用户名: 密码: 验证码:
富钒鹰嘴豆芽对糖尿病大鼠糖脂代谢及学习记忆的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(diabetes mellitus,DM)是由胰岛素绝对或相对不足引起的以糖代谢紊乱为主要表现的临床综合征,长期糖尿病可引起多个系统器官的慢性并发症,是患者致残与致死的主要原因,对病人的生活质量产生严重的影响。
     目前的治疗措施还远达不到预期的治疗目标:在严格控制血糖正常水平,避免代谢紊乱和慢性并发症的发生,维持β-细胞功能,防止病程进展。因而研究改进糖尿病治疗新方法,开发安全有效、使用方便的抗糖尿病新药具有非常重要的现实意义。
     实验证明,微量元素钒的抗糖尿病作用一直受到临床重视,但该作用需要较高的剂量,会引起多系统毒副反应;而有机钒化合物的降血糖作用优于无机钒化合物,且无明显副作用,如BMOV在国外已经获得注册,并应用于临床。
     鹰嘴豆(chickpea,学名Cicer arietnum L.)营养丰富,并具有极高的药用价值,被我国药典收录。研究发现,鹰嘴豆种子的芽胚中含有丰富的异黄酮、鹰嘴豆芽素A、C和鹰嘴豆谷芽素B等抗氧化成分,对试验动物及人体均具有肯定的降低血糖、血压和血脂的作用。
     糖尿病病理过程会导致学习记忆功能的障碍,是糖尿病常见而严重的并发症之一。已有研究发现,长期糖尿病会加速阿尔茨海默病(AD)的早期发病。大脑海马区是学习、记忆的重要解剖基础和神经中枢。
     本论文以Wistar雄性大鼠为实验动物,在链脲佐菌素(Streptozotocin,STZ)诱发的糖尿病动物模型上,以糖脂代谢、症状体征和海马区神经细胞形态学、功能学和分子生物学等为观察指标,研究了富钒鹰嘴豆芽(Vanadium-enrichedchickpea sprouts,VCS)对糖尿病的治疗作用及其作用机理。
     目的:
     1.培育鹰嘴豆芽(Chickpea sprout,CS)及VCS。
     2.筛选对糖尿病大鼠安全、有效、易吸收的最佳浓度富钒鹰嘴豆芽作为糖尿病模型大鼠的干预饲料。
     3.研究VCS对糖尿病的治疗作用及其作用机理。
     方法:
     1.采用Burguillo PD的方法培育CS和分别由8个浓度(50μg/mL、100μg/mL、200μg/mL、400μg/mL、600μg/mL、800μg/mL、1600μg/mL、2000μg/mL)原钒酸钠水溶液培育的的VCS;
     2(1).采用生物样品分析分解方法,利用全谱直读等离子体发射光谱仪测定不同浓度VCS中的总钒含量;同法测定正式试验后各实验组大鼠每日钒摄入量及大鼠血浆、重要脏器中钒含量。
     2(2).采用对Wistar雄性大鼠(购自华中科技大学同济医学院,SCXK2004-0007)一次性尾静脉注射链脲佐菌素(Streptozotocin,STZ)45mg/kg的方法建立糖尿病模型,随机分组,分别给予5%的CS和各种浓度VCS饲料进行干预。
     2(3).根据4w的预实验,观察实验动物的血糖变化、“三多一少”症状、精神状态和行为学变化,选取安全、有效的VCS作为实验用干预饲料。
     3(1).将链脲佐菌素(Streptozotocin STZ)诱发的糖尿病模型大鼠分成5组,分别为:糖尿病对照(D)组、0.5mg/mL原钒酸钠治疗(V)组、鹰嘴豆芽治疗(VC)组、0.2mg/mL原钒酸钠联合鹰嘴豆芽治疗(V+CS)组、富钒鹰嘴豆芽治疗(VCS)组,另设正常对照(C)组。干预8w后,观察各组实验大鼠血糖和血脂等指标的变化情况;以Morris水迷宫检测各组实验大鼠的空间学习记忆能力。
     3(2).大鼠海马组织石蜡切片HE染色光镜观察,透射电子显微镜观察,免疫组织化学分析、蛋白质免疫印记(Western-blotting)以及实时定量PCR(RealTime-PCR)方法,分别对海马神经细胞的形态变化、细胞凋亡情况、凋亡相关因子Caspase3、Bax和Bcl-2的表达,以及App,IGF-1和IGF-1R的表达进行定位和定量研究,以探讨VCS对学习记忆功能影响的可能机制。
     4.统计学处理
     将实验数据输入SPSS11.5统计软件数据库中,以均数±标准差(m±SD)表示,两组之间比较采用t检验,多组间比较采用ANOVA方差分析,相关性分析采用直线相关法。以P<0.05表示有统计学意义。
     结果:
     1.CS和VCS均生长良好;原钒酸钠溶液对豆芽的生长存在一定程度的抑制作用,但不同浓度之间差异不明显;
     2(1).8种不同浓度富钒鹰嘴豆芽及饲料中的钒含量随培育液中原钒酸钠浓度的变化而变化,存在剂量依赖关系,但不是倍数关系。
     2(2).大鼠一次性尾静脉注射Streptozotocin(STZ)45mg/kg9d后,出现典型的多饮、多尿、血糖升高等糖尿病表现。成功率92%,死亡率4%。
     2(3).根据4w的预实验观察记录发现,100μg/mL原钒酸钠培育的VCS干预组实验动物的血糖控制稳定、“三多一少”症状明显改善、精神状态和行为学变化与正常对照组无显著性差异,且未发现钒明显的毒副反应,故选取100μg/mL原钒酸钠培育的VCS作为实验用干预饲料,即最佳浓度的VCS。
     3(1).实验8w后,与正常对照组(C)比较,糖尿病组(D)大鼠出现明显“三多一少”症状;血糖升高4倍;血浆胰岛素(Ins)降低57.63%,血浆瘦素水平明显降低;血浆脂质水平明显升高,HDL-c明显下降;糖化血红蛋白(GHbA1)升高42.28%,肝肾功能明显受损;口服葡萄糖耐量(OGTT)、血浆胰岛素(OGIRT)释放试验明显受损,各自曲线下面积(AUC)明显异常。
     而各干预组的上述指标均有不同程度的改善,其中以VCS组改善最明显,“三多一少”症状消逝,血糖水平降低58.60%(P<0.05);血浆胰岛素水平明显增高(P<0.05)且接近正常;血浆瘦素水平恢复;血浆低密度脂蛋白(LDL-c)、甘油三酯(TG)和总胆固醇(TC)明显下降(P<0.05),HDL-c明显上升;GHbA1降低32.81%,BUN和Cr恢复,谷丙转氨酶(ALT)降低39.98%。而OGTT和OGIRT得到显著改善,曲线下面积(AUC)得到恢复。其他各组效果依次为:V+CS>CS~V。其中V和V+CS组对脂质代谢障碍、血浆LEP水平、血浆糖化血红蛋白(GHbA1)、受损的肾脏功能、异常的OGTT和OGIRT、明显减少的OGIRT-AUC无显著改善作用,尤其是V治疗组,甚至有加重AUC减少的作用。
     糖尿病8w后,大鼠游泳能力达3小时以上,证实糖尿病大鼠肢体活动能力未见改变,以Morris水迷宫实验观察糖尿病大鼠的学习记忆能力。结果糖尿大鼠在训练后第5天测试潜伏期延长、搜寻平台策略成绩较正常对照组降低。各治疗组大鼠潜伏期明显缩短,搜寻平台策略成绩也明显升高;其中以VCS组改善作用最明显。
     3(2).大鼠海马形态学和分子生物学方面
     8w后,HE染色组织病理学检查结果显示:C组大鼠海马轮廓清楚,细胞形态完整,细胞紧密有序,排列整齐,结构清晰,胞浆染色均匀,核仁清晰可见;而D组大鼠海马轮廓欠清,CA1区可见细胞形态不完整,排列紊乱疏松,数目减少,胞体肿胀,结构不清,存在空泡样变性;表明糖尿病大鼠海马神经元细胞受损。各治疗组大鼠海马细胞形态变化各不相同,VCS组大鼠海马细胞数目明显增多,形态较完整,排列较紧密、有序,胞体轻度肿胀,核仁较清晰,其余组效果依次为:V+CS>CS>V。。
     透射电镜超微结构观察结果发现,C组大鼠海马神经元细胞核形态规则,核大而圆,染色质均匀分布,核仁明显,核膜光滑连续,双层结构清楚;核周边细胞器丰富,结构完整,粗面内质网网腔均匀一致,表面有丰富的核糖核蛋白颗粒;线粒体发达,排列密集;高尔基器扁平,极性明显;神经髓鞘排列规整,纤维清楚。与C组比较,D组大鼠海马神经元出现明显的凋亡改变:细胞体积变小,胞质浓缩;细胞核固缩、碎裂,核内染色质浓缩、颗粒化、边集现象;核膜可见不规则凹陷、裂解、不连续;细胞器明显减少,结构不清,线粒体肿胀、破坏、溶解;粗面内质网扩张、断裂、脱颗粒;高尔基器腔扩张。神经髓鞘破坏严重,溶解状态,鞘膜破坏,神经纤维不清楚,突触间隙增宽。各治疗组大鼠海马细胞的超微结构均得到不同程度改善,神经细胞密度增高。突触间隙缩小,其中以VCS组改善最明显,其余各组效果为:V+CS>CS>V。
     免疫组化分析结果发现,调亡促进蛋白Bax在C组表达不明显,但在D组的表达为强阳性(胞浆内充满明显的棕褐色颗粒);各治疗组结果比较,以VCS组效果最好,阳性表达最弱,其余三组的阳性表达强度依次为:V>CS>V+CS。
     作为调亡抑制因子,Bcl-2在各组的表达差异并不明显。
     Active caspase3在C组的表达并不明显,但在D组却呈强阳性表达;而各治疗组的表达情况以VCS组最弱,其余三组均有阳性表达,强度依次V>CS>V+CS。
     IGF-1在C组的表达呈现强阳性,而D组大鼠的蛋白表达明显降低;各治疗组的表达以VCS组表达最强,其余依次为V+CS>CS>V。
     相应的胰岛素样生长因子1受体(IGF-1R)蛋白表达在C组呈现弱阳性,D组出现了代偿性上调,表达强阳性,各治疗组中,VCS组的表达最弱,其次是V+CS组,而CS组和V组仍然呈现阳性表达。
     Western blotting结果,与C组比较,D组大鼠的Caspase3表达和Bax/Bcl-2比值明显增加,胰岛素样生长因子1(IGF-1)蛋白表达明显降低,而胰岛素样生长因子1受体(IGF-1R)蛋白表达出现代偿性上调;治疗后各组大鼠海马细胞凋亡现象有明显的抑制,Caspase3表达和Bax/Bcl-2比值明显降低,IGF-1蛋白表达明显增加;IGF-1R蛋白表达趋向恢复正常;其中以VCS组变化最明显。
     Real Time-PCR方法观察App和Caspase3的mRNA表达水平,结果表明:β-actin、Caspase3和App标准曲线斜率和R~2分别为:-2.768,0.99999;-3.060,0.99346;-3.028,0.99486。且所测样品的Ct值均在标准曲线内,溶解曲线为单一峰型,表明Real Time-PCR反应特异,标准曲线理想。与C组比较,D组大鼠海马神经细胞App和Caspase3的mRNA表达水平明显升高,提示糖尿病大鼠海马存在明显细胞凋亡和蛋白沉积现象,容易导致学习记忆障碍。治疗后各组大鼠海马细胞App和Caspase3的mRNA表达水平均有不同程度的降低;其中以VCS组降低最明显,且比V组明显减少,总体效果依次为:VCS>V+CS>CS>V。
     4.实验8w后,相关分析显示,钒的降糖作用,如非空腹血糖(bg)、空腹血糖(fb)和空腹胰岛素(Ins0)与实验大鼠血液中的钒含量之间存在相关关系,即血液中钒浓度越高,则大鼠bg和fb水平越低,Ins0分泌量越多。而与钒在各脏器钒含量之间无相关关系。
     结论:
     1.首次利用生物转化方法,以鹰嘴豆为载体,通过种子发芽的过程成功地富入微量元素钒,得到富钒鹰嘴豆芽(VCS)——一种可能的生物活性钒,在协同两者降糖作用的同时,又避免了单独使用无机钒所引起的毒副作用。具有重要的临床意义。
     2.富钒鹰嘴豆芽能够明显地改善糖尿病大鼠糖脂代谢和学习记忆功能障碍;
     3.富钒鹰嘴豆芽改善糖尿病大鼠学习记忆功能障碍的作用可能与其减少海马细胞凋亡、抑制App表达和增加IGF-1表达有关。
Diabetes mellitus(DM) is clinic syndromes caused by absolute or relative deficient of insulin,with the main manifestation of glycometabolism disorders. Chronic diabetes mellitus can result in structural and functional lesions of multiple organs in human.Even more,it will cause diabetic neuropathy,including peripheral and central neuropathy.And these complications may become the primary causes of mutilation or case fatality in diabetic patients.
     In present,the therapeutics of DM,such as alimentary control,insulin and oral antidiabetic drug,cannot achieve expected goals in tiuman—controlling blood glucose in normal level,preventing glycometabolism disorders and chronic complications,shieldingβ-cell function,and,in the final,delaying the progression of DM.For these reasons,it is significantly necessary to develop new therapeutic path and to investigate the corresponding mechanism of action.
     Vanadium compounds have demonstrated insulin-mimetic effects with in vitro and in vivo studies.Vanadium compounds improve glucose homeostasis in animal models of both Type 1 and Type 2 diabetes mellitus,but the acceptance of vanadium compounds as antidiabetic agents has been slowed due to the concern for short-term gastrointestinal stress and potential long-term toxicity with vanadium accumulation. Recently,some studies of vanadium permeability and toxicity suggested that some kinds of vanadium organic compounds,for example,the combination of vanadium with some botanic antioxidants,might be benefit in reducing vanadium toxicity and increasing vanadium hypoglycemic effects.
     Chickpea has been traditional hypoglycemic foodstuff,what more,its seeds and its sprout contain variety of antioxidants such as,isoflavone,biochanin A,C and Formoononetin B,and have been investigated their potential hypoglycemic effects in diabetic animal models by several groups.
     Diabetic cognitive disorder is one of the common complications in DM. Nevertheless,as the nerve center of learning -memory,hippocampus is also the structural foundation.
     In the present study,with streptozotocin-induced diabetes in Wistar rats as objects,the effects and side effects of vanadium-enriched chickpea sprout(VCS),a new possible vanadium organic compounds,on impaired glycolipids metabolism and learning-memory ability of diabetes rats in morphological,functional and molecular biology aspects have been investigated.
     Objectives
     1.To incubate chickpea sprouts(CS) and vanadium-enriched chickpea sprout (VCS).
     2.To determine the most effective and safe dosage VCS as the therapeutic animal food.
     3.To observe the changes of some parameters in experimental rats after 8 weeks VCS- treatment,the parameters including:diabetic symptoms,blood glucose and lipid metabolism,space learning-memory ability,and morphology and molecular biology aspects.
     Methods
     1.Based on the method of Burguillo PD,the CS was performed with tap water, and the VCS were incubated with 8 dosages of sodium orthovanadate(SOV) solution as following:50μg/mL,100μg/mL,200μg/mL,400μg/mL,600μg/mL,800μg/mL, 1600μg/mL and 2000μg/mL(VCS 50~2000),respectively.
     2(1).The vanadium concentrations of vanadium-enriched chickpea sprout powder,of blood specimen and tissues in diabetic,were determined using a biological specimen analysis method(GB/T5009—2003) by use of a plasma emission spectroscopy(IRIS IntrepidⅡ).Spearman analysis was used to correlate the serumⅤconcentration with clinical response.
     2(2).Male Wistar rats weighting between 188 and 220g were obtained from the Institute of Experimental Animals,Tongji Medical School,Huazhong Technology University(SCXK2004-0007),and housed in air-conditioned room(temperature: 23±10℃;relative humidity:55±5%;12-h/day photoperiod:) in the animal facility of Taishan Medical University.Diabetes was induced by a single intravenous tail vein injection of streptozotocin(STZ) 45 mg/kg.On day 14 following STZ administration, animals with a blood glucose level≧15mM were considered diabetic.
     2(3).Then,the rat food containing vanadium-enriched chickpea sprout (VCS-food) was prepared by adding 5%(w/w) the VCS powder in the standard rat food pellet.After 4-week's intervention to diabetic rats with VCS-food as animal feeds,the most effective dosages of VCS-food(VCS100) was determined according to the changes of blood glucose,clinical manifestation,mental status and praxiology of the diabetic.
     3(1).On day 14 following STZ administration,diabetic animals were randomly divided into five groups.The control rats(C) and diabetic rats(D) received only standard pellet food and were given tap water ad libitum.Four treated groups(V group,treated with 0.5mg/mL SOV solution;CS group,treated with pellet food containing 5%of chickpea sprout powder;V+CS group,treated with 0.2mg/mL SOV solution combined with pellet food containing 5%of chickpea sprout powder;and VCS group,treated with pellet food containing 5%of vanadium-enriched chickpea sprout powder;) were received different therapeutics for eight weeks.
     At the end of 8-weeks,some diabetic parameters were measured as following: Plasma insulin(ins),and leptin(LEP) levels were measured using radioimmunoassay kits(Boster biological company,Wuhan,China) using the manufacturer protocol. Plasma total cholesterol(TC),triglyceride(TG),high density lipoprotein cholesterol (HDL-C),low density lipoprotein cholesterol(LDL-C),and function of alanine aminotransferase(ALT),aspartate aminotransferase(AST),blood urea nitrogen (BUN),and creatinine clearance rate(Cr) were measured using the diagnostic kits (Ortho-Clinical Diagnostic,Inc.USA) with manufacturer protocol.The plasma GHbA1 was measured by HPLC.
     The OGTT studies were then carried out in the morning after an overnight-fasting.The 0-hour(baseline) blood samples were drawn for glucose, insulin and lipid profile analysis.Then a glucose solution(1g/ml) was immediately given to the animal at a dose of 2g/kg body weight via gavages,and then the glucose levels were checked at the intervals of 30,60,90 and 120 min,respectively.And plasm specimens were prepared for OGRIT test.
     What's more,before sacrifice,a part of experimental rats were trained to search for the escape platform under the pool water by using Morris water maze for four days to observe their space learning-memory ability.The testes were carried out in the fifth day,escape latencies and swimming paths were recorded using the video tracking system for each rat.
     3(2).In order to investigate the changes ofhippocampal neurons and the effect of VCS,electronmicroscope and immunohistochemistry were used.Then the hippocampus mRNA was then extracted,and corresponding cDNA was synthesized. Real Time-PCR was used to detect mRNA expressions of amyloid protein precursor (App),and Caspase3.At the same time,the brain was sliced,and immunoblotting (western-blotting) was used to detect the protein expressions of Caspase3,bax,bcl-2, IGF-1,and IGF-1R.
     4.Statistical analysis
     One-way analysis of variance(ANOVA) was used to compared the Means±SEM.Correlation analysis was made using Spearman analysis.The significance levels were tested at P<0.05.
     Results
     2(1).After 9d from the administration with STZ(45mg/kg,i.p.),the diabetic rats had diabetic symptoms such as polydipsia,polyuria,and hyperglycemia.And after 14d,the rats with blood glucose≧15mM/L were determined to be diabetic ones.This showed that the administration with STZ at dose of 45mg/kg,i.p.to induce diabetic model was a successful method,with achievement ratio:92%,death rate:4%.
     1.The growth of CS and VCS were well with little rotten sprout.But observation of sprout growth manifested that SOV might slightly inhibited the growth of chickpea sprout,but there were no significant difference among 8 different dosages.
     2(3).After 4-week preliminary experiment,the results showed that VCS 100 was the best select for the diabetic therapeutic,according to the changes of blood glucose, diabetic manifestation,mental status,and praxiology of the diabetic rats.
     2(1).The vanadium concentrations were related with the doses of the different SOV,and the vanadium concentrations in blood specimen and organs differentiated from intervention in different diabetes groups.
     3(1).Compared with the C group,the D group rats hadn't only typically diabetic symptoms such as polydipsia,polyuria,and hyperglycemia,but also increased levels of plasma lipid and GHbA1,decreased levels of serum insulin(Ins),and leptin(LEP), impaired function ofALT,AST,BUN,and Cr,and,abnormal levels ofOGTT,OGIRT, and their AUCs.Otherwise,After 8-weeks therapeutics for diabetes,much expected changes of above parameters had appeared in four treated groups,and the most rational results happened in VCS group as following:the typical diabetic symptoms of polydipsia,polyuria,and emaciation disappeared,blood glucose level lowered significantly,the levels of plasma lipid and GHbA1 decreased,serum Ins,and LEP recovered,at the same time,the impaired function of hepar and kidney were ameliorated,and,the levels of OGTT,OGIRT,and their AUCs normalized,as well, without any side effects(gastrointestinal stress) during the experimental period caused by vanadium inorganic compounds as seen before.
     The effect of VCS food on spatial learning and memory was measured using a water maze test.After 8 weeks of diabetes,D group rats could swim for more than 3h, which means that the movements of diabetic rats were not harmed.Compared with the C group rats,the D ones exhibited significantly delayed latencies to locate the platform and decreased score of platform-searching in all four quadrants(P<0.05). After treatment,the time for locating the platform and the score of platform-searching were improved significantly.The best effect was observed for VCS group.
     3(2).After 8 weeks of diabetes,morphological analysis of the hippocampal neurons by HE staining revealed that the neuronal cells were in the state ofraritas and disorder,accompanied with reduced neuronal density.The ultra structural analysis of the hippocampal pyramidal neurons by electronmicroscope revealed that the cell body and cell process were swelling obviously,endochylema was vacuolated,the cytoplasmic organoids of neurons were ambiguous,rough endoplasmic reticulum and free ribosome were significantly decreased,chondriosome was swelling,lyzing and demolishing,and cellular membrane was disaggregated.The ultrastructural analysis also showed that the nerve fiber and nerve plexus were ambiguous,synaptic cleft was widened.While,VCS food fed group had the improved morphological changes, obviously diminished synapse cleft and increased neuron density.
     Apoptosis was demonstrated after 8 weeks of diabetes by electronmicroscope observation.Compared with C group,increased expressions of positive cells were shown with increased Caspase3 and ratio of bax/bcl-2 in the D group hippocampus. And the same changes of protein expressions and mRNA expression with Caspase3 and bax/bcl-2 were shown by Western-blotting and Real Time-PCR in D group,as well.However,VCS food could ameliorate the changes above.
     The result of Real Time-PCR analysis was that,the mRNA expressions of App in D group were higher than that in C.But the treatment results showed that VCS could improve the impaired learning- memory ability of the diabetic rats,and inhibit the mRNA expressions of App.
     In this experiment,immunchistochemistry and western-blotting were used to detect the expressions of insulin-like growth factorl(IGF-1) and insulin-like growth factor 1 receptor(IGF-1R).Compared with the C group,the results of protein expression in IGF-1 were significantly decreased in D group.And IGF-1R protein expression was obviously up-regulated compensatedly in the diabetic rats with deficiency of learning and memory.This indicated that the deficiency of IGF-1 and up-regulation of IGF-1R might account for the impaired learning memory ability in diabetic rats.While VCS food could reverse the changes of IGF-1 and IGF-1R in diabetic rats,and produce its neuroprotective effect,by improving the deficiency of learning-memory in the diabetic rats.
     4.After 8w treatment,the results of relationship analysis showed that,the VCS antidiabetic effect significantly related with the vanadium intakes of VCS in diabetic rats,and the vanadium in blood,but not with the vanadium concentrations in vital organs.
     Conclusions
     1.It is the first time to enrich the vanadium into the chickpea sprout through the sprout process of seeds by biological method,so that to form vanadium-enriched chickpea sprout(VCS)-a new possible biological actived vanadium,which may have some new expected characteristics such as:not only enhancing the antidiabetic effect of both vanadium and chickpeas,but attenuating the adverse reaction resulted from the use of inorganic vanadium compound alone.
     2.VCS can significantly ameliorated the impaired glycolipids metabolism and learning-memory in diabetic rats.
     3.The possible mechanism of VCS in protecting the hippocampus injury from diabetes,maybe relate with the effects of VCS on lessening the apoptosis of hippocampal neurons,inhibiting the expression of App and IGF-1R,and increasing the expression of IGF-1 in diabetic hippocampus.
引文
1.王吉耀.《内科学》.下册,人民卫生出版社,2008.04;969,984-992
    2.张莹芳.糖尿病治疗药物的现状及进展.海峡药学.2006;18(2):7-11
    3.Katherine H.Thompson,Chris Orvig.Vanadium in diabetes:100 years from Phase 0 to Phase Ⅰ.Journal of Inorganic Biochemistry.2006;100:1925-1935
    4.徐明智,张爱珍.钒的降血糖作用及机制.浙江预防医学.2002;14(7):62-63
    5.冯静楠,周荫庄.钒-药物分子配合物生物活性研究进展.化学通报.2007;(10):741-747
    6.Sonia,M.Tipe.1995;16:265
    7.Dai,S.,Thompson,K.H.,Vera,E.,McNeill.J.H.Pharmcol.Toxicol.1994;75:265
    8.谢明进,刘伟平,李玲,陈植和.双(α-呋喃甲酸)氧钒的合成和抗糖尿病活性研.化学学报.2002;60(5):892-896
    9.K H Thompson,C Orvig.Coord.Chem.Rev.2001;219-221:1033-1053
    10.S S Soares,H Martins,R O Duarte,et al.J.Inorg.Biochem.2007;101:80-88
    11.J H McNeill,V G Yuen,H R Hoveyda,et al.J.Med.Chem.1992;35:1489-1491
    12.冀海伟,冯蕾,张玲.石墨炉原子吸收法测定鹰嘴豆中的钒.泰山医学院学报.2007;128(19):686-687
    13.季晖,潘维新,孙备.富锗金菇对小鼠的免疫增强作用及毒性的研究.营养学报.1994;16(3):332-335
    14.陆龙根,钱亚玲,吴立仁,等.富锗灵芝栽培试验.中国食用菌.1993;12(2):20-21
    15.魏华,杨荣鉴,谢俊杰,等.灵芝富锗培养研究.中国食用菌.1996,15(1):12-14
    16.王淑珍.锗的粮食生物转化.食品科学.1994;5:60-64
    17.Stephen J,Halperin,Adam Barzilay,et al.Gemanium accumulation and toxicity in barley.Journal of Plant Nurtition.1995;18(7):1417-1426
    18.魏秀生.酵母对锗的生物富集作用.食品科学.1992;5:49-54,39
    19.张树功,李焕荣.富锗处理人参及其药理活性初报.中草药.1993;24(4):199-200
    20.K H Thompson,C Orvig.Science.2003;300:936-939
    21.T Storr,D Mitchell,P Buglyo,et al.Bioconjugate Chem.2003;14:212-221
    22.R Shukla,V Barve,S Padhye,et al.Bioorg.Med.Chem.Lett.2004;14:4961-4965
    23.J B Majithiya,R Balaraman,R Giridhar,et al.J.Trace Elem.Med.Biol.2005;18:211-217
    24.YAdachi,Y Yoshikawa,J Yoshida,et al.Biochem.Biophys.Res.Commun.2006;345:945-950
    25.Rees DA,Alcolado JC.Animal models of diabetes mellitus.Diabet Med.2005;22(4):359-70.
    26.张玲,阿吉艾可拜尔·艾萨,夏作理.鹰嘴豆芽富硒培养研究.营养学报,2007;29(6):619-620
    27.张玲,李青,夏作理.石墨炉原子吸收分光光度法测定富钒决明子中的钒含量.(待发)
    28.张涛,江波,王璋.鹰嘴豆营养价值及其应用[J].粮食与油脂.2004;7(4):18-20.
    29:Johnson SK,Thomas SJ,Hall RS.Palatability and glucose,insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast.Eur J Clin Nutr.2005;59(2):169-76.
    30.Lee SJ,Ahn JK,Khanh TD,Chun SC,Kim SL,Ro HM,Song HK,Chung IM.Comparison of isoflavone concentrations in soybean(Glycine max(L.) Merrill)sprouts grown under two different light conditions.J Agric Food Chem.2007;55(23):9415-21.
    31.Burguillo PD,Nicolas G.Appearance of an Alternate Pathway Cyanide-resistant during Germination of Seeds of Cicer arietinum.Plant Physiol.1977;60(4):524-527
    32.谭永霞,孙玉华,陈若芸.鹰嘴豆化学成分研究.中国中药杂志.2007;32(16):1650-1652
    33.王玉芹,陈娜,阿吉艾克拜尔·艾萨,等.维药鹰嘴豆及活性部位降血糖作用 研究.中成药.2007;29(12):1832-1834
    34.Zulet MA,Martinez JA.Corrective role of chickpea intake on a dietary-induced model of hypercholesterolemia.Plant Foods Hum Nutr.1995;48(3):269-77.
    35.Zulet MA,Macarulla MT,Portillo MP,et al.Lipid and glucose utilization in hypercholesterolemic rats fed a diet containing heated chickpea(Cicer aretinum L.):a potential functional food.Int J Vitam Nutr Res.1999;69(6):403-11.
    36.侯水薇,王志勇,王厚冰,等.鹰嘴豆对小鼠血糖及血脂的影响.新疆师范大学学报(自然科学版).2005;24(4):62-64
    37.毛雪琴,王梦欣,夏作理,等.鹰嘴豆与原钒酸钠对糖尿病大鼠的降糖作用,山东大学学报(医学版).2008,12(待发)
    38.张莹芳.糖尿病治疗药物的现状及进展.海峡药学.2006;18(2):7-11
    39.Nielsen,F.H.In Metal Ions in Biological System:Vanadium and Its Role in Life,Vol.31,Eds:Sigel,H.,Marcel Dekker,New York.1995;543
    40.Domingo JL.Vanadium:A review of the reproductive and developmental toxicity.Reproductive Toxicology.1996;10(3):175-182
    41.RP Heaney.J.Nutr.2001;131:1344s
    42.张涛,江波,王璋.鹰嘴豆营养价值及其应用.粮食与油脂.2004;7:18-206.
    43.Johnson SK,Thomas SJ,Hall RS.Palatability and glucose,insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast.Eur J Clin Nutr.2005;59(2):169-76
    44.Panlasigui LN,Panlilio LM,Madrid JC.Glycaemic response in normal subjects to five different legumes commonly used in the Philippines.Int J Food Sci Nutr.1995;46(2):155-60
    45.朱逢春[译],[日]武内忠男,小川和郎,主编.新酶组织化学.北京:人民卫生出版社.1983:11:422
    46.Burguillo PD,Nicolas G.Appearance of an Alternate Pathway Cyanide- resistant during Germination of Seeds of Cicer arietinum.Plant Physiol.1977;60(4):524-527
    47.Umesh C S Yadav,K Moorthy,Najma Z Baquer.Effects of sodium-orthovanadate and Trigonella foenum-guaecum seeds on hepatic and renal liogenic enzymes and lipid profile during alloxan diabetes.J.Biosci.2004;29(1):81-91
    48.施新 主编.现代医学实验动物学.第1版.北京:人民军医出版社.2000;82-93
    49.[德]H.G.沃格尔,[美]W.H.沃格尔编著,杜冠华,李学军,张永祥等译.药理学实验指导—新药发现和药理学评价.第1版.北京:科学出版社.2001;698-703
    50.Bliss M.The Discovery of Insulin.Chicago.University of Chicago Press.2000;
    51.D.A.Rees,J.C.Alcolado.Animal models of diabetes mellitus[J].Diabetic Medicine.2005;22:359-370
    52.孙子林,葛祖恺.糖尿病动物模型及进展.中国糖尿病杂志.1999;9(4):227-229
    53.Lenzen S,Tiedge M,Jorns A,Munday R.Alloxan derivatives as a tool for the elucidation of the mechanism of the diabetogenic action of alloxan.In:Lessons from Animal Diabetes.E SHAFRIR(ed),Birkhauser,Boston.1996;pp 113-122
    54.T.Szkudelski.The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas.Physiol.Res.2001;50:536-546
    55.Pegg AE,Bennet RA.Alkylation of DNA in the tissues following administration of streptozotocin.Cancer Res.1981;41(7):2786-2790
    56.Szkudelski T.The mechanism of alloxan and streptozotocin action in the β cells of the rat pancreas.Physiolo Res.2001;50(6):537-546
    57.Ganda OP,Rossi AA,Like AA.Studies on streptozotocin diabetes.Diabetes.1976;25:595-603
    58.杜丽坤,赵莹,杜立杰,等.实验性糖尿病动物模型的建立.现代中西医结合杂志.2004;13(5):581
    59.Neuman RG,Hud E,Cohen MP.Glycated albumin:a marker of glycaemic status in rats with experimental diabetes.Lab A nim.1994;28(1):63-69
    60.Siddiqui MT,Siddiqi M.Hypolipidemic principles of Citer arietinum:biochanin-A,and formononetin.Lipids.1976;11(3):243-246.
    61.Karasik A.Use of animal models in the study of diabetes.Jolin's Diabetes Mellitus.1994;134:507
    62.McNeill J.H.,Yuen Z.Y.,Hoveyda H.R.,Orvig J.Med.Chem.1992;35:1489
    63.Yuen V.G.,Orvig C.,McNeill J.H..Can.J.Physiol.Pharmacol.1993;71:263
    64.冯静楠,周荫庄.钒-药物分子配合物生物活性研究进展.化学通报.2007;(10):741-747
    65.杨晓改,杨晓达,王夔.钒化合物生物效应的化学基础和药用前景—金属药物研究的化学问题.化学进展.2002;14(4):279-286
    66.Pederson RA,Ramanadham S,Buchan AM,et al.Diabetes.1989,38(11):1390-1395
    67.J B Harbome.The Flavonoids:Advances in Research Since 1980.Chapman and Hall:London,1988
    68.D CHan,M YLee,KD Shin,et al.J.Biol.Chem.2004;279:6911-6920
    69.A.K.Srivastava,M.Z.Mehdii.Insulino-mimetic and anti-diabetic effects of vanadium compounds.Diabetic Medicine.2004;22:2-13
    70.Yang Y,Zhou L,Gu Y.Dietary chickpeas reverse visceral adiposity,dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet.Br J Nutr.2007;98(4):720-6
    71.肖克来提,木尼拉.维药鹰嘴豆的国内外应用简介.中国民族医药杂志.2003;11(3):20
    72.维吾尔药志.新疆人民出版社,1986;66-69
    1.王吉耀.《内科学》.下册,人民卫生出版社,2008:04:984-992
    2.Domingo JL.Vanadium:A review of the reproductive and developmental toxicity.Reproductive Toxicology.1996;10(3):175-182
    3.McNeill JH YV,Hoveyda HR,Orvig C.Bis(maltolato)oxovanadium(Ⅳ) is a potent insulin mimic.J Med Chem.1992;35:1489-1491
    4.Reul BA,Amin SS,Buchet JP,et al.Effects of vanadium complexes with organic ligands on glucose metabolism:a comparison study in diabetic rats.British Journal of Pharmacology.1999;126(2):467-477
    5.Heyliger C E,Tahiliani A J,McNeill J H.Effects of vanadate on elevated blood glucose and depressed cardizc performace of diabetic rats.Science.1985;227:1474-1476
    6.Morris R.Development of a water-maze procedure for studying spatial learning in the rat.J Neurosd Nethods.1984,11:47-60.
    7.Nielsen,F.H.In Metal Ions in Biological System:Vanadium and Its Role in Life,Eds:Sigel,H.,Marcel Dekker,NewYork,1995,31p.543.
    8.徐明智,张爱珍.钒的降血糖作用及机制[J].浙江预防医学.2002;14(7):62-63
    9.McNeill J.H.,Yuen V.G,Orvig C.Increased potency of vanadium using organic ligands.Mol Cell Biochem.1995;153(1-2):175-80
    10.Meyerovitch,J.,Farafel,A.,Sack,J,et al.Oral administration of vanadate normalizes blood glucose levels in streptozotocin- treated rats.J.Biol.Chem.1987;262(14):6658-6662
    11.Yadav U C S,Moorthy K,Baquer N Z.Effect of sodium-orthovanadate and Trigonella foenum-graedum seeds on hepatic and renal lipogenic enzymes and lipid profile duing alloxan diabetes.J.Biosci.2004;29:81-91
    12.Clark TA,Edel AL,Heyliger CE et al.Effective control of glycemic status and toxicity in zucker diabetic fatty rats with an orally administered vanadate compound.Can.J.Physiol.Pharmacol.2004;82:888-894
    13.Clark TA,Heyliger CE,Edel AL et al.Codelivery of a tea extract prevents morbidity and mortality associated with oral vanadate therapy in streptozotocininduced diabetic rats.Metabolism.2004;53(9):1145-1151
    14.Soussi A,Croute F,Soleilhavoup JP et al Impact of green tea on oxidative stress induced by ammonium meta vanadate exposure in male rats.C R Biol.2006;329(10):775-84
    15.Zhang,Z.Z.Development and Research of Drugs,The People's Army Medicine Press,Beijing.1995;p.252(in Chinese).
    16.谢明进,刘伟平,李玲,陈植和.双(α-呋喃甲酸)氧钒的合成和抗糖尿病活性研.化学学报.2002;60(5):892-896
    17.K H Thompson,KBohmerle,E Polishchuk,et al.J.Inorg.Biochem.2004;98:2063-2070
    18.J B Majithiya,R Balaraman,R Giridhar,et al.J.Trace Elem.Med.Biol..2005;18:211-217
    19.李明,张敏,丁文军.4-氯-2,6-双吡啶双氧钒化合物降低1型糖尿病大鼠血糖的生物学作用.-中国科学院研究生院学报.2007;24(4):460-464
    20.Shanmugasundaram ER,Gopith kl,Radha SK,et al.Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given gymnema sylvestere leaf extract.J Ethnopharm.1990;30:265-9
    21.Thompson K.H.,Orvig C.Vanadium in diabetes:100 years from Phase 0 to Phase I.Journal of Inorganic Biochemistry.2006;100:1925-1935
    22.Sakurai H.A new concept:The use of vanadium complexes in the treatment of diabetes mellitus.Chem.Rec.2002;2:237-248
    23.Bennett RA,Pegg AE.Alkylation of DNA in rat tissues following administration of streptozotocin.Cancer Res.1981;41(7):2786-2790
    24.Reul BA,Amin SS,Buchet JP,et al.Effects of vanadium complexes with organic ligands on glucose metabolism:a comparison study in diabetic rats.British Journal of Pharmacology.1999;126(2):467-477
    25.Heyliger CE,Tahiliani AG,McNeill JH.Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats.Science.1985;227 (4693): 1474-1477
    
    26. A. K. Srivastava, M. Z. Mehdi. Insulino-mimetic and anti-diabetic effects of vanadium Compounds, Diabetes UK. Diabetic Medicine, 2004; 22:2-13,
    
    27. Mehdi MZ, Pandey SK, Theberge JF, et al. Insulin signal mimicrys a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006; 44(1):73-81
    
    28. Amin SS, Cryer K, Zhang B, et al. Chemistry and insulin-mimetic properties of bis (acetylacetonate) oxovanadium(Ⅳ) and derivatives. Inorg Chem. 2000; 39(3): 406-416
    
    29. Winter CL, Lange JS, Davis MG, et al. A nonspecific phosphotyrosine phosphatase inhibitor, bis (maltolato)oxovanadium(Ⅳ) , improves glucose tolerance and prevents diabetes in zucker diabetic fatty rats. Experimental Biology and Medicine. 2005; 230(3): 207-216
    
    30. WooL CY, Yuen VG, Thompson KH, et al. Vanadyl2biguanide complexes as potential synergistic insulin mimics. Journal of Inorganic Biochemistry. 1999; 76:251-257
    
    31. Crans DC, Mahroof2Tahir M, Johnson MD, et al. Vanadium(Ⅳ) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes.Inorganica Chimica Acta. 2003; 356: 365-378
    
    32. Zhang S, Zhong X, Lu W, et al. Pharmacodynamics and pharmacokinetics of the insulin-mimetic agent vanadyl acetylacetonate in non-diabetic and diabetic rats. Journal of Inorganic Biochemistry. 2005; 99 (5): 1064-1075
    
    33. Yuen VG, Vera E, Battell ML, et al. Acute and chronic oral administration of bis (maltolato) oxovanadium(Ⅳ) in Zucker diabetic fatty (ZDF) rats. Diabetes Research and Clinical Practice. 1999; 43: 9-19
    
    34. Gao LH, Liu WP, Wang BL, et a. Effects of bis ([alpha]2furancarboxylato) oxovanadium(Ⅳ) on non-diabetic and streptozotocin-diabetic rats. Clinica Chimica Acta. 2006; 368: 173-178
    
    35. Wang J, Yuen VG, McNeill JH. Effect of vanadium on insulin and leptin in Zucker diabetic fatty rats[j].Mol Cell Biochem. 2001; 218(1-2): 93-6
    
    36. AlessandroS, NadiaB, LuisaB, etal. Leptin in children and adolescents with type 1 diabetes. Diabetes Care. 1999; 22(9): 1590-1591
    
    37. ReyesL, RicardV, MaryL, etal. High serum leptin levels in children with type 1 diabetes mellituas: Contribution of age, BMI, pubertal development and metabolic status. Clinical Endocrinilogy. 1999; 51:603-610
    
    38. CkyaG, OzataM, BauraktarZ, etal. Is leptin associated with diabetic retinopathy?Diabetes Care. 2002; 23: 371
    
    39. GarianoRF, NathAD, DAminoDJ, etal. Elevation of vitreous leptin in diabetic retinopathy and retinal detachment. In2vestOphthalmolVisSci. 2000; 41: 3756
    
    40. Michael B. Biochemistry and molecular cell biology of diabetic complications.Nature. 2001; 414: 813-820
    
    41. Koyuturk M, Tunali S, Bolkent S, et al. Effects of vanadyl sulfate on liver of streptozotocin-induced diabetic rats. Biol Trace Elem Res. 2005; 104(3):233-247
    
    42. Ding W, Hasegawa T, Hosaka H, et al. Effect of Iong2term treatment with vanadate in drinking water on KK mice with genetic non-insulin-dependent diabetes mellitus. Biol Trace Elem Res. 2001; 80(2): 59-174
    
    43. http://www.f1l2.0..net文章来源: 放心医苑 2005-1-2417:27:21
    
    44.http://nnnyyylll.good.blog.163.com/blog/static/4637089720083218231199139:
    45.Pittaway JK, Ahuja KD, Robertson IK, et al. Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. J Am Coll Nutr. 2007; 26(4): 334-40
    46. Pittaway JK, Ahuja KD, Cehun M, et al. Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Ann Nutr Metab.2006; 50(6): 512-8.
    47.Paul Nestel, Marja Cehun, Andriana. ChronopoulosEffects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am J Clin Nutr. 2004; 79: 390-5
    48. Mark J Messina. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr. 1999; 70(suppl): 439S-50S
    
    49. Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982; 297(5868): 681-683
    1. Biessels GJ, Van der Heide LP, Kanal A, et al. Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002; 441(1-2): 1-14
    
    2. Biessils GJ. Cerebral complications of diabetes: clinical findings and pathogenetic mechanisms. Neth J Med. 1999; 4(2): 35-45
    
    3. Paxions G., Watson C. The rat brain in stereotaxic coordinates. New York:Academic Press. 1986; 69
    
    4. Haimovich B., Aneskievich BJ., Boerriger D. Cellullar partitioning of bera-1 integrins and their phosphorylated forms is altered after transformation by Rous sarcoma virus or treatment with Cytochalasin D. Cell Regul. 1991; 2(4): 271-283
    
    5. Peter PS, Brady JE, Yan L, Chen W, Engelhardt S, Wang Y, Sadoshima J,Vatner SF, Vatner DE. Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenerbic receptor. J Clin Invest. 2007; 117: 1335-1343
    
    6.Romero Mdel M, Grasa Mdel M, Esteve M, Fernandez-Lopez JA, Alemany M.Semiquantitative RT-PCR measurement of gene expression in rat tissues including a correction for varying cell size and number. Nutr Metab (Lond). 2007; 4: 26
    
    7. KANELLIS j, Fraser S, Katerelos M, Power DA. Vascular endothelial growth factor (VEGF) is a survival factor for renal tubular epithelial cells. Am J Physiol Renal Physiol. 2000; 278: F905-F915
    
    8. Reaven GM,Thompson IW, Hahum D,et al .Relationship between hyperglycemia and cognitive functionin older NIDDM patients.Diabetes Care.1990; 13(1): 16-21
    
    9. Sandrini M, Vitale G, Vergoni A, et al. Streptozotocin-induced diabetes provokes changes in serotonin concentration and on 5-HTIA and 5-HT2 receptors in the rat brainXife Sci.1997; 60(16):1393-1397
    
    10. DeFeudis FV, DrieuK.Ginkgo biloba extract (Egb761) and CNS functions: basic studies and clinical applications. Curr Drug Targets. 2000; 1(1): 25-58
    
    11. Kerr JF, Wyllie AH, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer. 1972; 26(4): 239-257
    12.彭黎明,王曾礼,主编.细胞凋亡的基础与临床.第l版.北京:人民卫生出版社,2000;16
    13.董为伟 主编.神经保护的基础与临床.第1版 北京:科学出版社.2002;183
    14.矫毓娟,刘江红,细胞凋亡的检测方法.中国神经免疫学和神经病学杂志.2004;11(1):53-56
    15 刘能保,王西郎 主编.现代实用组织学与组织化学技术.第1版.武汉:湖北科学技术出版社.2003:231
    16.Gavrieli Y,Sherman 丫,Ben-Sasson SA,et al.Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation.J Cell Biol.1992;119(3):493-501
    17.温进坤,韩梅主编.医学分子生物学—理论与研究技术.第2版.北京:科学出版社.2002;273
    18.李卫平,刘晓加,林宏川,等.老年期痴呆患者脑内细胞凋亡现象的研究.中华神经科杂志.1996;29(6):340-343
    19.彭黎明,王曾礼主编.细胞凋亡的基础与临床.第1版.北京:人民卫生出版社.2000;239
    20.Auld DS,Kar S,Quirion R,et al.β-Amyloid peptides as directc holinergicn euromodulators:a missing link? Trends Neurosci.1998;21(1):43-49
    21.Alvarez A,Alarcon R,Opazo C,et al.Stable complexes involving acetylcholinesterase and β-Amyloid peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibril.J Neurosci.1998;18(9):3213-3223
    22.Ikeda E,Shiba K,Mori H,et al.Reduction of vesticular acetylcholine transporter in the bete-amyloid protein-infused rats with memory impairment.Nucl Med Commun.2000;21(10):933- 937
    23.Kimberly WT,Zbeng JB,Guenette SY,et al.The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner.J Biol Chem.2001;276(43):40288-40292
    24.张均田.神经药理学研究进展.第1版.北京:人民卫生出版社.2002;100-114
    [1]B.M.Lyonnet,E.Martz Martin.La Presse Med.1899;7:191-192.
    [2]M.Laran.La Presse Med.1899;7:190-191.
    [3]C.Orvig,K.H.Thompson,B.D.Liboiron,J.H.McNeill,V.G.Yuen,J.Inorg.Biochem.2003;14(96):(Abstr.)(Presented by C.Orvig at ICBIC 11,Cairns,QLD,Australia,2003.)
    [4] K.H. Thompson, C. Orvig. Dalton Trans. 2006; 761-764.
    
    [5] Nutraceutical Research. http://www.emersonecologics.com. 2006;
    
    [6] F.G. Banting, C.H. Best, J.B. Collip, W.R. Campbell, A.A. Fletcher, Can. Med.Assoc.J. 1922; 12:141.
    
    [7] G.L. Curran, J. Biol. Chem. 1954; 210: 765-770
    
    [8] E.G. Dimond, J. Caravaca, A. Benchimol, Am. J. Clin. Nutr. 1963; 12: 49-53
    
    [9] L. Josephson, L.C. Cantley Jr., Biochemistry. 1977; 16: 4572-4578
    
    [10] L.C. Cantley Jr., M.D. Resh, G. Guidotti, Nature. 1978; 272: 552-554
    
    [11] S.J.D. Karlish, L.A. Beauge, I.M. Glynn, Nature. 1979; 282: 333-335
    
    [12] J.A. Gordon, Meth. Enzymol. 1991; 201: 477-482
    
    [13] L.C. Cantley Jr., P. Aisen, J. Biol. Chem. 1979; 254: 1781-1784
    
    [14] W.R. Harris, S.R. Friedman, D. Silberman, J. Inorg. Biochem. 1984; 20:157-169
    
    [15] D.W. Boyd, K. Kustin, Adv. Inorg. Biochem. 1984; 6: 311-363
    
    [16] T. Ramasarma, F.L. Crane, Curr. Top. Cell. Reg. 1981; 20: 247-301
    
    [17] R.H.J. Bell, R.J. Hye, J. Surg. Res. 1983; 35: 433-460
    
    [18] C.E. Heyliger, A.G. Tahiliani, J.H. McNeill, Science. 1985; 227: 1474-1477
    
    [19] J.J. Mongold, G.H. Cros, L. Vian, A. Tep, S. Ramanadham, G. Siou, J. Diaz, J.H.McNeill, J.J. Serrano, Pharmacol. Toxicol. 1990; 67: 192-198
    
    [20] K.H. Thompson, J. Leichter, J.H. McNeill, Biochem. Biophys. Res. Commun.1993; 197: 1549-1555
    
    [21] E.B. Marliss, Metabolism. 1983; 32: (Suppl. 1)1-3
    
    [22] S. Dai, K.H. Thompson, J.H. McNeill, Pharmacol. Toxicol. 1994; 74: 101-109.
    
    [23] J.H. McNeill, V.G. Yuen, H.R. Hoveyda, C. Orvig, J. Med. Chem. 1992; 35:1489-1491
    
    [24] V.G. Yuen, C. Orvig, J.H. McNeill, Can. J. Physiol. Pharmacol. 1995; 73: 55-64
    
    [25] K.H. Thompson, B.D. Liboiron, Y. Sun, K.D.D. Bellman, I.A. Setyawati, B.O.Patrick, V. Karunaratne, G. Rawji, J. Wheeler, K. Sutton, S. Bhanot, C. Cassidy,J.H. McNeill, V.G. Yuen, C. Orvig, J. Biol. Inorg. Chem. 2003; 8: 66-74
    
    [26] M. Melchior, S.J. Rettig, B.D. Liboiron, K.H. Thompson, V.G. Yuen, J.H.McNeill, C. Orvig, Inorg. Chem. 2001; 40: 4686-4690
    
    [27] D.C. Crans, L. Yang, T. Jakusch, T. Kiss, Inorg. Chem. 2000; 39: 4409-4416
    
    [28] A.B. Goldfme, G.R. Willsky, C.R. Kahn, Vanadium salts in the treatment of human diabetes mellitus, in: A.S. Tracey, D.C. Crans (Eds.), Vanadium compounds. Chemistry, Biochemistry, and Ther Therapeutic Applications, ACS Symposium Series, American Chemical Society. Washington, DC, 1998; pp. 711:353-368
    
    [29] G.R. Willsky, A.B. Goldfme, P.J. Kostyniak, Pharmacology and toxicology of oxovanaidum species: oxovanadium pharmacology, in: A.S. Tracey, D.C. Crans (Eds.), Vanadium Compounds: Chemistry, Biochemistry and Therapeutic Applications, ACS Symposium Series, Washington, DC, 1998; pp. 711: 278-296
    
    [30] K. Cusi, S. cukier, R.A. DeFronzo, M. Torres, F.M. Puchulu, J.C. Pereira Redondo, J. Clin. Endocrinol. Metab. 2001; 86:1410-1417
    
    [31] K.H. Thompson, Y. Tsukada, Z. Xu, M. Battell, J.H. McNeill, C. Orvig, Biol. Trace Elem. Res. 2002; 86: 31-44
    [32] D.C. Crans, M. Mahroof-Tahir, A.D. Keramidas, Mol. Cell. Biochem. 1995 153:17-24
    
    [33] Y. Shechter, A. Shisheva, Endeavour, New Series 17 (1993) 27-31
    [34] S. Pugazhenthi, J.F. Angel, R.L. Khandelwal, Mol. Cell. Biochem. 122 (1993) 77-84
    [35] J.H. McNeill, C. Orvig, 1996, Bis(maltolato)oxovanadium Compositions for the Treatment of Elevated Blood Sugar, U.S. Patent No. 5,527,790
    [36] M. Al-Bayati, O.G. Raabe, S.N. Giri, J.B. Knaak, J. Am. Coll. Toxicol. 1991; 10:233-241
    
    [37] I.A. Setyawati, K.H. Thompson, Y. Sun, D.M. Lyster, C. Vo, V.G. Yuen, M.Battell, J.H. McNeill, T.J. Ruth, S. Zeisler, C. Orvig, J. Appl. Physiol. 1998;84: 569-575
    [38] T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H.Sakurai, J. Biol. Inorg. Chem. 2001 1633-142
    [39] C. Orvig, M.J. Abrams, Chem. Rev. 1999; 99: 2201-2203
    [40] T. Kiss, E. Kiss, E. Garribba, H. Sakurai, J. Inorg. Biochem. 2000; 80: 65-73
    [41] E. Kiss, I. Fabian, T. Kiss, Inorg. Chim. Acta. 2002; 340: 114-118
    [42] E. Kiss, K. Kawabe, A. Tamura, T. Jakusch, H. Sakurai, T. Kiss, J. Inorg.Biochem. 2003; 95: 69-76
    [43] J.M. da Silva Santos, S. Carvalho, E.B. Paniago, H.A. Duarte, J. Inorg. Biochem.2003;95: 14-24
    [44] B.D. Liboiron, K.H. Thompson, G.R. Hanson, E. Lam, N. Aebischer, C. Orvig, J.Am. Chem. Soc. 2004; 127:5104-5115
    [45] V. Monga, K.H. Thompson, V.G. Yuen, V. Sharma, B.O. Patrick, J.H. McNeill,C. Orvig, Inorg. Chem. 2004; 44: 2678-2688
    [46] S.S. Amin, K. Cryer, B. Zhang, S.K. Dutta, S.S. Eaton, O.P. Anderson, S.M.Miller, B.A. Reul, S.M. Brichard, D.C. Crans, Inorg. Chem. 39 (2000) 406-416
    [47] G.D. Straganz, A. Glieder, L. Brecker, D.W. Ribbons, W. Steiner, Biochem. J.2003;369: 573-581
    [48] M. Beskid, J. Jachimowicz, A. Taraszewska, D. Kukulska, Exp. Toxicol. Pathol.1995;47:25-30
    [49] G. Huyer, S. Liu, J. Kelly, J. Moffat, P. Payette, B. Kennedy, G. Tsaprailis, M.J.Gresser, C. Ramachandran, J. Biol. Chem. 1997; 272: 843-851
    [50] E. Shafrir, S. Speilman, I. Nachliel, M. Khamaisi, H. Bar-On, E. Ziv, Diabetes Metab. Res. Rev. 2001; 17: 55-66
    [51] L.C.Y. Woo, V.G. Yuen, K.H. Thompson, J.H. McNeill, C. Orvig, J. Inorg.Biochem. 1999; 76: 251-257
    [52] T. Storr, D. Mitchell, P. Buglyo', K.H. Thompson, V.G. Yuen, J.H. McNeill, C.Orvig, Bioconjug. Chem. 2003; 14: 212-221
    [53] J.B. Majithiya, R. Balaraman, R. Giridhar, M.R. Yadav, J. Trace Elem. Med.Biol. 2005; 18:211-217
    
    [54] Y. Adachi, J. Yoshida, Y. Kodera, A. Katoh, J. Takada, H. Sakurai, J. Med.Chem. 2006; 49: 3251-3256
    [55] B. Joe, M. Vijaykumar, B.R. Lokesh, Crit. Rev. Food Sci. Nutr. 2004; 44:97-111
    
    [56] T. Nishiyama, T. Mae, K. Kideyuki, T. Misuzu, M. Yoshihiro, M. Kuroda, Y.Sashida, K. Takahashi, T. Kawada, K. Nakagawa, M. Kitahara, J. Agric. Food Chem. 53(2005)959-963
    [57] D. Rehder, J. Costa Pessoa, C.F.G.C. Geraldes, M.M.C.A. Castro, T. Kabanos, T.Kiss, B. Meier, G. Micera, L. Pettersson, M. Rangel, A. Salifoglou, I. Turel, D.Wang, J. Biol. Inorg. Chem. 2002; 7: 384- 396
    [58] T.C. Delgado, A.I. Tomaz, I. Correia, J.C. Pessoa, J.G. Jones, C.F.G.C. Geraldes,M.M.C.A. Castro, J. Inorg. Biochem. 2005;99: 2328-2339
    [1] King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995-2025:prevalence, numerical estimates, and projections. Diabetes Care 21: 1414-143
    [2] Wan EC, Gordon TP, Jackson MW (2007) Autoantibody - mediated bladder dysfunction in type 1 diabetes. Scand J Immunol 65(1): 70-75
    [3] Santoso T (2006) Prevention of cardiovascular disease in diabetes mellitus: by stressing the CARDS study. Acta Med Indones 38(2): 97-102
    [4] Girach A, Vignati L (2006) Diabetic microvascular complications-can the presence of one predict the development of another? J Diabetes Complications 20(4): 228-37
    [5] Srivastava A. K., Mehdi M. Z (2005) Insulin-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22: 2-13
    [6] Gandorfer A (2006) Diagnostic and therapeutic options in diabetic retinopathy.MMW Fortschr Med 148(21): 36-39
    [7] Shechter Y (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39: 1-5
    [8] Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds.Mol Cell Biochem 206: 177-182
    
    [9] Cam MC, Brownsey RW, McNeill JH (2000) Mechanisms of vanadium action:insulin-mimetic or insulin-enhancing agent. Can J Physiol Pharmacol 78: 829-847
    [10] Brichard S (2003) Outlook of diabetes treatment possibilities with vanadium and other metal salts. In: Shafrir E, Raz Z, Skyler J, eds. Diabetes: from Research to Diagnosis and Treatment. London: Martin Dunitz Group 497-509
    [11] Domingo JL (2002) Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res 88(2): 97-112
    [12] Shukla R, Barve V, Padhye S et al (2006) Reduction of oxidative stress induced vanadium toxicity by complexing with a flavonoid, quercetin: a pragmatic therapeutic approach for diabetes. Biometals 19(6): 685-693
    [13] Zhang Y, Yang X., Wang K. et al (2006) The permeability and cytotoxicity of insulin-mimetic vanadium (III, IV, V) - dipicolinate complexes. JIB 100: 80-97
    [14] Yang XG, Yang X., Yuan L et al (2004) The permeability and cytotoxicity of insulin - mimetic vanadium compounds. Pharm Res 21(6): 1026-1033
    [15] Clark TA, Edel AL, Heyliger CE et al (2004) Effective control of glycemic status and toxicity in zucker diabetic fatty rats with an orally administered vanadate compound. Can. J. Physiol. Pharmacol 82: 888-894
    
    [16] Clark TA, Heyliger CE, Edel AL et al (2004) Codelivery of a tea extract prevents morbidity and mortality associated with oral vanadate therapy in streptozotocin - induced diabetic rats. Metabolism 53(9): 1145-1151
    
    [17] Soussi A, Croute F, Soleilhavoup JP et al (2006) Impact of green tea on oxidative stress induced by ammonium meta vanadate exposure in male rats. C R Biol 329(10): 775-84
    
    [18] Shuiwei HOU, Zhiyong WANG, Houbing WANG et al (2005) The effect of chickpea on blood glucose and lipid in mice. Journal of Xinjiang Normal University (Natural Sciences Edition) 24(4): 62-64
    
    [19] Guixiang HE, Jinbao LIU (2005) Effect of extract of Cicer arietium L.isoflavones in decreasing blood lipid of nice with hyperlipidemia. Chinese Journal of Clinical Rehabilitation 9(7): 80-81
    [20] Siddiqui MT, Siddiqi M (1976) Hypolipidemic principles of Cicer arietinum: biochanin-A, and formononetin. Lipids 11(3): 243-6.
    [21] Zulet MA, Martinez JA (1995) Corrective role of chickpea intake on a dietary -induced model of hypercholesterolemia. Plant Foods Hum Nutr 48(3): 269-77
    [22] Jinfu ZHU, Zhimin DIAO, Qiangfeng LI (2004) The Bionomics and value of chickpea (cicer arietinum). Qinghai Prataculture 13(4); 27-31
    [23] Placido D L,'Fuente B, Gregorio N (1977) Appearance of an alternate pathway cyanide - resistant during germination of seeds of Cicer arietinum. Plant Physiol 60: 524-527
    
    [24] Mercedes Gallardo, Maria del Mar Delgado, Isabel Maria Sanchez-Calle (1991) Ethylene production and 1- aminocyclopropane-1- carboxylic acid conjugation in thermoinhibited Cicer arietinum L. Seeds. Plant Physiol 97: 122-127
    [25] Morris R (1984) Development of a water-maze procedure for studying spatial learning in the rat. J Neurosd Nethods 11: 47-60
    
    [26] Hathan D (1994) Relationship between metabolic control and long-term complications of diabetes. In: C.R.Kahn and G. C. Weir (eds) Joslin's Diabetes Mellitus, 13th ed. Lea and Febiger, Philadelphia, p 620-630
    
    [27] Sima AA, Kamiya H, Li ZG (2004) Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 490(1-3):187-97
    
    [28] Ramasarna T (1996) Vanadium complexes with insulin - mimetic actions - a second line of protection against diabetes. Indian J. Clin. Biochem 11: 92-107
    [29] Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444 (7117): pp. 337-42
    [30] McNeill J. H., Yuen V.G, Orvig C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem Dec 6-20; 153(1-2): 175-80
    [31] Meyerovitch, J., Farafel, A., Sack, J et al (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin - treated rats. J. Biol. Chem 262(14): 6658-6662
    
    [32] Wan H. L, Hui X. L, Li J. Z (2007) Vanadyl ions bind to GroEL (HSP60) and induce its depolymerization. Chinese Sci. Bull 52(11): 1246-1251
    [1] Z.G. Li, A.A.F. Sima. C-peptide and central nervous system complications in diabetes. Exp. Diabesity Res. 2004; 5: 79- 90
    [2] A.A.F. Sima, H. Kamiya, Z.G. Li. C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur. J. Pharmacol. 2004; 490:187- 197
    [3] W.R. Miles, H.F. Root. Psychologic tests applied to diabetic patients. Arch. Int.Med. 1922; 307: 67-777
    [4] L. Kramer, P. Fasching, C. Madl, B. Schneider, P. Damjancic, W. Waldhausl, K.Irsigler, G. Grimm. Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes. 1998; 47: 1909-1914
    [5] A.M. McCarthy, S. Lindgren, M.A. Mengeling, E. Tsalikian, J.C. Engvall. Effects of diabetes on learning in children. Pediatrics. 2002; 109: E9:1- E9:10
    [6] C.M. Ryan. Neurobehavioral complications of type I diabetes. Examination of possible risk factors. Diabetes Care. 1988; 11: 86-93
    [7] C.M. Ryan, T.M. Williams. Effects of insulin-dependent diabetes on learning and memory efficiency in adults. J. Clin. Exp. Neuropsychol. 1993; 15: 685- 700
    [8] C.M. Ryan, T.M. Williams, D.N. Finegold, T.J. Orchard. Cognitive dysfunction in adults with type 1 (insulin-dependent) diabetes mellitus of long duration: effects of recurrent hypoglycaemia and other chronic complications. Diabetologia. 1993; 36:329- 334.
    [9] E.J. Schoenle, D. Schoenle, L. Molinari, R.H. Largo. Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia. 2002; 45: 108- 114
    [10] V. Parisi, L. Uccioli. Visual electrophysiological responses in persons with type 1 diabetes. Diabetes Metab. Res. Rev. 2001; 17: 12-18
    [11] M.A. U¨ berall, C. Renner, S. Ed1, E. Parzinger, D. Wenzel. VEP and ERP abnormalities in children and adolescents with prepubertal onset of insulin-dependent diabetes mellitus. Neuropediatrics. 1996; 27: 88- 93
    [12] G. Comi. Evoked potentials in diabetes mellitus. Clin. Neurosci. 1997; 4:374-379
    [13] M.W. Donald, D.L. Erdahl, D.H. Surridge, T.N. Monga, J.S. Lawson, C.E. Bird,F.J. Letemendia. Functional correlates of reduced central conduction velocity in diabetic subjects. Diabetes. 1984; 33: 627-633
    [14] P. Pietravalle, S. Morano, G. Cristina, M. Mancuso, E. Valle, M.A. Annulli, M.Tomaselli, G. Pozzessere, U. Di Mario. Early complications in type 1 diabetes:central nervous system alterations preceded kidney abnormalities. Diabetes Res.Clin.Pract. 1993; 21: 143-154
    [15] A. Verrotti, L. Lobefalo, D. Trotta, G. Delia Loggia, F. Chiarelli, C. Luigi, G.Morgese, P. Gallenga. Visual evoked potentials in young persons with newly diagnosed diabetes: a long-term followup. Dev. Med. Child Neurol. 2000; 42: 240-244
    [16] R.N. DeJong. CNS manifestations of diabetes mellitus. Postgrad. Med. 1977; 61:101-107
    
    [17] E. Reske-Nielsen, K. Lundbaek. Diabetic encephalopathy. Diffuse and focal lesions of the brain in long-term diabetics. Acta Neurol. Scand. 1964; Suppl. 4: 273-290
    [18] E. Reske-Nielsen, K. Lundbaek, Q.J. Rafeisen. Pathological changes in the central and peripheral nervous system of young long-term diabetics I. Diabetic encephalopathy. Diabetologia. 1965; 1: 233- 241
    [19] G. Bestetti, G.L. Rossi, Hypothalamic lesions in rats with long-term streptozotocin- induced diabetes mellitus. A semiquantitative lightand electron-microscopic study, Acta Neuropathol. (Berl.) 52 (1980) 119- 127.
    [20] G. Bestetti, G.L. Rossi, Hypothalamic changes in diabetic Chinese hamsters. Asemiquantitative, light and electron microscopic study, Lab. Invest. 47 (1982) 516-522.
    [21] D.R. Garris, A.R. Diani, C. Smith, G.C. Gerritsen, Depopulation of the ventromedial hypothalamic nucleus in the diabetic Chinese hamster, Acta Neuropathol. (Berl.) 56 (1982) 63- 66.
    [22] S.A. Luse, The ultrastructure of the brain in the diabetic Chinese hamster with special reference to synaptic abnormalities, Electroencephalogr. Clin. Neurophysiol.29(1970)410.
    [23] N. Mukai, S. Hori, M. Pomeroy, Cerebral lesions in rats with streptozotocin-induced diabetes, Acta Neuropathol. (Berl.) 51 (1980) 79-84.
    [24] G.J. Biessels, A. Kamal, G.M. Ramakers, I.J. Urban, B.M. Spruijt, D.W.Erkelens, W.H. Gispen, Place learning and hippocampal synaptic plasticity in streptozotocin- induced diabetic rat, Diabetes 45 (1996) 1259- 1266.
    [25] G.J. Biessels, A. Kamal, I.J. Urban, B.M. Spruijt, D.W. Erkelens, W.H. Gispen,Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment, Brain Res. 800 (1998) 125-135.
    [26] W.H. Gispen, G.J. Biessels, Cognition and synaptic plasticity in diabetes mellitus,Trends Neurosci. 23 (2000) 542- 549.
    
    [27] Xueqin MAO, Ling ZHANG, Qing XIA, et al. Vanadium-enriched Chickpea sprout ameliorated hyperglycemia and impaired memory in streptozotocin-induced diabetes rats. Biometals. 2008, 21(10):563-570
    [28] Z.G. Li, W. Zhang, G. Grunberger, A.A.F. Sima, Hippocampal neuronal apoptosis in type 1 diabetes, Brain Res. 946 (2002) 221- 231.
    [29] Placido D L, Fuente B, Gregorio N (1977) Appearance of an alternate pathway cyanide - resistant during germination of seeds of Cicer arietinum. Plant Physiol 60: 524-527
    
    [30] Mercedes Gallardo, Maria del Mar Delgado, Isabel Maria Sanchez-Calle (1991) Ethylene production and 1- aminocy(?)opropane-1- carboxylic acid conjugation in thermoinhibited Cicer arietinum L. Seeds. Plant Physiol 97: 122-127
    [31] Morris R (1984) evelopment of a water-maze procedure for studying spatial learning in the rat. J Neurosd Nethods 11: 47-60
    [32] G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, 1982.
    [33] D.L. Eizirik, M.I. Darville, Beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes, Diabetes 50 (Suppl. 1) (2001) S64-S69.
    [34] T. Mandrup-Poulsen, Beta-cell apoptosis: stimuli and signaling, Diabetes 50 (Suppl. 1)(2001)S58-S63.
    
    [35] V. Asnaghi, C. Gerhardinger, T. Hoehn, A. Adeboje, M. Lorenzi, A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat, Diabetes 52 (2003) 506-511.
    
    [36] A.M. Schmeichel, J.D. Schmelzer, P.A. Low, Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy,Diabetes 52 (2003) 165-171.
    
    [37] S. Srinivasan, M. Stevens, J.W. Wiley, Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction, Diabetes 49 (2000) 1932-1938.
    [38] A.M. Vincent, M. Brownlee, J.W. Russell, Oxidative stress and programmed cell death in diabetic neuropathy, Ann. N.Y. Acad. Sci. 959 (2002) 368- 383.
    [39] C. Cheng, D.W. Zochodne, Sensory neurons with activated caspase- 3 survive long term experimental diabetes, Diabetes 52 (2003) 2363- 2371.
    [40] A.A.F. Sima, New insights into the metabolic and molecular basis for diabetic neuropathy, Cell Mol. Life Sci. 60 (2003) 2445-2464.
    [41] A.A.F. Sima, H. Kamiya, Insulin, C-peptide and diabetic neuropathy, Science Med. 10(2004) 308-319.
    
    [42] X-C.M. Lu, Z. Tang, W. Liu, Q. Lin, B.S. Slusher, N-acetylaspartyl glutamate protects against transient focal cerebral ischemia in rats, Eur. J. Pharmacol. 408 (2000) 233-239.
    
    [43] P.S. Puttfarcken, D. Montgomery, J.T. Coyle, L.L. Werling, N-acetyll-aspartyl-1-glutamate (NAAG) modulation of NMDA-stimulated [3H]norepinephrine release from rat hippocampal slices, Pharmacol. Exp. Thcr.266(1993)796-803.
    
    [44] A.A.F. Sima, C. D'Amato, Dementias and other neurodegenerative disorders, in:J. Garcia, H. Budka, P.E. McKeever, H.B. Sarnat, A.A.F. Sima (Eds.),Neuropathology the Diagnostic Approach, Mosby, Philadelphia, 1997, pp. 637—668.
    
    [45] W. Lee-Kwon, D. Park, P.V. Baskar, S. Kole, M. Bernier, Antiapoptotic signaling by the insulin receptor in Chinese hamster ovary cells, Biochemistry 37 (1998) 15747-15757.
    
    [46] Z.G. Li, W. Zhang, A.A.F. Sima, C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells,Diabetes Metab. Res. Rev. 19 (2003) 375-385.
    [47] J.W. Russell, K.A. Sullivan, A.J. Windebank, D.N. Herrmann, E.L. Feldman, Neurons undergo apoptosis in animal and cell culture models of diabetes,Neurobiol. Dis. 6 (1999) 347- 363.
    [48] Z.G. Li, W. Zhang, A.A.F. Sima, C-peptide prevents hippocampal apoptosis in type 1 diabetes, Int. J. Exp. Diabetes Res. 3 (2002) 241- 245.
    [49] J.R. Singleton, A.E. Randolph, E.L. Feldman, Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis, Cancer Res.56 (1996) 4522-4529.
    [50] E. Cairo, J. Torres-Aleman, The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease, Eur. J. Pharmacol. 490 (2004) 127-133.
    [51] L. Gasparini, H. Xu, Potential roles of insulin and IGF-1 in Alzheimer's disease,Trends Neurosci. 26 (2003) 404-406.
    [52] M. Hong, V.M.-Y. Lee, Insulin and insulin-like growth factor 1 regulate tau phosphorylation in cultured human neurons, J. Biol. Chem. 272 (1997) 19547-19553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700