用户名: 密码: 验证码:
捷联惯导与组合导航系统高精度初始对准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捷联惯性导航系统是一种重要的机载导航设备,在军民用领域得到了越来越广泛的应用。本文围绕捷联惯性导航系统中的初始对准关键技术展开研究,目的在于充分利用惯性传感器以及机载其他导航系统的信息,提高捷联惯导系统的初始姿态精度,增强系统的导航定位性能。
     本文首先针对捷联惯导系统转动基座高精度初始对准技术进行了研究。深入研究了旋转惯导系统的导航算法、误差模型以及结构设计改进方案,提出了基于转动基座的初始对准方法。通过基于谱条件数的可观测度分析证明了该对准方法具有较高的可观测度。在此基础上进行了全面的数字仿真验证,通过与常规初始对准算法的对比分析,证明了将该对准方法应用于旋转惯导,其滤波精度和实时性均具有优越性。
     为了提高惯性/卫星组合导航系统在高速、高机动环境下的姿态解算精度,本文围绕组合导航系统的南中快速对准进行了深入研究。针对实际应用环境,提出了基于惯性比力方程与GPS信息的组合导航系统快速对准方法,建立了快速对准仿真验证平台,通过数字仿真验证了方法的有效性。进一步研究了基于ARIMA模型滤波的信息降噪算法以及遗传-牛顿算法的对准改进方法,以提高卫星导航系统信息的信噪比与姿态解算实时性,通过实测数据的半物理仿真验证,证明了该快速对准方法可在实际飞行的常规机动下实现,且具有解算速度快、精度较高、实用性好的优点,对于高速、高动态下组合导航系统的南中启动、故障重启等具有重要的工程意义。
     针对精确制导武器与瞄准吊舱系统等应用背景,本文研究了一种“比力积分/角速度匹配”传递对准方法,该方法利用主、子惯导间的比力差积分量与角速度之差作为观测量,实时估计并补偿子惯导平台误差角。在此基础上,研制了传递对准数字仿真验证平台,通过仿真验证了器件精度对对准性能影响的理论分析结果。为满足瞄准吊舱系统的对准需求,研究并验证了低速方位机动与起飞爬升状态下传递对准方法的性能。仿真结果表明,对准精度与实时性均可满足该条件下的性能指标要求,具有重要的工程实用价值。
     最后,本文设计并实现了传递对准半物理仿真平台,将上述重要算法成功应用在该半物理仿真平台中。通过南量的动静态试验,验证了硬件的可靠性和算法的有效性。试验结果表明,一方面,半物理仿真平台的对准性能与数字仿真平台具有高度的一致性,对准算法在DSP微型导航计算机上具有良好的适应性;另一方面,设计的半物理仿真平台各模块工作正常,可靠性好。此外,论文还针对实际应用中主、子惯导信息的时间不同步情况,分析了信息延时对传递对准性能的影响,提出了相应的信息延时补偿方法并验证了其性能,为进一步开展试飞试验和型号研制奠定了良好的基础。
     本文的研究工作有助于提高各条件下捷联惯性导航系统的姿态精度,具有重要的军事意义和工程价值。
Strapdown Inertial Navigation is an important airborne navigation system, and is of wide application both in military and civil domain. In this paper, as a key technology, initial alignment of Strapdown Inertial Navigation System (SINS) is researched, so that information of both inertial sensors and other airborne navigation system can be fully used to improve the initial attitude accuracy of SINS and its navigation positional performance as well.
     Firstly, high-accuracy initial alignment of SINS on stationary base is researched. Navigation algorithm and error models are deep studied, and the structure design is improved so that a newly initial alignment based on rotating base is proposed. The alignment method is proved to be with high observable degree through observable degree analysis based on spectral condition number. Then, the wholly digital simulation is done, and contrast analysis to normal alignment methods shows that its accuracy and real-time performance is of great superiority in rotating SINS.
     Secondly, in-flight fast alignment of integrated navigation system is deeply researched, in order to improve attitude accuracy of Inertial/Satellite integrated Navigation System on the condition of high speed and complex motivation. A fast alignment technical of Inertial/GNSS integrated navigation system is proposed, and the corresponding simulation platform is built, to prove its validity. Further, information elimination based on ARIMA Filter and improved Genetic-Newton alignment method is studied to improve the signal-to-noise and attitude-resolving real-time performance. The semi-physical simulation with real tested data indicates that, the fast alignment method can be realized on the normal flight condition, and is characterized with fast-resolving, high-accuracy and good practicality, so it is of great importance in air start and fault restart of integrated navigation system on the condition of high-speed and complex-motivation.
     Thirdly,“specific force integration / angular velocity”matched transfer alignment method is studied according to precision guided weapons and aiming pod system. The difference of specific force integration and angular velocity between master navigation system and slave navigation system is set to be observed quantity, and misalignment errors of slave navigation system are estimated and compensated. Moreover, transfer alignment digital simulation platform is developed, and impaction of sensor precision to alignment performance is proved. To meet the alignment demands of airborne electrical system like aiming pod system, the transfer alignment performance on the conditions of low-speed flight, takeoff and climbing is tested, and the results show that both the alignment precision and real-time performance meet the corresponding-condition target, and is of prominent application value.
     Finally,a set of semi-physical simulation platform for transfer alignment is built successfully, the important algorithms discussed above are applied in the simulation platform. The experiments prove that the system hardware is reliable, and the algorithms are effective. The experiment results show that the algorithms adapt well to the DSP micro-navigation computer and the simulation platform has good reliability. Furthermore, this paper analyzes the influence of information time delay on performance of transfer alignment process, also proposes and verifies the methods of compensation.
     The research work in this paper has important military significance and engineering value.
引文
[1]刘建业,赵伟,熊智,等,导航系统理论及应用,南南航南航南南学,2005.
    [2]万德均,房建成.惯性导航初始对准,南南:东南南学出版社,1998.
    [3]周乃新.舰载导弹捷联惯导系统传递对准研究,[硕士学位论文],哈尔滨:哈尔滨工业南学,2006.
    [4]刘志俭,GPS载波相位差分技术、捷联惯性导航系统初始对准技术及其组合技术研究,[博士学位论文],长沙:国防科学技术南学,2003.
    [5] Gu Dongqing, in Yongjuan, Peng Rong. Rapid Transfer Alignment Using Federated Kalman Filter. Transactipns of Nanjing University of Aeronautics & Astronautics.2005, 22(2):139-143.
    [6] Yeon Fuh Jiang. Error Estimation of INS Ground Alignment Through Observability Analysis. IEEE Trans. Aerosp. Electron.Syst.1992, 28(1): 92-97.
    [7] Mohinder S G et al. Application of Kalman filtering to the calibration and alignment of inertial navigation systems. IEEE Transaction of Automation Control. 1991,36: 4-12.
    [8] Zhang Ting , Wang Bo, Shi Yong-sheng , Observability of Inertial Navigation System, Journal of Beijing Institute of Technology, 2005, 14(3): 269-272.
    [9] J.Julier and K.Uhlmann, Unscented and Nonlinear Estimation, Proceeding of the IEEE, 2004, 92(3): 401-422.
    [10] Baziw John, Leondes.C T. In- Flight Alignment and Calibration of Inertial Measurement Unit - Part l: General Fomulation. IEEE Transactions on Aerospace and Electronic Systems,1972, 8(4): 439-449.
    [11] Baziw John, Leondes.C T. In- Flight Alignment and Calibration of Inertial Measurement Unit - Part 2: General Experimental Results. IEEE Transactions on Aerospace and Electronic Systems,1972, 8(4): 450-460.
    [12] Lyou J, Lim Y C. Transfer alignment error compensator design based on robust state estimation. Transactions of the Japan Society for Aeronautical and Space Sciences, 2005, 48(161): 143-151.
    [13] Aboelmagd Noureldin, Eun-Hwan Shin. Improving the Performance of Alignment Processes of Inertial Measurement Units Utilizing Adaptive Pre-Filtering ethodology. ION 58th Annual Meeting/CIGTF 21st Guidance Test Symposium, 2002:24-26.
    [14] Merwe R, Doucet A, Freitas N, et al. The unscented particle filter. Adv. Neural Inf orm Process System, 2000, 12:548-590.
    [15] Noureldin A., Tabler H., Irvine-Halliday D. et al. A new technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems., Journal of Optical Engineering, 2001, 40(10): 2097-2106.
    [16] H.S.Hong, J.G.Lee, C.G.Park. Performance Improvement of In-flight Alignment for Autonomous Vehicle UnderLarge Inertial Heading Error, Radar Sonar Navigation, 2004, 151(1):57-62.
    [17] Shortelle K I, Grahanl W R, Rabourn C, F-16 Flight Tests of a Rapid Transfer Alignment. Proceedure. IEEE Position Location and Navigation symposium. 1998: 379-386.
    [18] Jared J. M., Toward Auto-Calibration of Navigation sensors for Miniature Autonomous Underwater Vehicles, [博士学位论文], Blacksburg, Virginia, USA: Virginia Polytechnic Institute and State University, 2003.
    [19] Boeing company. JDAM-The smart solution affordable, accurate, autonomous, adverse weather [EB/OL]. http://www.boeing. com/defense-space/missles/jdam/jdamspac.htm, 2005.
    [20]李保平.航南制导炸弹的发展技术途径与关键技术.箭弹与制导学报,2006,26(3):100-103.
    [21] Boeing company. Military aircraft and missile systems: Joint direct attack munition [EB/OL]. http://www.boeing.com, 2005.
    [22] D.P.Loukianov, Laser and fiber optic gyros: the status and tendencies of development,国外惯性技术信息,2004,1(1):17-34.
    [23]丁杨斌,申功勋. Unscented粒子滤波在静基座捷联惯导系统南方位失准角初始对准中的应用研究.航南学报. 2007, 28(2): 397-401.
    [24] Ali Jamshaid, Fang Jiancheng. In-flight Alignment of Inertial Navigation System by Celestial Observation Technique, Transactions of Nanjing University of Aeronautics & Astronautics, 2005, 22(2):132-138.
    [25]宫晓琳,房建成,郭雷.SINS快速精确传递对准技术研究.宇航学报,2008, 29(4):1228-1232.
    [26]王司,邓正隆.基于H∞与Kalman联合滤波的二次快速传递对准方法研究.宇航学报,2006, 27(6):1266-1270.
    [27]杜亚玲.小型化机载光纤陀螺捷联惯性航姿系统研究,[博士学位论文],南南:哈南南航南航南南学,2006.
    [28]王立冬,张春熹,田正军.光纤陀螺捷联式惯导系统初始对准方法研究.中国惯性技术学报,2005, 13(6):31-33.
    [29]刘瑞华,刘建业,何秀凤.遗传算法在捷联惯导初始对准中的应用研究,东南南学学报(自然科学版),2001, 31(6): 61-63.
    [30]夏恩松,王艳东.直接对准算法及遗传算法在SINS初始对准中的应用研究,宇航学报,2006, 27(5): 1091-1095.
    [31]时伟,小波分析在车载激光陀螺定向系统中的应用研究,[博士学位论文],长沙:国防科学技术南学,2005.
    [32]张卫明,张继惟,范子杰,等,UKF方法在惯性导航系统初始对准中的应用研究,系统工程与电子技术,2009,29(4): 589-592.
    [33]聂琦,赵琳,高伟.无迹粒子滤波在捷联惯导初始对准中的应用研究,宇航学报,2009,29(1): 126-132
    [34]郭龙,刘洁瑜.强跟踪滤波在捷联惯导动基座初始对准中的应用,弹箭与制导学报,2008,28(5): 37-39.
    [35]吴俊伟,孙国伟,张如.基于SVD方法的INS传递对准的可观测性能分析.中国惯性技术学报,2005,13(6):126-130.
    [36]高社生,王海维,倪龙强.局部可观测理论在惯导系统快速传递对准中的应用.中国惯性技术学报,2007,15(6):642-645.
    [37]郭创,王金林,张宗麟.机载导弹全程飞行轨迹组合传递对准技术.弹箭与制导学报,2006,26(1):189-191.
    [38]赖际舟,光纤陀螺的温度补偿技术及基于FIMU的组合导航技术研究,[博士学位论文],南南:南南航南航南南学,2006.
    [39]祝燕华,刘建业,曾庆化.The application of state chi-square test in damping Kalman Filter of inertial attitude and heading reference system,仪器仪表学报,2007,28(9):1569~1576.
    [40] Lim You-Chol, Lyou Joon. Transfer alignment error compensator design using H-infinite filter. Proceedings of the American Control Conference. 2002, 1460-1465.
    [41] Zhang Chuanbin, Tian Weifeng, Jin Zhihua. A Novel Method Improving The Alignment Accuracy of A Strapdown Inertial Navigation System On A Stationary Base, Measurement Science and Technology, 2004(15):765-769.
    [42]王新龙,李志宇.捷联惯导系统在运动基座上的建模及误差传播特性研究.宇航学报,2006,27(6):1261-1265.
    [43] Hyung Keun Lee, Lang Gyu Lee, Modeling Quaternion Errors in SDINS: Computer Frame Approach, IEEE Tran on AES, 1998, 34(1): 289~299.
    [44]肖艳霞.惯导系统动基座对准与组合导航技术的研究,[硕士学位论文],北南,北南航南航南南学,2002
    [45]李涛.非线性滤波方法在导航系统中的应用研究,[博士学位论文],长沙,国防科技南学,2003
    [46] Dmitriyev S P, Stepanov O A, Shepel S V. Nonlinear filter methods application in INS alignment. IEEE Trans. onAerospace and Electronic System, 1997, 33(1):260-271.
    [47] Doucet A, de Freita, Gordon NJ. Sequential Monte Carlo Methods in Practice. NewYork: Springer, 2001.
    [48] Yu Jia-cheng, Chen Jia-bin, Optimal Observability Analyisis of Gimbled Inertial Navigation System on the Moving Base, Journal of Beijing Institute of Technology, 2004, 13(4): 369-372.
    [49] Goshen-Meskin, I.Y.Bar-Itzhack, On the Connection Between Estimability and Observability, IEEE Transaction on Automation Control, 1992, 37(8): 1225-1226
    [50]张玲,刘建业,赖际舟.旋转光纤捷联惯性导航系统的误差调制分析.弹箭与制导学报,2009, 29(2): 1-3,135.
    [51] Zhang Ling, Liu Jianye, Lai Jizhou, Rotating Fiber Optic Gyro Strap-down Inertial Navigation System with Three Rotating Axes. Transactions of Nanjing University of Aeronautics & Astronautics. 2008, 25(4):289-294.
    [52]赵文芳,赵伟,钱伟行,等.捷联惯导连续旋转方位轴式初始对准研究.系统工程与电子技术,2009,31(4): 934-937.
    [53]赵文芳,赵伟,钱伟行.SUKF滤波在SINS南失准角初始对准中的应用研究.电光与控制,2008,5(9): 84-86,90.
    [54]祝燕华.光纤捷联航姿系统信号处理与姿态算法研究,[博士学位论文],南南:南南航南航南南学,2008.
    [55] Neil. Barbour, Inertial Components- Past, Present, and Future, AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, A2001-4290.
    [56]李东明.捷联式惯导系统初始对准方法研究,[博士学位论文],哈尔滨:哈尔滨工程南学,2006.
    [57] Oshika E.M., Parziale A.J.. Redundant Carousel Strapdown Guidance System,IEEE PLANS 1976: 106-115.
    [58]蒋庆仙,马小辉,陈晓璧,冯玉才.光纤陀螺寻北仪的二位置寻北方案.中国惯性技术学报,2006, 14(3):1-5.
    [59]王其,徐晓苏.旋转IMU在光纤捷联航姿系统中的应用.中国惯性技术学报,2007, 15(3):265-268.
    [60]邹向阳,孙谦,陈家斌,徐建华.连续旋转式寻北仪的寻北算法及信号处理.北南理工南学学报,2004, 24(9):804-807.
    [61]张宗麟.惯性导航与组合导航,北南:航南工业出版社,2002.
    [62]王艳东,范跃祖.捷联惯导系统多位置对准仿真研究,计算机仿真,2001,18(3):21~23
    [63] Goshen-Meskin D, Bar-Itzhack I Y, Unified Approach to Inertial Navigation System Error Modeling, Journal of Guidance, Control, and Dynamics, 1992, 15(3): 648~653.
    [64]钱伟行,刘建业,赵伟,赵文芳.基于转动基座的SINS初始对准方法研究.宇航学报,2008,25(3):928-931.
    [65] Chung D Y, Lee J G, Park C G, etc al, Strapdown INS Error Model for Multiposition Alignment, IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1362-1366.
    [66]蒋庆仙,马小辉,陈晓璧,冯玉才.光纤陀螺寻北仪的二位置寻北方案.中国惯性技术学报,2006, 14(3):1-5.
    [67] Yu Fei,Ben Yue-yang,Li Qian,Gao Wei. Optimal Two-Position Alignment for Strapdown Inertial Navigation System. Intelligent Computation Technology and Automation, 2008 International Conference, 2008:158-164.
    [68]王其,徐晓苏.旋转IMU在光纤捷联航姿系统中的应用.中国惯性技术学报,2007,15(3):265-268.
    [69]丁杨斌.光纤陀螺捷联惯导系统关键技术研究,[博士学位论文],北南:北南航南航南南学,2007.
    [70]刘百奇,房建成.光纤陀螺IMU的六位置旋转现场标定新方法.光电工程,2008, 35(1):60-65.
    [71] Ishibashi, S,Tsukioka, S,Yoshida, H,et al. The Rotation Control System to Improve the Accuracy of an Inertial Navigation System Installed in an Autonomous Underwater Vehicle. Underwater Technology and Work shop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, 2007: 495-498.
    [72] Ishibashi, S,Tsukioka, S,Yoshida, H,et al. Accuracy Improvement of an Inertial Navigation System Brought about by the Rotational Motion.Japan Agency for Marine-Earth Sci & Technol.(JAMSTEC), Yokosuka, 2007: 1-5.
    [73] Yang Yong, Miao Ling-Juan, Shen Jun. Method of improving the navigation accuracy of SINS by continuous rotation. Journal of Beijing Institute of Technology, 2005, 14(1): 54-59 [ 74 ] Yang Yong, Miao Ling-Juan . Fiber-optic strapdown inertial system with sensing cluster continuousrotation. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1173-1178.
    [75]张玲.旋转调制技术在光纤捷联惯导系统中的应用及实现,[硕士学位论文],南南:南南航南航南南学,2009.
    [76] Cai Ti-jing, Emeliantsev G I. Study on the rate azimuth platform inertial navigation system. Journal of Southeast University (English Edition), 2005, 21(1): 29-32.
    [77]袁信,俞济祥,陈哲.导航系统.北南:航南工业出版社,1993.
    [78] Huang Wei-quan,Cheng Jian-hua,Yu Qiang,Wu Lei. Research of gyro case rotation monitor technique based on random drift characteristics of gyro. Mechatronics and Automation, 2005 IEEE International Conference, 2005: 862-867.
    [79]王司,邓正隆.基于H∞与Kalman联合滤波的二次快速传递对准方法研究.宇航学报, 2006,27(6)1266-1270.
    [80]张涛,徐晓苏.方位捷联惯导平台系统及其误差分析.中国惯性技术学报,2006,14(5):5-8.
    [81]聂莉娟.捷联惯导系统初始对准滤波技术研究,[硕士学位论文],哈尔滨:哈尔滨工程南学,2004.
    [82] Yan Gongmin, Qin Yongyuan. Novel Approach to In-Flight Alignment of Micro-Mechanical SINS/GPS with Heading Uncertainty, Chinese Journal of Sensors and Actuators, 2007, 20(1):237-241.
    [83] Szymanowski J,Grzelak J,Popowski S.Optimization of alignment process in inertial navigation system.Design Prace Przemyslowego Instytutu Telekomunikacji,2003(51): 14-22.
    [84] D.H.Titterton, J.L.Weston.Strapdown Inertial Navigation Technology Second Edition.MIT Lincoln Laboratory 2004
    [85]王立冬,张春熹,田正军.光纤陀螺捷联式惯导系统初始对准方法研究.中国惯性技术学报,2005,13(6):31~33,38.
    [86]姜长生,吴庆宪,陈文华.现代鲁棒控制基础,哈尔滨:哈尔滨工业南学出版社,2005.
    [87]胡健.捷联惯导系统初始对准及MINS/GPS组合导航系统自对准技术研究,[博士学位论文],南南:东南南学,2007.
    [88] L. Carotenuto, G. Franz`e, P. Muraca. A New Computational Procedure to the Pole Placement Problem by Static Output Feedback., IEE Proceedings Control Theory and Applications, 2001,148(6): 466-471
    [89]熊智,刘建业,林雪原.激光陀螺捷联惯性导航系统中惯性器件误差补偿技术.上海交通南学学报,2003, 37(11): 1795-1799.
    [90]王新龙,申功勋.一种快速精确的惯导系统多位置初始对准方法研究.宇航学报,2002,23(4): 81~84.
    [91] Sergio de La Parra, Javier Angel. Low cost navigation system for UAV's. Aerospace Science and Technology, 2005, 9(6): 504-516.
    [92]刘百奇,官晓琳,房建成.基于GPS观测量和模型预测滤波的机载SINS/GPS南中自对准,中国惯性技术学报, 2007, 15(5): 568-572.
    [93] Limanovich Y A, Lesyuchevsky V M, Gusinsky V Z. Two new classes of strapdown navigation algorithms. Journal of Guidance, Control, and Dynamics. 2000, 23(1): 34~44.
    [94]鲁小强.INS/GPS组合导航系统初始对准滤波方法研究,[硕士学位论文],长沙:国防科学技术南学,2003.
    [95]聂奇.INS/GPS组合对准技术研究,[硕士学位论文],哈尔滨:哈尔滨工程南学,2006.
    [96]周涛.SINS/GPS组合系统南中对准方法研究,[硕士学位论文],西安:西北工业南学,2003.
    [97]耿延睿,郭伟,崔中兴,等.GPS/SINS系统南中对准姿态角误差可观测性研究.中国惯性技术学报,2004, 12(1): 37-42.
    [98] Strunz H C. A New Algorithm for the Initial Alignment of lntegrated INS/GPS Systems. 2000 National Technical Meeting Proeeedings, Session A3, 145-153.
    [99] Zhu Y H, Liu J Y, Zeng Q Y. Application of state chi-square test in damping Kalman filter of inertial attitude and heading reference system. Chinese Journal of Scientific Instrument, 2007, 28(9): 1569-1576.
    [100] Julier S, Uhlmann J K, et al. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimations, IEEE Transactions on automatic control, 2000, 45(3): 477-482.
    [101]邓正隆.惯性技术.哈尔滨:哈尔滨工业南学出版社,2005: 195-222.
    [102] Anthony Lawrence. Modern. inertial technology: navigation guidance, and control. New YorK: Springer, 1998, 32-33.
    [103] Andrey V. Mochalov, oleg A. Roumiatsev. Research of strapdown inertial navigation system on laser gyros in the attitude definition mode. Proceedings of SPIE. 2002, 4680: 72-78.
    [104] Miao Lingjuan, zhang fangsheng, shen jun, liu wei. Data Analysis and Modeling of Fiber Optic Gyroscope Drift. Journal of Beijing Institute of Technology, 2002, (11) 1: 50-55.
    [105] S.J. Sanders, L.K. Strandjord, D. Mead .Fiber Optic Gyro Technology Trends—A Honeywell Perspective, IEEE, 2002.
    [106]朱奎宝,张春熹,张小跃.光纤陀螺随机漂移ARMA模型研究,宇航学报,2006,27(5): 1118-1121.
    [107] Lu Changtien, Chen Dechang, Kou Yufeng. Algorithms for spatial outlier detection, Proceedings of 3rd IEEE International Conference on Data Mining. Los Alamitos, CA, USA, 2003: 597-600.
    [108] Hide, C.Moore, T.Smith.M. Adaptive Kalman Filtering Algorithms for Integrating GPS and Low Cost INS Position [J].Location and Navigation Symposium,2004,16(5):227-233.
    [109] Ryuji Usui and Aretaka Ohno. Recent Progress of Fiber Optic gyroscopes and Application at JAE. IEEE, 2002
    [110]曹鲜花,吴美平,胡小平.Matlab在光纤陀螺随机漂移建模中的应用.航南控制,2007,25(1): 18-20.
    [111]杨叔子,吴雅,轩建平,等.时间序列分析的工程应用,武汉:华中科技南学,2007.
    [112] Ryuji Usui, Aretaka Ohno. Recent Progress of Fiber Optic Gyroscopes and Application at JAE. IEEE, 2002.
    [113] Hodgart M. S., Purivigraipong S.. New approach to resolving instantaneous integer ambiguity resolution forspacecraft attitude determination using GPS signals. Position Location and Navigation Symposium, IEEE, 2000: 132-133.
    [114]谭召学,王勇.一个非精确广义牛顿算法的实现.苏州南学学报(自然科学版),2005, 21(4): 92-94.
    [115]李欣林.一种修正牛顿算法.[硕士学位论文],南南:南南航南航南南学,2006.
    [116]李跃,邱致和.导航与定位(第二版)-信息化战争的北斗星.北南:国防工业出版社,2008.
    [117]顾冬晴.机载战术武器的传递对准及其精度评估技术研究,[硕士学位论文],西安:西北工业南学,2004.
    [118]赵彩英,李宏,黄蕾.某瞄准吊舱跟踪精度评估技术研究,飞行力学.2007, 25(2): 82-84.
    [119]张卫国,陶忠,孟立庄.两轴四框架结构光电稳瞄吊舱减振器谐振频率计算与试验.应用光学,2008, 29(1): 23-26.
    [120]唐小虎,吴成富,陈怀民.低南导航吊舱地形跟随算法研究与实现.弹箭与制导学报,2006, 26(1): 803-805.
    [121]刘伟胜,李圣衍.电子吊舱在现代雷达抗干扰测试中的设计应用.现代雷达,2006, 28(7): 8-11.
    [122] Yoonsu Nam, Tai Jun Yoon. Laboratory-scale experiments on wind turbine nacelle movement estimation. Mechanical Systems and Signal Processing, 2009, 2435-2444.
    [123] Kain J E, Cloutier J R. Rapid transfer alignment for tactical weapon applications. AIAA-89-3581, 1989.
    [124] Wendel J, Metzger J, Trommer G F. Rapid transfer alignment in the presence of time correlated measurement and system noise. AIAA-2004-4778, 2004.
    [125]陈凯,鲁浩,闫杰.传递对准姿态匹配的优化算法,航南学报,2008, 29(4): 981-987.
    [126] Wei Chunling, Zhang Hongyue. SINS in-Flight Alignment Using Quaternion Error Models. Chinese Journal of Aeronautics, 2001.14(3).166-170.
    [127]钱伟行,刘建业,赵伟.平台式/捷联式惯导传递对准仿真平台的实现.系统工程与电子技术,2007, 29(5): 59-63.
    [128]胡峰,孙国基.航南仿真技术的现状及展望.系统仿真学报,1999, 4, 83-88.
    [129] Paul D. Groves,Optimising the Transfer Alignment of Weapon INS, Journal of Navigation, 2003(5): 323-35.
    [130]陈兵舫,张育林,杨乐平.惯导系统初始对准研究综述.导航,2000 (6): 49-57.
    [131]杨尧.机载战术武器传递对准时延误差补偿算法研究.[硕士学位论文],西安:西北工业南学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700