学习记忆功能障碍的改善作用及作用机制,药理学报,1995,30:184-190.
    [146]Ismailoglu U B,Saracoglu I,Harput U S,et al.Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings,J Ethnopharmacol,2002,79:193-197.
    [147]Wang Z,An L J,Duan Y L,et al.Catalpol protects rat pheochromocytoma cells against oxygen and glucose deprivation-induced injury,Neurol Res,2008,30(1):106-112.
    [148]Jiang B,Liu J H,Bao Y M,et al.Catalpol inhibits apoptosis in hydrogen peroxide induced PC12cells by preventing cytochrome c release and inactivating of caspase cascade,Toxicon,2004,43:53-59.
    [149]Li D Q,Bao Y M,Li Y,et al.Catalpol modulates the expressions of Bcl-2 and Bax and attenuates apoptosis in gerbils after isehemic injury,Brain Res,2006,1115(1):179-185.
    [150]Jiang B,Du J,Liu J H,et al.Catalpol attenuates the neurotoxicity induced by beta-amyloid(1-42) in cortical neuron-glia cultures,Brain Res,2008,1188:139-147.
    [151]Biere A,Marak H B,van Damme J M.Plant chemical defense against herbivores and pathogens:generalized defense or trade-offs? Oecologia,2004,140(3):430-441.
    [152]Marak H B,Biere A,Van Damme J M.Systemic,genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L.in response to fungal infection by Diaporthe adunca(Rob.)Niessel,J Chem Ecol,2002,28(12):2429-2448.
    [153]Chang I M,Ryu J C,Park Y C,et al.Protective activities of aucubin against carbon tetrachioride-induced liver damage in mice,Drug Chem Toxicol,1983,6(5):443-453.
    [154]Chang I M.Liver-protective activities of aucubin derived from traditional oriental medicine,Res Commun Mol Pathol Pharmacol,1998,102(2):189-204.
    [155]Bermejo Benito P,Diaz Lanza A M,et al.Effects of some iridoids from plant origin on arachidonic acid metabolism in cellular systems,Planta Med,2000,66(4):324-328.
    [156]李发荣,杨建雄,李宝林,等.太白参中桃叶珊瑚苷的分离鉴定和提取工艺研究,中草药,2003,34(9):802-803.
    [157]Ho J N,Lee Y H,Park J S,et al.Protective effects of aucubin isolated from Eucommia ulmoides against UVB-induced oxidative stress in human skin fibroblasts,Biol Pharm Bull,2005,28(7):1244-1248.
    [158]Li Y,Kamo S,Metori K,et al.The promoting effect of eucommiol from Eucommiae cortex on collagen synthesis,Biol Pharm Bull,2000,23(1):54-59.
    [159]Ha H,Ho J,Shin S,et al.Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoclast inhibition,Arch Pharm Res,2003,26(11):929-936.
    [1]Barber A J,Lieth E,Khin S A,et al.Neural apoptosis in the retina during experimental and human diabetes,Early onset and effect of insulin,J.Clin.Invest,1998,102,783-791.
    [2]Biessels G J,Kamal A,Ramakers G M,et al.Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rot,Diabetes,1996,45:1259-1266.
    [3]Di Loreto S,Zimmitti V,Sebastiani P,et al.Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons,Int J Biochem Cell Biol,2008,40(2):245-257.
    [4]Sima A A,Kamiya H.Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr Drug Targets,2008,9(1):37-46.
    [5]Burdo J R,Chen Q,Calcutt N A,et al.The pathological interaction between diabetes and presymptomatic Alzheimer's disease,Neurobiol Aging,2008(accepted)
    [6]Kumbhani D J,Bavry A A,Kamdar A R,et al.The effect of drug-eluting stents on intermediate angiographic and clinical outcomes in diabetic patients:insights from randomized clinical trials,Am Heart J,2008,155(4):640-647.
    [7]Wolter K G,Hsu Y T,Smith C L,et al.Movement of Bax from the cytosol to mitochondria during apoptosis,J.Cell Biol,1997,139:1281-1292.
    [8]Rao Y,Xiao P,Xu S.Effects of intrahippocampal aniracetam treatment on Y-maze avoidance learning performance and behavioral long-term potentiation in dentate gyrus in rat.Neurosci Lett,Neurosci Lett,2001,298:183-186.
    [9]Wang Q,Xu J,Rottinghaus G E,et al.Resveratrol protects against global cerebral ischemic injury in gerbils,Brain Res,2002,958:439-447.
    [10]Li Z G,Zhang W,Sima A A.The role of impaired insulin/IGF action in primary diabetic encephalopathy,Brain Res,2005,1037(1-2):12-24.
    [11]施新.现代医学实验动物学.北京:人民军医出版社,2000,82-93
    [12]Morgado C,Tavares I.C-fos expression at the spinal dorsal horn of streptozotocin-induced diabetic rats,Diabetes Metab Res Rev,2007,23(8):644-52.
    [13]Kuo H K,Wu P C,Kuo C N,et al.Effect of insulin on the expression of intraocular vascular endothelial growth factor in diabetic rats,Chang Gung Med J,2006,29(6):555-560.
    [14]Qian L,Wang H,Xia Q,Bruce I,et al.Interleukin-2 Improves Vascular Functions in Streptozotocin-induced Diabetic Rats,Conf Proc IEEE Eng Med Biol Soc,2005,3:2283-2286.
    [15]孙子林,葛祖恺.糖尿病动物模型及进展.中国糖尿病杂志,1999,9(4):227-229.
    [16]Pegg A E,Bennett R A.A lkylation of DNA in the tissues following administration of streptozotocin,Cancer Res,1981,41(7):2786-2790.
    [17]Szkudelski T.The mechanism of alloxan and streptozotocin action in the B cells of the rat pancreas,Physiolo Res,2001,50(6):537-546.
    [18]Neuman R G,Hud E,Cohen M P.Glycated albumin:a marker of glycaemic status in rats with experimental diabetes,Lab Anim,1994,28(1):63-69.
    [19]Yang Z C,Xia K,Wang L,et al.Asymmetric dimethylarginine reduced erythrocyte deformability in streptozotocin-induced diabetic rats,Microvasc Res,2007,73(2):131-136.
    [20]Schoenle E J,Schoenle D,Molinari L,et al.Impaired intellectual development in children with Type I diabetes:association with HbA(1c),age at diagnosis and sex,Diabetologia,2002,45:108-114.
    [21]Tanabe M,Takasu K,Yamaguchi S,et al.Glycine transporter inhibitors as a potential therapeutic strategy for chronic pain with memory impairment,Anesthesiology,2008,108(5):929-937.
    [22]Li Z G,Zhang W,Grunberger G,et al.Hippocampal neuronal apoptosis in type 1 diabetes,Brain Res,2002,946:221-231.
    [23]Maeda C Y,Fernandes T G,Timm H B,et al.Autonomic dysfunction in short-term experimental diabetes,Hypertension,1995,26:1100-1104.
    [24]Bothe H W,Bosma H J,Hofer H,et al.Selective vulnerability of hippocampus and disturbances of memory storage after mild unilateral ischemia of gerbil brain, Stroke, 1986,17:1160-1163.
    [25] Ishimaru H, Takahashi A, Ikarashi Y, et al. Pentobarbital protects against CA1 pyramidal cell death but not dysfunction of hippocampal cholinergic neurons following transient ischemia, Brain Res, 1995, 673:112-118.
    [26] Sima A A, Zhang W, Li Z G, et al. The effects of C-peptide on type 1 diabetic polyneuropathies and encephalopathy in the BB/Wor-rat, Exp Diabetes Res, 2008, 2008: 230458.
    [27] Di Loreto S, Zimmitti V, Sebastiani P, et al. Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons, Int J Biochem Cell Biol, 2008, 40 (2):245-257.
    [28] Horii Y, Yamasaki N, Miyakawa T, et al. Increased anxiety-like behavior in neuropsin (kallikrein-related peptidase 8) gene-deficient mice, Behav Neurosci, 2008,122 (3):498-504.
    [29] Luszczki J J, Wojcik-Cwikla J, Andres M M, et al. Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis, Neuropsychopharmacology, 2005, 30 (5):958-973.
    [30] Stepanichev M Y, Moiseeva Y V, Lazareva N A, et al. Single intracerebroventricular administration of amyloid-beta (25-35) peptide induces impairment in short-term rather than long-term memory in rats, Brain Res Bull, 2003, 61 (2):197-205.
    [1]Li Z G.,Zhang W X,Sima A A F.The role of impaired insulin/IGF action in primary diabetic encephalopathy,Brain Res,2005,1037:12-24.
    [2]Haugaard S B,Vaag A,Hφy C E,et al.Sex and muscle structural lipids in obese subjects -an impact on insulin action? Eur J Clin Invest,2008,38(7):494-501.
    [3]Brunton S.Insulin delivery systems:reducing barriers to insulin therapy and advancing diabetes mellitus treatment,Am J Med,2008,121(6 Suppl):S35-41.
    [4] Kwon D Y, Kim Y S, Hong S M, et al. Long-term consumption of saponins derived from Platycodi radix (22 years old) enhances hepatic insulin sensitivity and glucose-stimulated insulin secretion in 90% pancreatectomized diabetic rats fed a high-fat diet, Br J Nutr, 2008,25:1-9.
    [5] Kendig E L, Schneider S N, Clegg D J, et al. Over-the-counter analgesics normalize blood glucose and body composition in mice fed a high fat diet, Biochem Pharmacol, 2008,76 (2):216-224.
    [6] Phillips B E, Giannoukakis N, Trucco M. Dendritic cell mediated therapy for immunoregulation of type 1 diabetes mellitus, Pediatr Endocrinol Rev, 2008, 5 (4):873-879.
    [7] Li Z G, Zhang W, Grunberger G, Sima A A F. Hippocampal neuronal apoptosis in type 1 diabetes, Brain Res, 2002, 946, 221-231.
    [8] Schoenle E J, Schoenle, D, Molinari L, et al. Impaired intellectual development in children with Type I diabetes: association with HbA (1c), age at diagnosis and sex, Diabetologia, 2002, 45:108-114.
    [9] Sima A A F, Kamiya H, Li Z G. C-peptide, hyperglycemia, and central nervous system complications in diabetes, Eur. J. Pharmacol, 2004,490:187-197.
    [10] El-Mir M Y, Detaille D, R-Villanueva G, et al. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons, J Mol Neurosci, 2008, 34 (1):77-87.
    [11] Duarte J M, Nogueira C, Mackie K, et al. Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats, Exp Neurol, 2007, 204 (1):479-484.
    [12] Lin Y H, Westenbroek C, Tie L, et al. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus, Neurochem Res, 2006, 31 (12):1417-1424.
    [13] Chang H K, Jang M H, Lim B V, et al. Administration of Ginseng radix decreases nitric oxide synthase expression in the hippocampus of streptozotocin-induced diabetic rats, Am J Chin Med, 2004,32 (4):497-507.
    [14] Ugochukwu N H, Mukes J D, Figgers C L. Ameliorative effects of dietary caloric restriction on oxidative stress and inflammation in the brain of streptozotocin-induced diabetic rats, Clin Chim Acta, 2006, 370 (1-2):165-173.
    [15] Elangovan V, Kohen R, Shohami E. Neurological recovery from closed head injury is impaired in diabetic rats, J Neurotrauma, 2000,17 (11):1013-1027.
    [16] Yuan J, Young B J, Martinus R D. Expression of chaperonin 60 in the hippocampus of the streptozotocin diabetic rat, Neuroreport, 2006, 17 (3):239-242.
    [17] Rizk N N, Rafols J, Dunbar J C. Cerebral ischemia induced apoptosis and necrosis in normal and diabetic rats, Brain Res, 2005, 1053 (1-2): 1-9.
    [18] Desagher S, Martinou J C. Mitochondria as the central control point of apoptosis, Trends Cell Biol, 2000, 10:369-377
    [19] Gillardon F, Wickert H, Zimmermann M. Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain, Neurosci Lett, 1995, 192:85-88.
    [20] Gillardon F, Lenz C, Waschke K F, et al. Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats, Brain Res Mol Brain Res, 1996,40:254-260.
    [21] Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel forming activity by Bcl-2. Science, 1997,277:370-376.
    [22] Kluck R M, Bossy-Wetzel E, Green D R, et al. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis, Science, 1997, 275:1132-1136.
    [23] Joza N, Susin S A, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death, Nature, 2001,410:549-554.
    
    [24] Hawkins C J, Vaux D L. Analysis of the role of bcl-2 in apoptosis, Immunol Rev, 1994, 142:127-39.
    [25] Yin X M, Oltvai Z N, Korsmeyer S J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax, Nature, 1994, 369:321-323.
    [26] Korsmeyer S J, Shutter J R, Veis D J, et al. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death, Semin Cancer Biol, 1993, 4:327-332.
    [27] Martinou J C, Dubois-Dauphin M, Staple J K, et al. Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia, Neuron, 1994, 13: 1017-1030.
    [28] Zhong L T, Sarafian T, Kane D J, et al. bcl-2 inhibits death of central neural cells induced by multiple agents, Proc Natl Acad Sci USA, 1993,90:4533-4537.
    [29] Krajewski S, Mai J K, Krajewska M, et al. Upregulation of Bax protein levels in neurons following cerebral ischemia, J Neurosci, 1995,15:6364-6376.
    [30] Golstein P. Controlling cell death, Science, 1997,275:1081-1082.
    [31] Deckwerth T L, Elliott J L, Knudson C M, et al. BAX is required for neuronal death after trophic factor deprivation and during development, Neuron, 1996,17:401-411.
    [32] Oltvai Z N, Milliman C L, Korsmeyer S J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell, 1993, 74:609-619.
    [33] Cao W, Carney J M, Duchon A, et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain, Neurosci Lett, 1988, 88:233-238.
    [34] Facchinetti F, Dawson V L, Dawson T M. Free radicals as mediators of neuronal injury, Cell Mol Neurobiol, 1998, 18:667-682.
    [35] Chan P H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb, Blood Flow Metab, 2001,21:2-14.
    [36] Sugawara T, Chan P H. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia, Antioxid Redox Signal, 2003, 5:597-607.
    [37] Albrecht H, Tschopp J, Jongeneel C V. Bcl-2 protects from oxidative damage and apoptotic cell death without interfering with activation of NF-kappa B by TNF., FEBS Lett, 1994, 351:45-48.
    [38] Hockenbery D M, Oltvai Z N, Yin X M, et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis, Cell, 1993, 75:241-251.
    [39] Hengartner M O, Horvitz H R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2, Cell, 1994, 76:665-676.
    [40] Melkova Z, Lee S B, Rodriguez D, et al. Bcl-2 prevents nitric oxide-mediated apoptosis and poly (ADP-ribose) polymerase cleavage, FEBS Lett, 1997,403:273-278.
    [41] Hong J H, Kim M J, Park M R, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats, Clin Chim Acta, 2004, 340 (1-2):107-115.
    [42] Lazzarino G, Tavazzi B, Di Pierro D, et al. The relevance of malondialdehyde as a biochemical index of lipid peroxidation of postischemic tissues in the rat and human beings, Biol Trace Elem Res, 1995,47:165-170.
    [43] Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury, Trends Neurosci, 1997, 20:132-139.
    [44] Bredt D S. Endogenous nitric oxide synthesis: biological functions and pathophysiology, Free Radic Res, 1999,31:577-596.
    [45] Arrick D M, Sharpe G M, Sun H, et al. Losartan improves impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in type 1 diabetic rats, Brain Res, 2008,1209:128-135.
    [46] Tominaga T, Sato S, Ohnishi T, et al. Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: in vivo detection of the nitric oxide radical by electron paramagnetic resonance spins trapping, Brain Res, 1993, 614:342-346.
    [47] Beckman J S, Beckman T W, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide, Proc Natl Acad Sci USA, 1990, 87:1620-1624.
    [48] Traystman R J, Kirsch J R, Koehler R C. Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J Appl Physiol, 1991, 71:1185-1195.
    [49] Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury, Trends Neurosci, 1997, 20:132-139.
    [50] Zheng H, Bidasee K R, Mayhan W G, et al. Lack of central nitric oxide triggers erectile dysfunction in diabetes, Am J Physiol Regul Integr Comp Physiol, 2007, 292 (3):R1158-1164.
    [1]Shi G F,An L J,Jiang B,et al.Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo,Neurosci Lett,2006,403(3):206-210.
    [2]Zeng Y,Wu Y,Deng Z,et al.Apoptosis induced by lipid-associated membrane proteins from Myeoplasma penetrans is mediated by nuclear factor kappaB activation in mouse macrophage,Can J Microbiol,2008,54(2):150-158.
    [3]Yumita N,Han Q S,Kitazumi I,et al.Sonodynamically-induced apoptosis,necrosis,and active oxygen generation by mono-l-aspartyl chlorin e6,Cancer Sci,2008,99(1):166-172.
    [4]Faded,B,Orrenius,S,Zhivotovsky,B.Apoptosis in human disease:Anewskin for the old ceremony,Biochem.Biophys.Res.Commun,1999,266:699-717.
    [5]Hwang S L,Yen G C.Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells,J Agric Food Chem,2008,56(3):859-864.
    [6]Huang S M,Chuang H C,Wu C H,et al.Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells,Mol Nutr Food Res,2008,52(8):940-949.
    [7]Wang F,Li Z H.A study on miRNA alternation after H2O2-induced PC12 cell apoptosis using microarray technique,Fa Yi Xue Za Zhi,2007,23(5):328-331.
    [8]Liu Y M,Jiang B,Bao Y M,et al.Protocatechuic acid inhibits apoptosis by mitochondrial dysfunction in rotenone-induced PC12 cells,Toxicol In Vitro,2008,22(2):430-437.
    [9]Rφnsted N,Bello M A,Jensen S R.Aragoside and iridoid glucosides from Aragoa cundinamarcensis,Phytochemistry,2003,64(2):529-533.
    [10]Chiang L C,Ng L T,Chiang W,et al.Immunomodulatory activities of flavonoids,monoterpenoids,triterpenoids,iridoid glycosides and phenolic compounds of Plantago species,Planta Med,2003,69(7):600-604.
    [11] Harput U S, Nagatsu A, Ogihara Y, et al. Iridoid glucosides from Veronica pectinata var. glandulosa, Z Naturforsch, 2003, 58 (7-8):481-484.
    [12] Suomi J, Siren H, Jussila M, et al. Determination of iridoid glycosides in larvae and adults of butterfly Melitaea cinxia by partial filling micellar electrokinetic capillary chromatography-electrospray ionisation mass Spectrometry, Anal Bioanal Chem, 2003, 376 (6):884-889.
    [13] Kirmizibekmez H, Akbay P, Sticher O, et al. Iridoids from Globularia dumulosa, Z Naturforsch, 2003, 58 (3-4): 181-186.
    [14] Shim K M, Choi S H, Jeong M J, et al. Effects of aucubin on the healing of oral wounds, In Vivo, 2007,21 (6):1037-1041.
    [15] Mouriès C, Rakotondramasy V C, Libot F, et al. Synthesis and cytotoxicity of a novel iridoid glucoside derived from aucubin, Chem Biodivers, 2005, 2 (5):695-703.
    [16] Kupeli E, Tatli I I, Akdemir Z S, et al. Bioassay-guided isolation of anti-inflammatory and antinociceptive glycoterpenoids from the flowers of Verbascum lasianthum Boiss. ex Bentham, J Ethnopharmacol, 2007, 110 (3):444-450.
    [17] Sesterhenn K, Distl M, Wink M. Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L, Plant Cell Rep, 2007, 26 (3):365-371.
    [18] Lee D H, Cho I G, Park M S, et al. Studies on the possible mechanisms of protective activity against alpha-amanitin poisoning by aucubin, Arch Pharm Res, 2001, 24 (1):55-63.
    [19] Jiang B, Liu J H, Bao Y M, et al. Catalpol Inhibits Apoptosis in Hydrogen Peroxide-Induced PC12 Cells by Preventing Cytochrome c Release and Inactivating of Caspase Cascade, Toxicon, 2004, 43: 53-59.
    [20] Li D Q, Li Y, Liu Y X, et al. Catalpol prevents the loss of CA1 hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury, Toxicon, 2005, 46:845-851.
    [21] Vian L, Vincent J, Maurin J, et al. Comparison of three in vitro cytotoxicity assays for estimating surfactant ocular irritation, Toxicology in vitro, 1995, 9 (2): 185-190.
    [22] Mosmann T. Rapid colorimetric assay for cellular growth and survivals: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65 (1-2):55-63.
    [23] Bradford, M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, 1976, 72:248-254.
    [24] Wang Z, An L J, Duan Y L, et al. Catalpol protects rat pheochromocytoma cells against oxygen and glucose deprivation-induced injury, Neurol Res, 2008,30 (1): 106-112.
    [25] Shi G F, An L J, Jiang B, et al. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo, Neurosci Lett, 2006,403 (3):206-210.
    [26] Zeng Y, Wu Y, Deng Z, et al. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma penetrans is mediated by nuclear factor kappaB activation in mouse macrophage, Can J Microbiol, 2008, 54 (2): 150-158.
    [27] Yumita N, Han Q S, Kitazumi I,et al. Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by mono-l-aspartyl chiorin e6, Cancer Sci, 2008, 99 (1): 166-172.
    [28] Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: Anewskin for the old ceremony, Biochem. Biophys. Res. Commun, 1999,266,699-717.
    [29] Zhen G H, Jiang B, Bao Y M, et al. The protect effect of flavonoids from Cuscuta chinensis in PC12 cells from damage induced by H_2O_2, Zhong Yao Cai, 2006, 29 (10): 1051-1055.
    [30] Abe S, Ohnishi H, Tsuchiya K, et al. Calcium and reactive oxygen species mediated Zn2+ -induced apoptosis in PC12 cells, J Pharmacol Sci, 2006,102 (1):103-111.
    [31] Utsumi T, Shimoke K, Kishi S, et al. Protective effect of nicotine on tunicamycin-induced apoptosis of PC12h cells, Neurosci Lett, 2004, 370 (2-3):244-247.
    [32] Xu R, Liu J, Chen X, et al. Ribozyme-mediated inhibition of caspase-3 activity reduces apoptosis induced by 6-hydroxydopamine in PC12 cells, Brain Res, 2001, 899 (1-2):10-19.
    [33] Woodgate A, MacGibbon G, Walton M, et al. The toxicity of 6-hydroxydopamine on PC12 and P19 cells, Brain Res Mol Brain Res, 1999, 69 (1):84-92.
    [34] Ye K. PARP inhibitor tilts cell death from necrosis to apoptosis in cancer cells. Cancer Biol Ther, 2008, 7 (6):942-944.
    
    [35] Reed J C. Cytochrome c: can't live with it can't live without it, Cell, 1997, 91559-91562.
    [36] Vander Heiden M G, Chandel N S, Williamson E K, et al. Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria, Cell, 1997, 91627-91637.
    [37] Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science, 1997,275:1129-1132.
    [38] Li L, Gao X L, Ding B X. Inhibitory effect of sinomenine on H_2O_2-induced apoptosis in neonatal rat cardiomyocytes, Zhongguo Zhong Yao Za Zhi, 2008, 33 (8):939-941.
    [39] Nicholson D W. Caspase structure, proteolytic substrates, and function during apoptotic cell death, Cell Death Differ, 1999,6:1028-1042.
    [40] Muzio M, Stockwell B R, Stennicke H R, et al. An induced proximity model for caspase-8 activation, J. Biol. Chem, 1998, 273:2926-2930.
    
    [41] Ray S D, Balasubramanian G, Bagchi D, et al. Ca (2+)-calmodulin antagonist chlorpromazine and poly (ADP-ribose) polymerase modulators 4-aminobenzamide and nicotinamide influence hepatic expression of BCL-XL and P53 and protect against acetaminophen-induced programmed and unprogrammed cell death in mice, Free Radic. Biol. Med, 2001, 31:277-291.
    [42] Soldani C, Laze M C, Bottone M G, et al. Poly (ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp. cell Res, 2001, 269:193-201.
    
    [43] Cohen G M. Caspases: the executioners of apoptosis, J. Biochem, 1997, 326:1-16.
    [44] Martin D A, Siegel R M, Zheng L X, et al. Membrane oligomerization and deavage activates the caspase-8 (FL ICE/MACH1) death signal, J. Bio. Chem, 1998, 273 (8):4345-4349.
    [45] Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD, Nature, 1998, 391 (6662):43-50.
    
    [46] Stein A B, Bolli R, Guo Y, et al. The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis, J Mol Cell Cardiol, 2007, 42 (6): 1075-1085.
    
    [47] Moubarak R S, Yuste V J, Artus C, et al. Sequential activation of poly (ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis, Mol Cell Biol, 2007, 27 (13):4844-4862.
    
    [48] Park C, Moon D O, Rhu C H, et al. Beta-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio, Biol Pharm Bull,2007,30(7):1317-1323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700