用户名: 密码: 验证码:
大型钢锭模涂料实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国航空航天、船舶、电力、石化对大型铸锻件需求强烈,加强对大型铸锻件相关技术的开发研究,探索技术可靠、经济合理的工艺方法,具有重要的科学价值和现实意义。大型铸锻件质量的好坏与钢锭的质量密切相关。钢锭模涂料在钢液浇注过程中,作为钢液和模壁的中间层,起着调控传热的作用,不仅仅可以减少钢液对钢锭模模壁的热冲击,从而改善钢锭凝固质量和提高钢锭模使用寿命,还有利于钢锭脱模,减少结疤等缺陷,增加钢锭的成材率。
     本文以大型钢锭模涂料为研究对象,对不同组成条件下的涂料基本配方进行实验,通过考察涂料的熔点、悬浮性、涂层厚度、涂层低温强度和高温强度等性能,并借助差热分析和物相分析,得到综合性能较好的涂料配方,在此基础上对涂料进行正交优化,得到涂料的最佳比例,并进行成本的估算。通过实验室浇注实验观察涂料的应用效果,并对大型钢锭的热环境进行了模拟,弄清楚涂料在此环境下的变化情况。主要的研究内容及结果如下:
     (1)按骨料和粘接剂的结合方式把涂料分成水玻璃结合石英质涂料、水玻璃结合铝硅质涂料、硅溶胶结合铝硅质涂料、硅溶胶结合镁质涂料、水玻璃结合镁质涂料、磷酸盐结合铝硅质涂料六个涂料组成配方,通过考察六种涂料熔点、悬浮性、涂层厚度、涂层低温烘烤后的表面质量和高温烘烤后的表面质量,并借助热分析和物相分析实验,获得综合性能较好的涂料配方。研究表明:磷酸盐结合镁铝质涂料熔点达到1450℃以上,料浆比为2:1(涂料非水组成与外加水之比)时,涂料的粘度约20泊,涂料的悬浮性达到97%,涂层厚度在0.4mm左右,涂层经过低温和高温烘烤后表面平整、无掉粉,抗开裂性为1级;双无机粘接剂结合镁质涂料1450℃以上,料浆比为2:1(涂料非水组成与外加水之比)时,涂料的粘度约20泊,涂料的悬浮性达到85%,涂层厚度在0.4mm左右,涂层经过低温和高温烘烤后表面平整、无掉粉,抗开裂性为1级。
     (2)以磷酸盐结合镁铝质涂和双无机粘接剂结合镁质涂料为实验对象,把涂料组成按五因素四水平进行正交实验优化配方,得到涂料的最佳组成,并对涂料成本进行估算。研究结果表明:磷酸盐结合镁硅质涂料组成配比为铝矾土:镁砂粉=1:6,CMC、六偏磷酸钠、硅微粉占10-30%;双无机粘接剂结合镁质涂料组成配比为镁砂粉:硅微粉=10:1,CMC、六偏磷酸钠、硅溶胶占10-25%具有较好的涂层抗开裂性、低温强度和高温强度等性能;通过涂料成本的估算,磷酸盐结合镁硅质涂料约850元/吨,双无机结合镁质涂料约730元/吨。
     (3)将优化后的磷酸盐结合镁硅质涂料和双无机粘接剂结合镁质涂料进行了实验室浇注实验,在料浆比为2:1的条件下,考察了不同涂层厚度条件下涂料的应用效果,还考察了钢锭冷、热态脱模时的应用效果。并对大型钢锭浇注的热环境进行模拟,考察涂料高温强度的变化情况。研究结果表明:涂层厚度在0.3mm时,涂层表面质量较好,经过风干和烘烤,抗裂性为1级,涂层厚度在1mm时,涂层风干后,抗裂性为3级,经烘干后,抗裂性为4级,相比之下,涂层厚度为0.3mm时涂层的抗裂性更强;冷态和热态条件下钢锭均容易脱模,热态脱模时,钢锭表面附着涂层较少,降低了钢锭表面清理工作量,涂料均不熔,减小了钢锭模所受的热冲击,保护了钢锭模;研究涂层高温强度随时间和温度的变化情况来模拟大型钢锭浇注的热环境,结果表明磷酸盐结合镁硅质涂料和双无机粘接剂结合镁质涂料对大钢锭浇注基本能够适应。
China's aviation and aerospace, shipbuilding, electric power, petrochemical strong demand for large casting and forging, strengthening of the Forging research and development related technologies to explore the technology is reliable, economical process method, Juyou important to the scientific value and practical significance. Forging their quality, and is closely related to the quality of steel ingots. Paint in liquid steel ingot mold casting process, molten steel and the die wall as the middle layer, heat transfer plays a regulatory role, not only can reduce the liquid steel ingot mold die wall on the thermal shock, in order to improve quality and increase ingot solidification Ingot mold service life, but also help ingot mold release, reduce scarring and other defects, increase the rate of finished steel ingot.
     In this paper, a large steel ingot mold coating for the study, under the conditions of the different composition of the basic formula of the coating experiments, the melting point by examining the paint, suspension, coating thickness, coating temperature strength and high temperature strength properties, and the help of differential thermal analysis and phase of analysis, good performance of paint formulations, coatings based on this orthogonal optimization to obtain the best ratio of paint, and make cost estimates. Laboratory experiments by pouring paint application effect observed, and a large steel ingot to simulate the thermal environment, clear coatings in this environment changes. The main research contents and the results are as follows:
     (1) By a combination of aggregate and form the adhesive coating into water glass coating combined with the quality of quartz, sodium silicate combination of aluminosilicate coating, silica coating combined with aluminosilicate, colloidal silica combined with magnesia coating, sodium silicate and magnesium sulfate quality coating, phosphate coating combined with aluminosilicate coatings composed of six formula, melting point by examining the six paint, suspension, coating thickness, baking temperature after coating the surface quality and surface quality after high temperature baking, and with Thermal analysis and phase analysis of experiments, and good performance of coatings formulations. The results show that: the quality of phosphate coating combined with Mg to 1450℃above the melting point of the slurry ratio of 2:1 (non-aqueous coating composition and applied to water ratio), the viscosity of about 20 parked paint, coating suspension to 97% the coating thickness is about 0.4mm, coated and low and high temperature baking the surface smooth, no dropped powder, anti-cracking resistance is one; double inorganic adhesive bonded magnesia coating above 1450℃, the slurry ratio of 2 : 1 (non-aqueous coating composition and applied to water ratio), the coating viscosity of about 20 parked, coating suspension to 85%, coating thickness is about 0.4mm, low and high temperature baking after coating the surface smooth, No swap powder, resistance to cracking of the one.
     (2) The combination of Mg, Al-quality phosphate coating and double coating inorganic adhesive bonded magnesia as the experimental object, the coating composition according to five factors, four levels Optimize the formula, get the best composition of paint, and paint cost estimates. The results show that: the quality of phosphate coating in the bauxite alumina combined 10-15%, 60-75% magnesite powder, the remaining materials account for 10-30% of the composition, the coating has good resistance to cracking, low strength and high temperature strength properties; pair of inorganic coating adhesive bonded magnesia magnesite powder in 60-75%, 0.7-1% sodium hexametaphosphate, and the remaining material composed of about 25-40%, the coating has a good Crack Resistance, low strength and high temperature strength properties; through the paint for the cost estimates, phosphate and magnesium silicon coating about 850 yuan / ton, double-inorganic bonded magnesia coating is about 730 yuan / ton.
     (3) the optimized combination of magnesium phosphate inorganic silica coating and double coating adhesive bonded magnesia casting laboratory experiments carried out in slurry ratio of 2:1 were investigated under conditions of different coating thickness effect under the application of paint, also looked at the cold steel ingot, hot stripping effect when applied. And a large steel ingot casting simulation of the thermal environment to study the changes in coating high temperature strength. The results show that: the coating thickness of 0.3mm, the coating surface quality is better, after drying and curing, cracking resistance to a coating thickness of 1mm, the coating dried, the crack is 3, after drying, the crack was four, compared to when the coating thickness is 0.3mm greater crack resistance coatings; cold and hot conditions are easy ingot stripping, thermal stripping, the ingot surface coating less attached to reduce the workload of ingot surface cleaning, coating not melt, reduces the thermal shock suffered ingot mold to protect the ingot mold; of coated high temperature strength with time and temperature to simulate the change the thermal environment of large steel ingot casting, the results show that the combination of magnesium phosphate inorganic silica coating and double coating adhesive bonded magnesia casting of large ingots basic to adapt.
引文
[1]曲宗实,王莉莉.“九五”大型铸锻件市场需求情况分析[J].重型机械, 1997,(04).
    [2]曲宗实.我国大型铸锻件重点产品品种的发展[J].重型机械, 1996,(05).
    [3]报告编号(No):29556. http://www.chinabgao.com/.2008-2010年中国锻造件市场深度调研与发展前景预测报告.
    [4]报告编号(No):29556. http://www.chinabgao.com/.2009-2012年中国大型铸锻件行业市场分析及投资价值研究报告.
    [5]肖柯则编.铸型涂料[M] .北京:机械工业出版社,1985.
    [6]官克强.特种铸造[M] .北京:机械工业出版社,1982.
    [7]高葛.金属型铝矾土涂料的研制[J].西安航空技术高等专科学校学报,2004.
    [8]靳玉春,党惊知,许小忠.黑色金属铸件用铝矾土金属型涂料[J].太原机械学院学报,1991.
    [9]栾舰,田凤仁. PBTO1型钢锭模涂料工艺参数初探[J].鞍山钢铁学院学报,1999.
    [10]冯胜山,朱松林.粘土湿型砂用新型醇基喷涂涂料的研究与应用[J].铸造,2005,54(1):65-69.
    [11]顾国涛.铸造涂抖流变性测试方法的研究[J].铸造.1982,(3).
    [12] USA PATENT.Number:3212145.
    [13] H.J.Kim.The application of thermal sprayed coating for pig iron ingot molds[J].Journal of thermal spray technology.Vol5(4),December 1996 (463-468).
    [14] Molokov.B.A. Lowering specific ingot mould consumption in bottom pouring of steel[J]. Steel in the USSR, v 20, n 1, Jan, 1990:20.
    [15] Wada. Effect of mould coatings on the surface defects in ingots[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, v 73, n 6, Apr, 1987: 684-690 Language: Japanese.
    [16] Connors. Ingot mold for producing steel ingots. US Patents Number: 4093778.
    [17] Mason. Ingot mold shields.Patent number:4465117.
    [18] J.L.Lee and S.C.Lee.Thermal Fracture Endurance of Cast Irons with Application Study of Pig Iron Ingot Molds[J].Metall.trans.A,Vol26,1995:1431-1440.
    [19] Y.Shimizu,M.sato,M.Kobayashi,and T.Ikeda,Applicability of Thermally Sprayed Zirconia Coating to Castings to Casting Mold dressings,Thermal Spray[J]. Research and Application, T.F.Bernecki, Ed.ASM International,1990:521-526.
    [20] M.D.Modi,and M.M.Mayuran,A Case Study on the use of Plasma Sprayed Oxide Ceramic Coatings in Hot Extrusion Dies for Non-Ferrous Metals[J],Advances in Thermal Spraying,8-12 Sept 1986,welding Institute of Canada:359-366.
    [21] D.J.Sordelet,T.W.Ellis,and I.E.Anderson,Non-Contaminating Plasma Arc Sprayed Crucible Coatings for Containing Molten Ceramic Oxides[J].Therm,Spray Technol.Vol 2,1993:385-392.
    [22] E.L.Bird and C.E.Holcombe,Jr.Investigation of Plasma Sprayed Laminates for High Themperaure Melting Openations[J],Thermal Spray:International Advances in Coatings Technology, C.C.Berndt,Ed.ASM International,1992:625-629.
    [23] W.Ellis,D.L.Sordelet,and F.C.Laabs,Evaluation of Plasma Sprayed Crucible Coatings for Melt Processing Copper-Reffractory Metal Alloys[J],Thermal Spray:International Advances in Coatings Technology, C.C.Berndt,Ed.ASM International,1992:631-636.
    [24] G.Jiacheng and Z.Yaping,Application of Graded Ceramic Coatings for Thermal Barriers. Surf[J].Coat.Technol,Vol63,1994:93-96.
    [25] Grutzner and H.Weiss,Devlopment of Plasma Spraed Ceramic Coatings against Slag Attack for the Steel Industry[J],Advances in Thermal Spraying,8-12 Sept 1986,Welding Institute of Canada:349-358.
    [26] D.Maier,C.M.Scheuamann,and C.W.Andrews,Degradation of a Two Layer Thermal Barrier Coating under Thermal Cycling[J],J.Am.Ceramic Soc.,Vol 60(No.5),1981:555-561.
    [27] D.Miller and C.E.Lowell,Failure Mechanisms of Thermal Barroer Coatings Expoed to Elevated Themperatures[J],Thin Solid Films,Vol 119,1984:173-184.
    [28] A.Miller.Oxidation-Based Model for Thermal Barrier Coating Life[J],J.Am.Ceramic Soc.,Vol 67(NO.8),1984:517-521.
    [29] IST research project 94A126:ohang,Korea,1995.
    [30] J.R.Brandon and R.Tayer:hase Stability of Zirconia-Based Thermal Barrier Coatings[J].Part1. Zirconia-Yttria Alloys,Surf.Coat.Technol.,Vol 46,1991:75-90.
    [31] T.sato and M.Shimada,Transformation of Yttria-Doped Tetragonal ZrO2 Polycrystals by Annealing in Water[J].J.Am.Ceramic Slc.,Vol 68(NO.6),1985:356-359.
    [32] K.Yasuda,S.Suenaga,K.Wada.S.Arai,M.Itoh,and H.Takeda:hase Transformation of Plasma Sprayed Zirconia-Yttria Coatings during Hydrothermal of Aging,Thermal Spraying[J],Current Status and Future Trends,A.Ohmori,Ed.,High Temperraure Society of Japan,1995:1139-1144.
    [33]和田忠义等.涂料对铸锭表面缺陷的影响.钢铁.
    [34]郑德怀等.涂料在快速上注中的应用.一炼钢厂.
    [35]达世全等.BX-1上注沸腾钢底板涂料的研制.
    [36]吕小婉等.钢锭模涂料涂模工艺的研究[J].应用技术.
    [37]李洪君等.GMT-S(X)型固体钢锭模涂料研究.非金属矿,1998,NO.4.
    [38]栾舰. PBT-1型钢锭模涂料工艺参数的研究[J].鞍山钢铁学院学报,1994,4,22(2).
    [39]宋义全,刘宗昌.新型钢锭模涂料的研究与应用[J].包头钢铁学院学报, 1996,(01).
    [40]杜成武,李广田,朱苗勇.影响大型钢锭锭模使用寿命的因素[J].特殊钢, 2003,(03) .
    [41]韩端如.改进钢锭模的结构[J].包钢科技, 1989,(01)
    [42]朱建华,贾瑞琦.提高钢锭模使用寿命的试验研究[J].中国铸造装备与技术, 1995,(04) .
    [43]吴刚,刘文波.提高钢锭模使用寿命的研究[J].鞍钢技术, 1999,(02).
    [44]李友好.铝合金铸件的金属型铸造[J].湖南工业职业技术学院学报, 2003,(02).
    [45]何素立.金属型高铬铸铁磨球[J].石家庄职业技术学院学报, 2002,(02).
    [46]张炳勤.三氧化二铝涂料在铝合金铸件上的应用.五二研究所.
    [47]黄雁鸣,蒋世芳,凌亮其.镁砂铸钢涂料:中国,90105575.1[p],1991-07-24.
    [48]黄乃瑜,叶升平,罗吉荣等.金属型系列涂料:中国,94104236.7[p],1994-10-24.
    [49]林琨程,张育成,郑景亮.高温隔热涂料:中国,200510134166.3[p],2007-04-07.
    [50]曹博海.改良的消失模用水基涂料:中国,CN200510038287.8[p], 2005-01-28.
    [51]关绍巍,张守国,姜振华.水基聚芳醚砜类分散液及其制备方法:中国, CN200510016655.9[p], 2005-03-25.
    [52]张友寿,黄晋,夏露.醇基或水基砂粉防渗透粘砂铸造涂料:中国,CN200510018167.1[p], 2005-01-18.
    [53] S.吴,F.B.-H.陈可自交联的水基涂料组合物:中国,CN03821932.8[p], 2003-09-18.
    [54]张健,周静一,黄蓄芳.一种无污染水基浸涂涂料:中国,CN200610046059.X[p], 2006-03-16.
    [55]高申明,邹仕魁,刘玉满.无水水基镁橄榄石粉状涂料:中国, CN200510019692.5[p], 2005-10-28.
    [56]吴存雷,孔德全.一种水基导电涂料:中国, CN200510110042.1[p], 2005-11-04.
    [57] M.W.平特,M.拉希姆.高耐磨性水基涂料:中国, CN200480010531.3[p], 2004-04-13.
    [58]何新照,丁奋.一种用于水基涂料的颜料润湿分散剂.中国, CN200410084287.7[p], 2004-11-17.
    [59]高申明,邹仕魁,刘玉满.复合刚玉水基粉状涂料:中国, CN200510019969.4[p], 2005-12-05.
    [60]林秀清,大卫.吉巴拉,安东尼.利普尔.水基聚合物组合物和由其制造的制品:中国, CN200480022048.7[p], 2004-07-29.
    [61]张亚平,高家诚,盛世雄.金属陶瓷倾斜涂层的热障作用[J].重庆大学学报(自然科学版).1993,(03).
    [62]王学兵,张幸红,杜善义.梯度热障涂层的研究现状[J].中国表面工程,2004,(03).
    [63]徐小荣,潘春旭,杨世柏.金属/陶瓷梯度热障涂层热震过程中的显微组织研究[J].武汉交通科技大学学报,2000,(01).
    [64]孙文明,刘南平.攀钢模铸用复合渣的研制与应用[J].钢铁钒钛,1994,(04).
    [65]张务达.压模铸造面临新的挑战[J].武汉工业学院学报,1994,(01).
    [66]冯贵刚.“复合渣+微珠绝热板”工艺在浇铸无缝管坯钢锭上的应用[J].四川冶金,1994,(01).
    [67]李秋菊,徐小连,刘东.镍铬合金钢钢坯抗高温氧化涂料作用原理探讨[J].鞍钢技术,2000,(12).
    [68]葛岭梅,代爱萍,李天良.热分析技术在防火涂料中的应用[J].西安科技学院学报,2002,(01).
    [69]杜拴丽,李迎春.正交试验法在涂料研制中的应用[J].山东建材,2000,(01).
    [70]张巧生.正交试验法应用初探[J].交通标准化,1988,(03).
    [71]夏华.应用正交试验法优化工艺参数设计[J].现代制造工程,1989,(09).
    [72] http://b2b.hc360.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700