用户名: 密码: 验证码:
硬岩钻进用仿生耦合金刚石取心钻头研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析总结了油气井钻头的使用情况,尤其是在油气井硬岩、强研磨性地层钻进中钻头出现的一系列问题,引出了新的研究思路:把仿生耦合理论与孕镶金刚石钻头设计紧密结合起来,将生物非光滑表面的耐磨、减阻等特性引用到钻头的设计中,使钻头也具有这样的特性,研究一种新型的油气井用仿生孕镶金刚石钻头,以此来提高钻头的效率和寿命。
     通过对典型生物耦合表面的的耐磨特性进行较系统的分析总结,为生物耦合表面与岩石接触的界面中的应用提供理论依据,是对该理论适用范围的一种有意义的拓宽。
     论文重点介绍了仿生耦合耐磨特性,对仿生钻头耦合耐磨表面形态进行优化设计,采用ANSYS软件对非光滑形态进行计算机模拟,建立仿生耦合表面三维模型,计算钻头底唇面非光滑度大小的最优值、非光滑凹坑自身的大小及排列方式,目的是在最优的非光滑度及排列方式的基础上使钻头胎体在相同的钻进工艺条件下磨损量最小。
     通过大量小直径仿生钻头(75mm、95mm)野外试验的数据进行整理分析可知,仿生钻头的钻进效率较普通钻头至少提高? 30%,钻头寿命提高? 30%;针对前期试验总结出不同的地层对应的仿生钻头的胎体硬度、非光滑度以及金刚石浓度等参数的影响;最后对四川须家河组地层的岩石进行测试分析,选择合理的钻头参数(金刚石浓度、粒度、胎体配方及硬度、非光滑度)设计并制造了?8?1/2'?(215.9mm)仿生石油钻头。
     钻头的烧结工艺打破常规工艺,首先热压法制造孕镶块,无压浸渍法制造钻头基体;然后采用二次镶焊工艺制造仿生钻头,将热压法与无压浸渍法紧密结合起来;合理的解决了大直径钻头热压烧结难度大、无压浸渍损伤金刚石强度等难题。
     本文的研究为提高油气井钻头性能提供了新的思路,将仿生学与钻探工程学结合起来,填补了仿生学在钻探领域应用研究的空白,由此可衍化出一门新的学科:仿生钻井工程学。
With the development of the national economy, the problem of energy supply and demand becomes increasingly serious human beings demand for oil and gas resources is also increasing. The exploration of oil and gas resources, land survey and infrastructure construction, makes drilling technology particularly important. With the ever-increasing exploration workload, oil and gas resources become less and less, exploration and development are increasingly more difficult because of more and more deep drilling holes and more and more complex drilling strata. All of these require high demand of drilling tools. On the current drilling market, the cost of drilling and exploration for the research of underground oil and gas is very high all over the world, so a slight improvement in drilling performance (including the life of drill bits, drill pipe and casing wear resistance, etc.) will bring about considerable savings in drilling costs.
     Hard rock drilling has been a technical problem in oil and gas drilling. The conventional cone bit, PDC bit, has the phenomenon of slow speed, short life of bits, low efficiency when drilling into hard rock. National research experts at the same time consider the impact and rotary drilling method, combining the hydraulic percussive drilling with the cone bit to solve this problem, although receive a certain effect, but not very obvious. The main reason is unable to solve the problem of drilling bit. Bits are the main instrument to break rocks, whether its structure is reasonable or not, its parameters are adapted to the nature of the rock or not, it affects the drilling speed, quality and cost directly. Therefore, it has important practical significance by selecting reasonable structure of the bits and using them right. In the drilling process, we hope to minimize the bit to play a role, so as to achieve faster drilling and high efficiency. To gain this end, we give the structural changes to drilling bits from view of bionics.
     Bionics is one of the emerging edge of important subjects between biological science and technology, considered as the inexhaustible source of power from the original scientific and technological innovation, and it is an important means of developing high-tech. "Coupling" is a physics concept at first, that is, through a variety of interactions, two or more different systems or exercise forms affect each other and unit consistently. Biology, a number of factors such as form, structure, material of biology has multi-functional synergies, and achieves the best adaptation to the environment we call it "biological coupling". Therefore, the "bionic coupling" is more than two bionic systems (functions, features, system) coupled to build into a low energy environment for adaptive access to the largest man-made features of the technology integration system. Bionic coupling theory is the expansion of non-smooth theory, and the research areas was broken that just only for the surface morphology of biological research, which extends to the internal structure of biology, as well as the field of materials.
     Through a long period of natural selection and evolution, biology optimized the form of a fine structure and surface features. Advanced technologies are created by mankind to follow the object which provides a natural human study modeled. Soil animals such as dung beetle, mole cricket, pangolins and other long-term living in the soil and rocks, after millions of years of evolution, their body surface where touches soil shows the coupling patterns of concave, convex, scales and waves and it has the characteristics of good adhesion reduction, reducing the function of resistance, and high wear resistance and regeneration. Modeled the characteristics of organisms form, we apply the bionics coupling theory to the design of oil drilling bits, drilling bits can be solved in a shorter life, low efficiency, as well as the "spin" situation in drilling process and so on.
     This paper introduces the current used of oil drilling bit in the hard and grinding strata, and applies the bionic coupling theory to solve the problems about the drilling bits’low efficiency, short life in these strata. This article focused on an analysis of biology coupling surface wear-resistant properties, combined with diamond bit crushing rock characteristics, and the bionic coupling theory will be applied to the design of impregnated diamond bit. Through the computer analysis and a large number of small-bore (75mm) bionic bits’field test, we summarized relationship of bit matrix hardness, diamond concentration, as well as the degree of non-smooth. It has accumulated valuable experience for the design of large diameter (215.9mm) bionic oil bit. On the basis of testing and analyzing of rocks where the large-diameter bionic bit will be experimented, the bionic bit was designed according to the parameters of matrix hardness, diamond concentration, and diamond size, the degree of non-smooth and sintering parameters. In addition, the thesis also gives the analysis of the mechanism of broken rocks of bionic bits. In short, according to pre-test numerical simulation and field test, we summed up the following conclusions:
     Fistly, in this paper, ANSYS finite element program was used to analyze the stress, contact stress and contact friction of mutual friction of two pieces in sliding wear test process. Through the analysis of summary, we can see that it is different between the wear of smooth specimen and wear of non-smooth specimen, and along with changes of the degree of non-smooth, wear and tear also changing. The relationship between degree of non-smooth and the equivalent stress, contact stress and friction is not linear, it is basically the shape of a parabola, and that is to say there is an optimal non-smooth degree, so that the best parameters value will be got. By analyzing, we can see that the optimal non-smooth degree is 13%, also 10 percent for the non-smooth degree, the test results is good, so that our best guess for the non-smooth degree is 10-13%.
     Secondly, we designed and manufactured bionic small-caliber (75mm) diamond bits and tested them separately in Jiapigou gold field in Jilin and Linglong gold field in Shandong. By analyzing the experiment data, we can see that, the superiority of non-smooth structure will not be reflected better until the matrix parameters of bionic diamond bits, diamond parameters is still necessary to adapt the parameters of formation. Such as the two tests in Jiapigou gold field, bionic bits have increased their life almost double and drilling expectancy more than 30%, which fully reflects the strong wear-resistance of bionic non-smooth structure when the parameters of bits adapt to some strata. When the field test was carried out in Shandong Linglong gold mine, the life of bionic bits were increased by 30%, and the drilling speed was same with the ordinary bits, because of the super hard of bit matrix, the effect of non-smooth structure is no longer better than before. Through the test, we can see that the test result is more satisfactory when the non-smooth degree is 10% and 13%.
     Thirdly, the design of large-diameter (215.9mm) bionic diamond bit is on the basis of the computer simulation of finite element analysis and small-caliber diamond bionic bits achieving good field test results. Because the wall of bit is up to 55mm thick, the bit is not sintered thoroughly using one time hot press sintering method, and the strength of diamond will be injured when using the non-pressure impregnation method, so we apply the second welding process: First, hot-pressing method was used to create impregnated diamond segment, non-pressure impregnation method was used to create bit matrix, and then the impregnated diamond segments were brazed to the bit matrix. Using this method, it can ensure that the strength of diamond under high temperature is not decreased, and also the welding strength can be ensured.
     Fourthly, from the two aspects of qualitative analysis and quantitative calculation, the efficient broken rocks mechanism of bionic bit is analized: the structure of bionic non-smooth surface makes the pressure higher than ordinary bit on the bottom lip surface of bit and improves the cooling condition, it can improve the efficiency of drilling bits another through formula, we can see that at the same axial force and torque conditions, the footage of bit each week is inversely proportional with the area of the bottom lip surface of bit, so smaller the area of bionic bit is, larger amount of footage is.
     In this paper, the bionic coupling wearable mechanism was firstly applied to the design of impregnated diamond bit in hard rock of oil drilling and it increased the efficiency and bit life . First we use ANSYS finite element software to analyze the effect of bionic non-smooth pits to the wear resistance of drilling bits, put forward the best non-smooth degree, and it is same with the actual test data. The method of second welding set was used to create bionic bits: impregnated diamond segments using hot-pressing method were brazed to the bit matrix using non-pressure impregnation method, it is a new approach. In short, the three above-mentioned aspects innovation, provides a wide range of design ways for the design of bionic impregnated diamond drilling bit, and provides a new concept of creative thinking for those who are engaged in drilling research
     Bionics technology will be applied to the drilling project, and particularly the theory of non-smooth surface of biology will be applied to the design of drilling bit which breaks rocks, all these will provide a source of innovation for drilling technicians. THE combination of bionics engineering and drilling engineering technology will bring a new research direction, bionic drilling engineering.
引文
[1]伍友佳.油藏地质学[M].北京:石油工业出版社,2004.
    [2]翟光明.中国石油地质志卷一[M].北京:石油工业出版社,1996.
    [3]D.S.哈拉西.仿生学[M].科学出版社,1975.
    [4]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [5]高科.孕镶金刚石仿生钻头的研究[D].长春:吉林大学建设工程学院,2006.
    [6]申守庆编译.美国四家主要钻头制造厂商新产品新技术发展动态[J].国外油田工程,2001,17(10):26-30.
    [7]申守庆编译.美国十大钻头公司的十大钻头新技术[J].国外油田工程,2002,18 (7):14-20.
    [8]侯庆勇.国外钻头新技术[J].石油机械,2006,34(4):74-75.
    [9]王国荣,郑家伟,亢旗军.牙轮钻头滑动轴承失效分析[J].润滑与密封,2 006( 10): 22-28.
    [10]贺红林,李明,龙玉繁.与牙轮钻寿命相关的若干技术及其实现问题的研究[J].矿山机械,2004(5):15-17.
    [11]杨迎新,林敏,刘德明.牙轮保持可靠性的钻头新技术研究[J].石油天然气学报,2005,27(1):281-283.
    [12]罗肇丰,等.钻头技术手册(一)钻头[M] .北京:石油工业出版社,1984.
    [13]申守庆,南继春编译.挑战钻井极限的国外新型钻头[J].国外油田工程,2001, 17(8):40-43.
    [14]Beims T. New bits potimize drilling performance[J]. The American Oil and Gas Reproter, 1999, 42(7): 65-68.
    [15]彭军生,杨利.PDC钻头技术的新进展[J].石油机械,2001,29(11):49-51.
    [16]申守庆.改进型PDC钻头攻坚啃硬[N].石油商报,2006-6-7(12).
    [17]卢芬芳,等.休斯颗粒斯坦森公司的新型PDC钻头及牙轮钻头[J].石油钻探技术,2004,32(6):31.
    [18]邹德永,梁尔国.硬地层PDC钻头设计的探讨[J].石油机械,2004,32(9): 28-31.
    [19]Ohno T, Karasawa H. Cost reduction of PDC bits through improved durability[J]. Geothermics, 2002, (31): 245-262.
    [20]李大佛,李天明,陈洪俊.低温电镀孕镶金刚石石油取心钻头研制与应用[J].地球科学—中国地质大学学报,2002,27(1):120-126.
    [21]陈博安,李天明,李大佛.低温电镀孕镶金刚石取心钻头[J].石油钻采工艺.2001,23(5):38-40.
    [22]朱学贵.新型复合钻头研究[D].南充:西南石油学院,2003.
    [23]胡琴,刘清友.复合齿形牙轮钻头及其破岩机理研究[J].天然气工业,2006, 26(4):77-79.
    [24]张晓西,朱永宜,杨凯华.科钻一井侧钻作业设计与施工[J] .石油钻探技术, 2006,34(3):12-15.
    [25]杨甘生,王达.科钻一井取心钻进技术研究[J] .石油钻探技术,2006,34(3): 8-11.
    [26]杨俊德,陈章文.新型高时效金刚石钻头试验研究[J] .超硬材料工程,2007, 19(1):26-28.
    [27]罗爱云,段隆臣,等.打滑地层新型孕镶金刚石钻头[J] .地质科技情报,2007, 26(1):109-112.
    [28]张绍和,鲁凡,杨凯华.高时效长寿命弱包镶钻头研究[J].煤田地质与勘探, 2001,29(2):62-64.
    [29]罗爱云,王伟雄,段隆臣.强、弱混镶新型金刚石钻头的研究[J] .金刚石与磨料磨具工程,2003,134(2):48-50.
    [30]马祖礼编.生物与仿生[M].天津:天津科学技术出版社.1984.
    [31]刘福林.仿生学发展过程的分析[J] .安徽农业科学,2 007,3 5( 15):4 404-4408.
    [32]仓立佳.生态建筑的仿生研究[D].武汉:华中科技大学,2005.
    [33]Hugh Aldersey-Williams. Zoomorphic: New Animal Architecture[J].Harper Design International, 2003.
    [34]Gunther Feuerstein. Biomorphic Architecture: Human and Animal Forms in Architecture[J]. Menges, 2001.
    [35]王淑杰,任露泉,等.典型生物非光滑理论及其仿生应用[J] .农机化研究,2005
    (1):209-211.
    [36]Ishihara K, Fukumoto K, Iwasaki Y, Nkaabayshi N. Modifieation of Polysulfone with phospholipid polymer of improvement of the blood compatibility. Part1. Surafce characterization[J].Biomaterials1999(20):1545-1551.
    [37]林雁.从结构仿生到生态仿生看仿生学的发展[J].生物学教学,2002,27(2): 4-5.
    [38]Javier Senosiain. Bio-Architecture.Architectural Press,2003.
    [39]黄河.沙漠蜥蜴体表的生物耦合特性研究[D] .长春:吉林大学,2008.
    [40]Li H D,Feng Q L,Cui F Z,Ma C L,Li W Z,Mao C B.Biomimetic research base on the study of the nature structure.Journal of Tsinghua University(Sci and Tech)[J], 2001,41(4): 62–65.
    [41]Rechenberg I.Tribological characteristics of sandfish[C].Nature as Engineer and Teacher: Learning for Technology from Biological Systems, Shanghai, 2003.
    [42]施卫平,任露泉.波纹形非光滑推土板减粘降阻的简化力学模型[J] .农业机械学报,2005,36(1):93-103.
    [43]刘庆怀,任露泉,陶敏.凸包形仿生推土板表面的数学建模与优化设计[J] .工程数学学报,2006,23(1):29-35.
    [44]任露泉,刘庆怀,陶敏.基于遗传算法的波纹形仿生推土板表面的数学建模与优化设计[J] .农业工程学报,2005,21(2):78-82.
    [45]Luquan Ren, Qian Cong, Tong Jin, et al. Reducing adhesion of soil against loading soil using bionic electro-osmosis method[J]. J Teramechanics, 2001,38(4):211-219.
    [46]倪志辉.仿生耦合非光滑模具与粘土粘附性能的研究[D] .长春:吉林大学, 2008.
    [47]PFEIFER P. Fractal dimension as working tool for surface-roughness problems[J]. Applic.Surf.Sci,1984(18):146-164.
    [48]张绪寿,余来贵,陈建敏.表面工程摩擦学研究进展[J].摩擦学学报,2000, 20(2):156-160.
    [49]宋起飞.激光仿生耦合处理灰铸铁的摩擦磨损性能[D].长春:吉林大学,2 007.
    [50]张毅,孙友宏,任露泉.钻头泥包的土壤动物仿生学分析研究[J].探矿工程,2003,30(2):41-43.
    [51]从亦芳.镶铸仿生耦合蠕墨铸铁摩擦磨损性能的研究[D].吉林大学,2008.
    [52]Hill, Bernd. Fundmentals and modeling of a constion bionics[J]. Bionik2004, 2004:23-30.
    [53]Weiner S,Wagner HD.Annu.Rev.Mate.Sci,1998.28:271-298.
    [54]Douglas I Science.2003, 299:1192-1193.
    [55]N.R.Bogatyrev. A“Living”Machine[J]. Journal of Boionocs Engineering,2004, 1(2):79-87.
    [56]W.Barthlott, C.Neinhuis, D.Boil. The lotus-effect: Non-adhesive biological and biomimetic technical surfaces[J]. Bionik2004, 2004, 211-214.
    [57]江雷.从自然到仿生的超疏水纳米界材料[J].科技导报,2005,23(2): 4-8.
    [58]刘福林.仿生学发展过程的分析[J] .安徽农业科学,2 007,3 5( 15):4 404-4408.
    [59]崔人冬.镶铸仿生耦合铸铁制动盘材料抗热疲劳性能研究[D].吉林大学, 2008.
    [60]程红,孙久荣,等.臭蜣螂体壁表面结构及其减粘脱附功能的关系[J].昆虫学报,2002,45(4):175-181.
    [61]佟金,等.神农蜣螂前胸背板表面形态分形及润湿性[J] .农业机械学报, 2002,33(4):74-76.
    [62] Ren Luquan, Tong Jin, Li Jianqiao, et al. Soil adhesion and biomimetics of soil-engaging components in anti-adhesion against soil: a review [J]. Journal of Agricultural Engineering Research, 2001, 79 (3): 239-263.
    [63]高科.孕镶金刚石仿生钻头的研究[D].长春:吉林大学建设工程学院,2006.
    [64]全永昕,施高义.摩擦磨损原理[M] .浙江大学出版社,1988:147-150.
    [65]籍国宝.摩擦磨损原理[M].农业出版社,1984:19-28.
    [66]孙家枢.金属的磨损[M].冶金工业出版社,1992:153-154.
    [67]邵荷生,张清.金属磨料磨损与耐磨材料[M].机械工业出版社,1 991:2 9-43.
    [68]何奖爱,王玉玮.材料磨损与耐磨材料[M].东北大学出版社.2001:36-38.
    [69]屠厚泽,高森.岩石破碎学[M].地质出版社,1990.
    [70]孙友宏.仿生非光滑孕镶金刚石钻头研究[D].吉林大学,2005.
    [71]Nakada M,etal, Trends in engine technology and tribology,Trib.Int’l,1994,27:3-8.
    [72]Etsion I,etal.A model for mechanical seals with regular microsurface structure[J],Trib Trans,1996, 39 (3):677-683.
    [73]Etsion I,etal.Increasing mechanical seal life with laser-textured seal faces[C],Proc.of 15t h Int’l. Conf. Maastricht. 1997:3-11.
    [74]B.He,J.Lee,N.A.Patankar. Contact angle hysteresis on rough hydrophobic surfaces, Colloids Surf.A,2004,248:101-104.
    [75]M.Mosleh,N.Saka,N.P.Suh.A echanism of high Triction in Dry sliding bearings[J].Wear,2002,252(1-2):1-8.
    [76]王再宙,王忠良,等.基于MATLAB仿生非光滑形态模拟[J].润滑与密封, 2006,180(8):68-71.
    [77]杨常建.仿生非光滑表面滑动耐磨性试验及数值模拟[D].吉林大学,2005.
    [78]陈明韬,王文健,彭亮,刘启跃.钢轨滚动接触磨损研究[J].润滑与密封, 2008,33(3):40-42.
    [79]张学民.岩石材料各向异性特征及其对隧道围岩稳定性影响研究[D].中南大学,2007.
    [80]任红.贯通式潜孔锤反循环连续取心钻进取心机理研究[D].吉林大学,2 008.
    [81]张朝晖,主编.ANSYS 11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [82]邓凡平,编著.ANSYS 10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [83]刘彦奎,魏延刚.深穴滚子接触效应实验方案设计[J].大连交通大学学报, 2007,28(3):20-23.
    [84]吴光琳,张祖培,译.钻井岩石破碎学[M].北京:地质出版社,1983.参考文献
    [85]刘广志,主编.金刚石钻探手册[M].北京:地质出版社,1991.
    [86]孙宝田.对夹皮沟金矿集中区发现新的大型金矿床的思考[J].矿产与地质, 2003,17(6):683-686.
    [87]李碧乐,金巍,等.吉林省夹皮沟金矿成因研究[J].世界地质,1998,17(1): 22-25.
    [88]谢宏远,沈远超,等.吉林省鸡皮够金矿带几个重要地质问题的讨论[J].地质科学,2000,35(1):111-120.
    [89]孙文甲.夹皮沟金矿田大线沟金矿床地质特征[J].黄金,1 998,1 9( 3):1 0-14.
    [90]乔兰,蔡美峰,付学生.玲珑金矿工程地质调查与评价[J].黄金,2000,21 (5):1-6.
    [91]张道俊.山东玲珑金矿地质特征及深部找矿潜力分析[J].地质找矿论丛, 2006,21(增刊):39-42.
    [92]刘维民,等.玲珑金矿田东山矿床地质特征、成矿规律研究及找矿应用[J].黄金科学技术,2008,16(4):41-44.
    [93]戴立新,宿晓静,马德云,尹波.玲珑金矿田金矿成矿地质背景特征研究[J].黄金,2007,28(11):5-10.
    [94]李世忠,主编.钻探工艺学[M].北京:地质出版社,1989.
    [95]林良彪,陈洪德,侯明才.须家河组砂岩组分特征与龙门山推覆体的形成演化[J].天然气工业,2007,27(4):28-31.
    [96]邓猛,樊新胜,等.四川须家河组地层特性及其与牙齿接触的仿真分析[J].石油矿场机械,2007,36(12):7-10.
    [97]高红灿,郑荣才,等.川东北前陆盆地须家河组层序-岩相地理特征[J].沉积与特提斯地质,2005,25(3):38-45.
    [98]安凤山,王信,叶军.川西坳中段须家河组天然气勘探开发战略研讨[J].天然气工业,2005,25(5):1-5.
    [99]蒋裕强,郭贵安,等.川中地区须家河组天然气成藏机制研究[J].天然气工业,2006,26(11):1-3.
    [100]苟宗海.四川龙门山中段上三叠统须家河组特征[J].沉积与特提斯地质, 2001,21(1):93-101.
    [101]侯传彬,等.对我国金刚石钻头胎体经典配方的理论优化和建议[J].探矿工程,2005,32(8):58-59.
    [102]张绍和,邵全军.钻头金刚石浓度设计的定量计算方法[J].地质与勘探,2000,36(5):79-83.
    [103]赵全洲,张桂林,主编.钻井工程技术手册[M].北京:中国石化出版社, 2005.
    [104]吕静茹.钎焊工艺及设备[J].工业加热,2006,35(4):58-61.
    [105]李世忠.钻探工艺学(上册)[M].北京:地质出版社.1992.
    [106]孙友宏.仿生非光滑孕镶金刚石钻头研究[D].吉林大学,2005.
    [107]屠厚泽.岩石破碎学[M].北京:地质出版社,1990.
    [108]斯彼瓦克,波波夫,著.钻井岩石破碎学[M].北京:地质出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700