用户名: 密码: 验证码:
V-EPC表面合金化及其在导卫板生产中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以生产高质量的轧机导卫板为切入点,较系统的研究了V-EPC表面合金化及其应用技术。导卫板本体为ZG40Cr,利用正交试验法探讨粘接剂种类、合金粉颗粒度、合金膏块厚度、助熔剂种类对表面合金化效果的影响,寻求合金膏块各种工艺因素的最佳组合;在确定合金膏块工艺之后,探讨了浇注温度、负压真空度对表面合金化效果的影响;并较详细的研究了合金膏块中碳、铬、镍、钼、硼五元素对导卫板表面合金层成分、组织、性能的影响,确定了最佳的合金膏块成分。同时结合导卫板实际工况,进行了复合材料的抗激冷激热性能、高温抗氧化性能与高温组织稳定性能的研究。最后对V-EPC表面合金化过程进行了热力学与动力学分析。
     试验结果表明:采用负压实型铸造(V-EPC)进行复合材料导卫板的生产有利于提高合金层表面质量。这种工艺比采用其它表面合金化方法制造的导卫板所产生的缺陷明显减少,并且合金层组织均匀。
     试验研究表明:采用V-EPC铸造复合材料导卫板,最佳的合金膏块工艺组合为:粘结剂为硅酸乙酯,助熔剂为4%硼砂,合金粉粒度为100目(0.154mm)左右,合金膏块厚度为3mm左右:最佳V-EPC铸造工艺因素为:浇注温度为1550℃左右,负压真空度为0.03-0.05MPa。其合金膏块成份为含碳2.0%、含铬45%、含镍12%、含钼0.6%、含硼0.6%左右。
     对V-EPC表面合金化工艺制造的表面合金化导卫板耐热性能的研究表明:表面复合导卫板具有良好的耐热性能,其高温抗氧化性能与高铬铸铁基本相当,其抗激冷激热性能为高铬铸铁的3-4倍。表面合金化导卫板具有良好的高温稳定性,在正常使用温度800℃时,基本能保持较为稳定的组织形态,此时仍能保证导卫板正常工作。到900℃时,将会有较高硬度的二次碳化物Mo_2C在奥氏体基体中析出,它不但不影响导卫板的正确使用,反而有利于导卫板在高温下保持较为良好的耐磨性。
In this paper, Surface alloying process by V-EPC and application technique on guide were studied systematically, the base metal is ZG40Cr. To obtain optimal collocation of alloy coating process factor, the effect of specials of binder, alloy powder grain size, thickness of alloy coating, and fluxing agent on surface alloying were discussed with orthogonal experiment. After ascertained the alloy coating process factor, the effect of pouring temperature and vacuum on surface alloying were studied. To obtain the suitable alloy powder composition, effect of the content of carbon, chromium, nickel, molybdenum, and boron on the composition,microstructure, and performance of alloy layer were studied in detail. At the same time, the spalling resistance, inoxidizability and structure stability property of composite guide were studied at high temperature. Finally, the analysis of thermodynamics and dynamics were conducted during surface alloying.
    The results show that making the composite guide by V-EPC process is in favor of improving the surface qualities of alloy layer, the defects are reduced in evidence and the microstructure of alloy layer become more uniform.
    The results show that the suitable alloy coating process is as follows: binder is ethyl silicate,
    fluxing agent is 4% boron, grain size of alloy powder is 100#(0.154mm), thickness of alloy coating is Smm.the suitable V-EPC process factor is as follows: pouring temperature is 1550℃, vacuum degree is 0.03-0.05MPa.the suitable alloy powder composition is about 2.0% carbon, 45% chromium, 12% nickel, 0.6% molybdenum, and 0.6% boron.
    The research on surface alloying guide in V-EPC process shows that surface alloying guide have excellent heat-resistant property, the spalling resistance is 3-4 times of high-chromium cast iron and inoxidizability is equal to high- chromium cast iron. Surface alloying guide has well structure stability at high temperature. At about 800 ℃,the basic stable microstructure can be held , the normal using can be ensured .Even at 900℃ , MoiC that have upper hardness began to separate out in austenitic matrix, which will not affect the normal using of guide ,even helps to improve the wear-resistant property at high temperature.
引文
[1] 袁绪华,汪大经,代振福等.铸铁件表面合金化的研究与应用.铸造,1987 (1):6-12
    [2] 符寒光,戊豫.铸件表面合金化工艺的研究.新技术新工艺,1996 (2):18
    [3] 黄国栋.铸件表面合金化的发展.机械工程,1991,VoL.2,№2:22-23
    [4] J. S. Hansen. Cast-On Surfacing of Polystyrene Pattern Castings. AFS Transaction. 1983: 65-70
    [5] 张金山,赵沛廉,董寅生等.熔铸法制造耐磨复合材料.新技术与新工艺,1993 (1):11-13
    [6] 蔡震升,王锡岩,熊仲明,宋维锡.铸渗棚对灰铸铁钢锭模寿命的影响.铸造技术,1992 (6): 3-6
    [7] 王锡岩,蔡震升.铸渗稀土灰铁钢锭模的研制.热加工工艺,1991 (8):12-13
    [8] 徐志明,刘亿,尹志新,余江龙.用铸渗法改善球铁铸件表面耐磨性的研究.铸造技术,1992 (6):28-30
    [9] 严有为,汪大经.铸渗涂料的研究及其应用.铸造,1994 (12):10-12
    [10] 朴东学,孙超英,谢华生等.表面合金化冲压模具的铸造.铸造,1997 (10):31-34
    [11] 许斌,杨胶溪,冯承明.灰铸铁表面WC颗粒—高铬铸铁铸渗层研究.热加工工艺,1998 (6):10-11
    [12] 汪大经,严有为.铸渗合金化研究.武汉工学院学报,1991 (9):21-27
    [13] 张正洋.铸渗WC复合材料的研究.铸造,1993 (4):18-22
    [14] 刘日平等.铸造表面合金化热力学分析.钢铁,1995 (11):38-41
    [15] 王华明,纪嘉林.铸钢件表面硬质颗粒复合层凝固过程的探讨.铸造,1991 (8):17-20
    [16] 沈蜀西,李维民,刘炳等.铸铁渗铬层形成机理的研究.铸造技术,2000 (4):40-42
    [17] 沈蜀西,李维民,徐彰德.铸渗机理及改善铬铸渗层质量的研究.铸造技术,1995 (2):43-47
    [18] 付其蔼等.真空实型铸造.新时代出版社.1991.5:15-58
    [19] H. E. Shroyer. Cavityless Casting Mold and Method for Making Same. US Patent NO.2, 830, 343 (1958)
    [20] J. D. Ballacchino. Market Profile of EPC Foundries. Proceedings of Expendable Pattern Casting: Managing the Technology, Sep.21—23, 1993. Birmingham, Alabama, USA, 2-1~2-31
    [21] M. W. Swartzlander. Assessment of EPC in Europe & Asia. Proceedings of Expendable Pattern Casting: Managing the Technology, Sep. 21—23, 1993. Birmingham, Alabama, USA, 3-1~3-16
    [22] 许大庆,罗吉荣,宋象军.V-EPC铸渗工艺的研究.铸造设备研究,1999 (2):3-6
    [23] 阎峰云,李元东,蒋春宏.V-EPC铸渗表面合金化研究.铸造设备研究,2001 (2):13-16,44
    [24] 夏亚锋,张元好,丁洁淼.V-EPC铸渗铁基复合材料的研究.铸造技术,2001 (3):54-56
    [25] 夏亚锋,张元好,丁洁淼.V-EPC铸渗工艺的试验研究.铸造设备研究,2001 (2):13-15
    [26] 纪朝晖,张成军.消失模铸钢件表面合金化铸渗机理研究.铸造,2000 (3):130-133
    
    
    [27] 纪朝晖,张成军.消失模铸铁件表面合金化的研究.中国表面工程,1999 (4):25-28
    [28] 陈群,王丙元.多元高铬钼铸钢导卫板的研究与应用.中国钼业,1999 (8):13-14,21
    [29] 符寒光.复合变质处理高铬铸钢导板的研究与应用.上海金属,1998 (5):43-46
    [30] 陈振华,沈百令,魏世忠等.表面合金化导板的研制.轧钢,1990 (2):29-33
    [31] 陈振华,魏世忠,刘亚明.新型复合材料导卫的研制.轧钢,1997 (6):43-45
    [32] 罗文龄,邹忠霖,毛丽青.提高中轧机导卫板寿命的新途径.机械工程师,1999 (3):54
    [33] 符寒光,戊豫.铸件表面合金化工艺的研究.铸造,1996 (2):2
    [34] 魏世忠,刘亚民,陈振华等.复合金属材料导卫板的研制与应用.轧钢,1994 (12):56,62
    [35] 陈振华,沈百令,魏世忠等.铸件表面合金化工艺的研究.洛阳工学院学报,1989 (12):7-14
    [36] 许昌淦,周鹿宾.合金钢与高温合金.北京航空航天大学出版社,p11
    [37] G. Henry, J. Plateau, X. Wache, M. Palmier-Gerber, I. Behar and C. Crussard, "Quelques essais relatifs á la rupture á froid et á chaud d'ailiages 80 Ni-20Cr au titane et ál aluminium-Influence d'une addition de bore", Mét.,58 (1961) pp.82-86
    [38] W. E. Bardgett and L. Reeve, JISI, 163 (1949), p227
    [39] ph. Maitrepierre et al., Mem. Sc. Rev. Met., Dec. 1976, p335
    [40] 陈兆能,邱泽麟,余经洪 试验分析与设计.上海交通大学出版社,1991,12:25-43
    [41] 吴贵生,于治福,于淑政等.试验设计与数据处理.冶金工业出版社.1997,1:60-92
    [42] 孙荣桓,黄雯莹,伊亨云.数理统计.重庆大学出版社.1996,2:218-236
    [43] 钢的显微组织与性能.R.W.K.霍尼库姆.冶金工业出版社.1985,7,63-75
    [44] I. P. Bulygin, E. F. Trusova and P. M.. Seliverstova, Metallovedenyei Obrabotka Metaliov (1956) n' 11, pp. 10-14
    [45] J. Salvaggi and L. A. YerKovich, "High Temperature Rupture Strenth Properties of Chromium-Nickel stainless Steels containing Titanium and Boron", Trans. ASM, 49(1957) pp. 761-777
    [46] D. L. Loveless and F. K. Bloom, "Boron Solves Hot Shortness in stainless Steels", Iron Age, 179(1957) pp. 95-97
    [47] R. F. Decker and J. W. Freeman, "Mechanism of Beneficial Effect of Boron and Zirconium on Creep-Kupture Properties a Complex Heat-Resistant Alloy", J. Metals, 10(1958) p. 102
    [48] W. J. Penington, "Improvement in High-temperature Alloyss by Boron and Zirconium", Metals Process, 73(1958) pp. 82-86
    [49] S.K.巴纳吉,J.E.莫罗尔.钢中的硼.冶金工业出版社,1985,7:100-133
    [50] 符寒光,刘金海.复合轧钢机导卫板的研制.中国铸造装备与技术,1998(5):30-32
    [51] 倪志坚,邹友忠,曹关中等.几种热浸镀层抗高温氧化性能的比较.铸造,2001.vol.50.10:24-26
    
    
    [52] 徐学霞.等离子喷涂及反应形成的梯度耐热涂层的研究.河北工业大学硕士学位论文,2000,1:12-14
    [53] 郑郁文,邵支农,周克维.钼对真空实型铸造履带板质量的影响.铸造,2001.vol.50.10:634-636

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700