用户名: 密码: 验证码:
高超声速气动热数值模拟方法及大规模并行计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动热一直是设计人员极为关切的重要问题。高速飞行器以超声速或高超声速在空中飞行,对前方气体剧烈压缩和粘性阻滞,使温度急剧升高,并产生离解、电离等反应,带来“热障”和“黑障”等一系问题。气动热对飞行器带来较大影响,必须准确预测飞行器的热环境,为热防护提供指导和参考。
     本文对高超声速气动热开展了数值模拟研究。考虑量热完全气体条件和高温热化学非平衡条件建立了数值模拟方法,基于消息传递库,发展了两种气体模型的高超声速气动热并行计算方法,编制了相应的计算程序,开展了气动热并行计算研究。
     通过对8种差分格式的计算分析,对比了各种格式对膨胀波、激波及接触间断的分辨率,讨论了各种格式的粘性机理和优劣。计算表明,差分格式对间断和粘性的处理,是提高格式精度和影响格式优劣的关键。其中迎风类格式具有符合信息的传播方向和耗散性能的天然优势,是当今格式发展的主流。其中AUSM类格式兼有FVS和FDS的优势,表现出良好的性能。应用五种限制器针对激波管Riemann问题进行了计算分析,研究表明采用限制器,通过MUSCL高阶插值方法,可以有效提高的计算效率和计算精度。使用中,应权衡压缩性和耗散性,合理选择限制器。
     建立了量热完全气体模型的气动热数值模拟方法,对气动热数值模拟中的网格因素和收敛性进行了深入研究。气动热的数值模拟中,网格因素非常关键,计算结果对网格,特别是壁面附近的法向网格间距十分敏感。近壁面的巨大温度梯度是网格相关性敏感的主要原因。气动热数值模拟实践经验表明,壁面第一层网格雷诺数小于10的网格判别标准相对简单有效。气动热计算的收敛比压力缓慢的多,以压力和方程残值下降量级作为热流收敛判别标准是不适合的;而以机器零点为判别保证收敛,但太过耗时。相对而言,直接观察气动热数据的收敛是比较有效的方法。
     建立了高温热化学非平衡条件下的气动热数值模拟方法,采用包含Park双温模型、Gupta空气多组分和有限速率化学反应模型的全NS方程进行气动热数值求解。对化学生成和振动能源项采用了隐式处理,发展了带有源项的LU-SGS数值求解方法,提高了计算效率。利用所建立的数值模拟方法,对二维和三维算例进行了气动热数值模拟研究,分析了热化学非平衡条件下,不同非平衡模型、热流构成及催化壁的影响。计算表明所建立的热化学非平衡流数值模拟方法具有较高的精度。
     基于消息传递库(MPI),对量热完全气体模型和热化学非平衡模型的气动热数值模拟程序并行化处理,发展了适合复杂外形的多区大规模并行气动热计算软件。在自行搭建的PC集群并行系统和高性能集群系统上,通过多个算例,开展了气动热计算与分析,计算结果表明所发展的气动热并行计算软件具有较高的计算精度、并行效率和良好可扩展性,可以应用下进一步的工程计算中。
Aeroheating has been an important issue for hypersonic vehicles. As hypersonic vehicles fly through the atmosphere, the kinetic energy associated with high velocity is converted into increasing the temperature of the air and into endothermic reactions, such as dissociation and ionization of the air near the vehicle surface. High temperature causes“thermal barrier”and“black barrier”problems which will bring a great impact on the aircraft. Thus we must accurately predict thermal environment and provide guidance and reference for thermal protection.
     The present dissertation is about research of numerical simulation methods and hypersonic aerothermal computations. Numerical methods were conducted for calorically perfect gas and high temperature thermochemical nonequilibrium gas. Using MPI(Message Passing Interface), parallel methods were developed. Hypersonic computation softwares based on the above methods for the two gas models were coded, and massive parallel computations were carried out for hypersonic aeroheating problem.
     Eight difference schemes and five limiters are applied in numerical computation of Riemann problem. Performance of each scheme is compared for expansion wave, shock discontinuity and contact discontinuity simulation. Numerical dissipation and it’s expediency are discussed. The computation shows that the ability to resolve viscosity and discontinuity is vital to improve scheme’s accuracy and quality. The upwind schemes which accord with feature wave propagating direction and avoid the use of artificial viscosity by being inherently dissipative have been the mainstream of current scheme development. AUSM scheme, combining the efficiency of FVS(Flux Vector Splitting) and the accuracy of FDS(Flux Difference Splitting) has favorable properties. MUSCL method is effective to increase computational efficiency and precision. Limiter should be selected appropriately by balancing compressive and diffusive performance.
     Hypersonic aerothermal simulation method for calorically perfect gas flow is conducted, Grid effect and iteration convergence are investigated using CFD(Computational Fluid Dynamics) method in blunt flow. Grid effect is crucial to aerothermal simulation. Heat transfer prediction is very sensitive to grid spacing in normal direction near the wall. Great temperature grad result in grid sensitivity for heat transfer simulation. The computation showed that the Cell Reynolds Numbers<10 is the effective criterion for computation mesh. Aeroheating computation converged slower than pressure and flow field significantly. When accurate surface-pressure is worked out it can not guarantee converged heat-transfer values. Judging with Machine Zero can guarantee heat flux convergence but is a little time-consuming. Observing convergence of heat flux directly is an effective method. It is considered that viscosity charging in boundary layer induce to slow heat transfer convergence.
     Hypersonic aerothermal simulation method for High temperature thermochemical nonequilibrium flow is developed. The reacting Navier-Stokes equations including Park’s two temperature model, Gupta’s air multi-species reaction model and vibrational relaxation were solved to compute aerothermal load. chemical and vibrational source terms are calculated implicitly which diminishs the stiffness of the calculation, accelerates the calculation’s convergence. The LU-SGS numerical method with source terms was deduced to do the hypersonic aerothermal computation in thermochemical nonequilibrium flow which improves the calculation’s efficiency. The researches on different nonequilibrium models, heat flux constitute and surface catalysis property were discussed. The numerical results are compared to available experimental data, which proved that the proposed methods are of higher-order accuracy.
     Parallel computation of hypersonic flow field was performed with computational fluid dynamics method. Based on MPI(Message Passing Interface) the CFD parallel aeroheating computation program both for ideal gas flow and high temperature nonequilibrium flow was developed. Multi-blocks parallel aeroheating computation for several cases were performed in PC cluster and high performance cluster system. The computation results indicate that the program and method were acceptable, and could be used for following massive parallel computation and engineering application.
引文
[1]欧阳水吾,谢中强.高温非平衡空气绕流[M].北京:国防工业出版社,2001
    [2]乐嘉陵主编.再入物理[M].北京:国防工业出版社,2005
    [3]姜贵庆,刘连元.高速气流传热与烧烛热防护[M].北京:国防工业出版社,2003
    [4]张志成主编.高超声速气动热和热防护[M].北京:国防工业出版社,2003
    [5] Najafiyazdi A. An Engineering Method for Aerodynamic Heating Prediction of Biconic Configuration in 3-D Hypersonic Flow [R].AIAA 2005-4827. 2005.
    [6] Liechty D S. Aeroheating Characteristics for a Two-Stage-To-Orbit Concept During Separation at Mach 6 [R].AIAA 2005-5139. 2005.
    [7] McI1wain S, Chen S, Khalid M. CFD Inestigation of Fin Aeroheating on A Hypersonic Projectile [R].AIAA 2003-1240. 2003.
    [8] Launius R D. Hypersonic Flight: Evolution from X-15 to Space Shuttle [R].AIAA 2003-2716. 2003.
    [9] Charles E. Cockrell J, Auslender A H, White J A, et al. Aeroheating Predictions for the X-43 Hyper-X Cowl-Closed Configuration at Mach 7 and 10 [R].AIAA 2002-0218. 2002.
    [10] Austin K J. Evolutionary Design of Robust Flight Control for a Hypersonic Aircraft [D]. Brisbane:The University of Queensland,2002.
    [11] Aso S, Hayashi K, Mizoguchi M. A Study on Aerodynamic Heating Reduction due to Opposing Jet in Hypersonic Flow [R].AIAA 2002-0646. 2002.
    [12] Cowart K K. A method for Integrating Aeroheating into Conceptual Reusable Launch Vehicle Design [R].ADA381551. 2000.
    [13] Prabhu D K, Loomis M P, Venkatapathy E, et al. X-33 Aerothermal Environment Simulations and Aerothermodynamic Design [R].AIAA 98-0868. 1998.
    [14]刘洪.复杂外形高速飞行器网格生成及气动加热数值模拟研究[D].上海:上海交通大学,2000,3.
    [15] Davis R T. Numerical Solution of the Hypersonic Viscous Shock Layer Equations [J]. AIAA Journal, 1970, 8 (5)
    [16] Harris H H. Approximate Method of Predicting Heating on the Windward Side of Space Shuttle Orbiter and Comparisons with Flight Data [R].AIAA 82-0823. 1982.
    [17] Shinn J L, Moss J N, Simmonds A L. Viscous Shock-Layer Heating Analysis for the Shuttle Windward Symmetry Plane with Surface Finite CatalyticRecombination Rates [R].AIAA 82-0842. 1982.
    [18] Holden M, Kolly J, Martin S. Shock/Shock Interaction Heating in Laminar and Low-Density Hypersonic Flows [R].AIAA 96-1866. 1996.
    [19] Holden M, Sweet S, Kolly J, et al. A Review of the Aerothermal Characteritics of Laminar, Transitional and Turbulent Shock/Shock Interaction Regions in Hypersonic Flows [R].AIAA 98-0899. 1998.
    [20] Holden M S. Studies of Potential Fluid-Mechanical Mechanisms for Enhanced Stagnation-Region Heating [R].AIAA 85-1002. 1985.
    [21] Holden M S, Moselle J R. A Database of Aerothermal Measurements in Hypersonic Flow for CFD Validation [R].AIAA 92-4023. 1992.
    [22] Holden M S, Wadhams T P. A Database of Aerothermal Measurements in Hypersonic Flow in "Buliding Block" Experiments for CFD Validation [R].AIAA 2003-1137. 2003.
    [23] Hoffmann K A, Papadakis M, Suzen Y B. Aeroheating and Skin Friction Computations for a Blunt Body at High Speeds [R].AIAA 94-0445. 1994.
    [24] Hoffmann K A, Siddiqui M S, Chiang S T. Difficulties Associated with the Heat Flux Computations of High Speed Flows by the Navier-Stokes Equations [R].AIAA 91-0457. 1991.
    [25] Hoffmann K A, Suzen Y B. Numerical Computation of High-Speed Base Flows [R].AIAA 97-15746. 1997.
    [26] Siddiqui M S, Hoffmann K A, Rutledge W H. A Comparative Study of the Navier-Stokes Solvers with Emphasis on the Heat Transfer Computation of High Speed Flows [R].AIAA 92-0835. 1992.
    [27] Suzen Y B, Hoffmann K A. Performance Study of Turbulence Models for Heat Transfer Predictions [R].AIAA 97-33278. 1997.
    [28] Lee J H, Rho O H. Numerical Analysis of Hypersonic Viscous Flow about a Blunt Body Using Roe's FDS and AUSM+ Schemes [R].AIAA 97-2054. 1997.
    [29] Lee J H, Rho O H. Accuracy of AUSM+ Scheme in Hypersonic Blunt Body Flow Calculations [R].AIAA 98-1538. 1998.
    [30] Dietiker J-F, Hoffmann K A. Challenges in the Heat Transfer Computations of High Speed Flows [R].AIAA 2004-993. 2004.
    [31]段占元,童秉刚,姜贵庆.高分辨率有限差分-有限元混合方法及其在气动热计算中的应用[J].空气动力学学报, 1997, 15(4)
    [32]段占元,童秉刚,姜贵庆.三维物体表面摩阻的有限元算法[J].空气动力学学报, 2000, 18(1)
    [33]姜贵庆,童秉刚.以有限元方法为主体的计算气动热力学[J].力学与实践, 1992, 14(3)
    [34]周伟江,姜贵庆.迎风TVD格式在粘流计算中的应用研究与改进[J].计算物理, 1999, 16(4)
    [35]艾邦成,姜贵庆,童秉刚.复杂外形飞行器层流和湍流热环境数值预测研究[C].四川绵阳:中国第一届近代空气动力学与气动热力学会议论文集CARS-2006 0 0055,2006.8
    [36]黄唐.流场、热、结构一体化数值模拟[D].北京:北京空气动力研究所,1999,1.
    [37]黄唐,毛国良,姜贵庆, et al.二维流场、热、结构一体化数值模拟[J].空气动力学学报, 2000, 18(1)
    [38]谢中强,欧阳水吾.三维N-S方程计算隐式有限体积法[J].力学学报, 1998, 30(6)
    [39]欧阳水吾,谢中强.非平衡化学反应流场NS方程计算研究[J].计算物理, 1997, 14(1)
    [40]黎作武,陶小川,张涵信.高超声速绕钝锥流动的气动热数值模拟与可信性分析[J].航空计算技术, 2004,8, 34(增刊)
    [41]黎作武,张涵信.高超声速航天飞行器气动热特性的数值模拟[C].全国计算流体力学会议论文集(第十届),
    [42]黎作武,张涵信.高超声速气动热高精度计算方法研究[C].四川绵阳:中国第一届近代空气动力学与气动热力学会议论文集CARS-2006 0 0064,2006.8
    [43]贺国宏,高晓成. NS3D2000软件及其在高超声速粘性流动求解中的应用[C].吉林:全国高超声速气动力(热)学术交流会议文集(第十二届),2003
    [44]贺国宏,高晓成,庞勇.高超声速再入体表面热流数值模拟研究[J].空气动力学学报, 2001, 19(2)
    [45]贺国宏,张涵信.带配平翼钝体高超声速粘性绕流的数值模拟[J].空气动力学学报, 1997, 15(4)
    [46]乐嘉陵,詹妮迈德芙VL等.高超声速飞行器表面气动热和粘性摩擦力计算[J].流体力学实验与测量, 2002, 16(1)
    [47]贺旭照.高超声速飞行器气动力气动热数值模拟和超声速流动的区域推进求解[D].绵阳:中国空气动力研究与发展中心,2007.3.
    [48]贺旭照,赵慧勇,乐嘉陵.吸气式高超声速飞行器气动力气动热的数值模拟方法及应用[J].计算物理, 2008.10, 25 (5):555-560.
    [49]刘昕,邓小刚,毛枚良.高超声速飞行器外形热流密度分布计算的高精度方法研究[J].宇航学报, 2006.3, 27 (2):157-161.
    [50]耿湘人,桂业伟,王安龄.微型凸起物高超声速气动热特性研究[J].空气动力学学报, 2006.6, 24 (2):265-268.
    [51]石清,李桦.复杂外形飞行器热流的NND有限元数值计算方法[J].空气动力学学报, 2009.4, 27 (2):210-213.
    [52]谢锦睿,吴颂平,王浩.绕钝锥高超音速流动中的热流计算[J].航空计算技术, 2004,8, 34(增刊)
    [53]王浩.高超音速流动数值模拟与热流数值计算[D].北京:北京航空航天大学,2002,12.
    [54]李君哲,阎超,柯伦, et al.气动热CFD计算的格式效应研究[J].北京航空航天大学学报, 2003, 29(11)
    [55]阎超,禹建军,李君哲.热流CFD计算中格式和网格效应若干问题研究[J].空气动力学学报, 2006, 24(1)
    [56]谢锦睿,吴颂平. TVD格式的改进及其在高超声速流动表面热流计算中的应用[C].四川绵阳:中国第一届近代空气动力学与气动热力学会议论文集CARS-2006 0 0013,2006.8
    [57]康宏琳.高超声速湍流气动加热的数值模拟研究[D].北京:北京航空航天大学,2007.
    [58]王发民,沈月阳,姚文秀, et al.高超声速升力体气动力气动热数值模拟[J].空气动力学学报, 2001, 19(4):439-445.
    [59]朱庆勇,余怀忠,马延文, et al.迎风紧致格式与热流计算[J].数值计算与计算机应用, 2001,9,第3期
    [60]董威.高速飞行器气动加热问题的数值模拟研究[D].上海:上海交通大学,1999.
    [61]黄春生.高超声速气动加热数值模拟[D].上海:上海交通大学,2003,1.
    [62]吴杰.基于OpenGL的复杂外形气动加热数值模拟平台的研究与实现[D].上海:上海交通大学,2003,1.
    [63]范晓樯,李桦,丁猛.钝头双锥体有攻角表面热流计算[J].兵工学报, 2002, 23(1)
    [64]夏刚,程文科,秦子增. Spalart-Allmaras湍流模型在高超声速气动加热计算中的应用[J].国防科技大学学报, 2002, 24(6)
    [65]吕丽丽.高超声速气动热工程算法研究[D].西安:西北工业大学,2005.
    [66]陈志敏,雷延花.天地往返运输器气动力和气动热工程计算方法研究[J].西北工业大学学报, 2001, 19(2)
    [67]雷延花,徐敏,陈士橹.高超音速飞行器气动加热计算[J].上海航天, 2001,第5期
    [68]李凰立.再入弹头的气动加热及热响应分析[D].西安:西北工业大学,2001,1.
    [69]程克明,吕英伟.飞行器持续气动加热的耦合性分析[J].南京航空航天大学学报, 2000, 32(2):151-155.
    [70]姜宗林.高超声速气动热力学研究的若干关键基础问题[C].四川绵阳:中国第一届近代空气动力学与气动热力学会议论文集CARS-2006 0 0065,2006.8
    [71]姜宗林.触摸高温气体动力学[J].力学与实践, 2006, 28 (5):1-7.
    [72]马辉,赵烈,王发民.高超声速三维化学非平衡流动的数值模拟[J].北京航空航天大学学报, 2004, 30(2):168-172.
    [73]马辉,王发民.高温化学非平衡计算中源项处理方法[J].北京航空航天大学学报, 2004, 30(7):679-681.
    [74]雷旭波.结合CHEMKIN软件包的化学非平衡流动数值模拟[D].中国科学院数学与系统科学研究院,2003,7.
    [75]褚以华.模拟高速流的TVD方法研究及在化学非平衡流中的应用[D].北京航空航天大学,1992.11.
    [76]张劲柏.高超音速化学非平衡流动的反应模型研究及其数值模拟[D].北京:北京航空航天大学,2001.5.
    [77]余奇华.三维高超声速绕流流场并行算法研究[D].南京航空航天大学,2006.2.
    [78]余奇华,王江峰,伍贻兆.高超声速化学非平衡绕流分布式并行算法[J].南京航空航天大学学报, 2005, 37 (4):431-435.
    [79]范绪箕.关于飞行器高超声速不平衡气体绕流的数值模拟[J].力学进展, 2004, 34 (2):224-236.
    [80]程晓丽,苗文博,周伟江.真实气体效应对高超声速轨道器气动特性的影响[J].宇航学报, 2007, 28 (3):259-264.
    [81]程晓丽,苗文博,周伟江.重复使用运载器真实气体效应对气动特性的影响研究[C].浙江温州:第十四届全国高超声速气动力/气动热学术交流会论文集,2007.11
    [82]苗文博,程晓丽.高超声速下真实气体热环境预测方法研究[C].浙江温州:第十四届全国高超声速气动力/气动热学术交流会论文集,2007.11
    [83]黎作武.含激波、旋涡和化学非平衡反应的高超声速复杂流场的数值模拟[D].中国空气动力研究与发展中心,1994.12.
    [84]张若凌.高超声速非平衡流动的计算和实验研究[D].绵阳:中国空气动力研究与发展中心,2004,3.
    [85]高铁锁,李椿萱,董维中, et al.高超声速电离绕流的数值模拟[J].空气动力学学报, 2002.1, 20 (2):184-191.
    [86]董维中,高铁锁,丁明松.高超声速非平衡流场多个振动温度模型的数值研究[J].空气动力学学报, 2007.3, 25 (1):1-6.
    [87]董维中,高铁锁.高超声速非平衡流场多个振动温度模型的数值研究[J].空气动力学学报, 2002.6, 20 (2):239-245.
    [88]董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学学报, 2001.6, 19 (2):197-202.
    [89]李海燕.高超声速高温气体流场的数值模拟[D].绵阳:中国空气动力研究与发展中心,2007.
    [90]沈建伟,瞿章华.高超音速化学非平衡钝劈绕流数值计算[J].航空学报, 1989, 10(1)
    [91]黄华.耦合辐射的非平衡流场数值研究[D].长沙:国防科学技术大学,1999,11.
    [92]柳军.热化学非平衡流及其辐射现象的实验和数值计算研究[D].长沙:国防科技大学,2004.4.
    [93]曾明.高焓风洞流场测量的数值重建和非平衡效应的数值分析[D].北京:中国科学院,2007.1.
    [94] Hassan B, Candler G V, Olynick D R. The Effect of Thermo-Chemical Nonequilibrium on the Aerodynamics of Aerobraking Vehicles [R].AIAA 92-2877. 1992.
    [95] Park C. Validation of CFD Codes for Real-Gas Regime [R].AIAA 97-2530. 1997.
    [96] Candler G V. High Enthalpy Flow Simulation Challenges [R].AIAA 99-2749. 1999.
    [97] Weilmuenster K J, Gnoffo P A. Navier-Stokes Simulations of the Shuttle Orbiter Aerodynamic Characteristics with Emphasis on Pitch Trim and Body Flap [R].AIAA 93-2814. 1993.
    [98] Papadopoulos P E, Prabhu D K, Wright M J, et al. CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement [R].AIAA 2001-3067. 2001.
    [99] Prabhu D K, Papadopoulos P E, Davies C B, et al. Shuttle Orbiter Contingency Abort Aerodynamics II: Real-Gas Effects and High Angles of Attack [R].AIAA 2003-1248. 2003.
    [100] Lee C H, Park S O. Aerothermal Performance Constraints For Small RadiusNosetip at Hight Altitude [R].AIAA 2001-1823. 2001.
    [101] Karl T E, Stephen J A. Computational Aeroheating Predictions for Mars Lander Configurations [R].AIAA 2003-3639. 2003.
    [102] Cheatwood F M, Gnoffo P A. User's Manual for the Langley Aerothermodynamic Upwind Algorithm(LAURA) [R].NASA TM-4674. 1996.
    [103] Peter A G. Conputational Aerothermodynamics in Aeroassist Applications [R].AIAA 2001-2632. 2001.
    [104] Peter A G. A Perspective on Computational Aerothermodynamics at NASA [R].Crown Plaza, Gold Coast, Australia: 2007.
    [105] Subrahmanyam P. Database Driven Computation Investigation of Aerothermodynamics and Automatic Grid Generation of Atmospheric Entry Vehicles [R].AIAA 2005-5912. 2005.
    [106] Litton D K, Edwards J R. Algorithmic Enhancements to the VULCAN Navier-Stokes Solver [R].AIAA 2003-3979. 2003.
    [107] Peter A G, Jeffery A W. Computational Aerothermodynamic Simulation Issues on Unstructured Grids [R].AIAA 2004-2371. 2004.
    [108] Birgit U R, Josef B. Numerical Simulation of Chemically Reacting High-Enthalpy Flows [R].AIAA 2005-3217. 2005.
    [109] Bisceglia S, Ranuzzi G. Real Gas Effects on a Planetary Re-entry Capsule [R].AIAA 2005-3385. 2005.
    [110] James A M, Sean J H. Study of the Issues of Computational Aerothermodynamics Using a Riemann Solver [R].AFRL-RB-WP-TR-2008-3133. 2008.
    [111] Tchuen G, Burtschell Y, Zeitoun D E. Computation of Non-equilibrium Flow with Artificially Upstream Flux Vector Splitting(AUFS) Schemes [J]. International Journal of Computational Fluid Dynamics, 2008, 22 (4):209-220.
    [112] Sun M, Takayama K. An Artificially Upstream Flux Vector Splitting Scheme for the Euler Equations [J]. Journal of Computational Physics, 2003, 189 (2):305-329.
    [113] Pezzella G, Votta R. Finite Rate Chemistry Effects on the High Altitude Aerodynamics of an Apollo-Shaped Reentry Capsule [R].AIAA 2009-7306. 2009.
    [114]瞿章华,刘伟,曾明, et al.高超声速空气动力学[M].国防科技大学出版社,2005.1
    [115] MacCormack R W. The Effect fo Viscosity in Hypervelocity Impact Cratering [R].AIAA 69-354. 1969.
    [116] Jameson A, Schmidt W, Turkel E. Numerical Simulations of the Euler Equations by Finite Volum Methods Using Runge-Kutta Time-Stepping Schemes[R].AIAA 81-1259. 1981.
    [117]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006,6
    [118] VanLeer B. Flux Vector Splitting for Euler Equations [J]. Lceture Notes in Physics, 1982, 70
    [119] Steger J L, Warming R F. Flux Vector Splitting of the Inviscid Gas-Dynamics Equations with Application to Finite Difference Methods [J]. Journal of Computational Physics, 1981, 40 (2)
    [120] Roe P L. Approximate Riemamm Solvers Parameter Vectors and Difference Scheme [J]. Journal of Computational Physics, 1981, 43:357-372.
    [121] Harten A. High Resolution Schemes for Hyperbolic Conservation Laws [J]. Journal of Computational Physics, 1983, 49:357.
    [122]张涵信.无波动无自由参数的耗散差分格式[J].空气动力学学报, 1988, 6:143-165.
    [123]王承尧,王正华,杨晓辉编著.计算流体力学及其并行算法[M].长沙:国防科技大学出版社,2002.2
    [124] Liou M S, Steffen J, C.J. A New Flux Splitting Scheme [J]. Journal of Computational Physics, 1993, Vol.107:23-29.
    [125] Liou M S. Progress Towards an Improved CFD Method: AUSM+ [R].AIAA 95-1701. 1995.
    [126] Liou M-S. A Further Development of the AUSM+ Scheme Towards Robust and Accurates Solutions for All Speeds [R].AIAA 2003-4116. 2003.
    [127] Liou M-S. A sequel to AUSM, Part II: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214:137.
    [128] Kim K H, Kim C, Rho O-H. Methods for the Accurate Computations of Hypersonic FlowsⅠ. AUSMPW+ Scheme [J]. Journal of Computational Physics, 2001, 174 (1):38-80.
    [129] Kim K h, Kim C. Accurate efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process [J]. Journal of Computational Physics, 2005, 208:570-615.
    [130]傅德薰主编.计算空气动力学[M].北京:宇航出版社,1994,11
    [131] Kim K H, Kim C. Accurate efficient and monotonic numerical methods for multi-dimensional compressible flows Part I: Spatial discretization [J]. Journal of Computational Physics, 2005, 208:527-569.
    [132]卞荫贵,徐立功.气动热力学[M].中国科学技术大学出版社,1997
    [133] Anderson J D. Hypersonic and High Temperature Gas Dynamics [M]. McGraw-Hill Book Company,1989
    [134]张涵信,沈孟育.计算流体力学-差分方法的原理与应用[M].北京:国防工业出版社,2003
    [135]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社,2002
    [136] Wada Y, Liou M-S. A Flux Splitting Scheme With High-Resolution and Robustness for Discontinuities [R].AIAA 94-0083. 1994.
    [137] Liou M-S. A Sequel to AUSM: AUSM+ [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129:364-382.
    [138] Liou M-s. Ten Years in the Making AUSM family [R].AIAA 2001-2521. 2001.
    [139] Kim K H, Kim C, Rho O H. Accurate Computations of Hypersonic Flows Using AUSMPW+ Scheme and Shock-Aligned Grid Technique [R].AIAA 98-2442. 1998.
    [140] Kim K H, Lee J H, Rho O H. An Improvement of AUSM Schemes by Introducting the Pressure-Based Weight Functions [J]. Computers and Fluids, 1998, 27 (3):311-346.
    [141] Kim K H, Kim C, Rho O-H. Methods for the Accurate Computations of Hypersonic Flows II. Shock-Aligned Grid Technique [J]. Journal of Computational Physics, 2001, 174 (1):81-119.
    [142] Darracq D, Champagneux S, Corjon A. Computation of Unsteady Turbulent Airfoil Flows With an Aeroelastic AUSM+ Implicit Solver [R].AIAA 98-2411. 1998.
    [143]段毅.高超音速下AUSMPW格式的应用研究[C].第十二届全国高超声速气动力(热)学术交流会论文集,2004:260-264.
    [144]梁德旺,王可. AUSM+格式的改进[J].空气动力学学报, 2004, 22 (4):404-409.
    [145]苏莫明,赵兴艳,苗永淼. RK-AUSM+混合格式在跨声速Euler方程计算中的应用[J].应用力学学报, 2001, 18 (1)
    [146]王可. AUSM+格式的研究和应用[D].南京:南京航空航天大学,2002.
    [147]赵兴艳,苏莫明,苗永淼. LU-AUSM+混合格式在三维可压缩流动数值分析中的应用[J].西安交通大学学报, 2000, 34 (5)
    [148]赵兴艳,苏莫明,苗永淼. LU-AUSMPW混合格式在可压缩无粘和粘性流动数值分析中的应用[J].航空动力学报, 2000, 15 (2)
    [149]孙迎丹,王刚,叶正寅. AUSM+up格式在无网格算法中的推广[J].空气动力学学报, 2005, 23 (4):511-515.
    [150] Agarwal R, Augustinus J, Halt D. A Comparative Study of Advection Upwind Split(AUSM) and Wave Particle Split(WPS) Schemes for Fluid and MHD Flows [R].AIAA 99-3613. 1999.
    [151] Coratekin T, Keuk J V, Ballmann J. On the Performance of Upwind Schemes andTurbulence Models in Hypersonic Flows [R].AIAA 2001-1752. 2001.
    [152] Edwards J R, Liou M-S. Low-Diffusion Flux-Splitting Methods for Flows at All Speeds [R].AIAA 97-1862. 1997.
    [153] Niu Y-Y, Liou M-S. Numerical Simulation of Dynamic Stall Using Upwind Methods with Dual Time Stepping [R].AIAA 97-1000. 1997.
    [154] Liou M-S, Edwards J R. Numerical Speed of Sound and its Application to Scheme for All Speeds [R].AIAA 99-3268. 1999.
    [155] Liou M-S. Contribution of the Recent AUSM Schemes to the OVERFLOW Code: Implementation and Validation [R].AIAA 2000-4404. 2000.
    [156] Dilley A D. Evaluation of CFD Turbulent Heating Prediction Techniques and Comparison With Hypersonic Experimental Data [R].NASA-CR-2001-210837. 2001.
    [157] Papadopoulos P, Venkatapathy E, Prabhu D, et al. Current Grid-Generation Strategies and Future Requirements in Hypersonic Vehicle Design, Analysis and Testing [J]. Applied Mathematical Modelling, 1999, 23:705-735.
    [158]李君哲.气动热CFD计算格式及网格影响研究[D].北京:北京航空航天大学,2004,6.
    [159] Holden M S, Wieting A R, Moselle J R, et al. Studies of Aerothermal Loads Generated in Regions of Shock/Shock Interactions in Hypersonic Flow [R].AIAA 88-0477. 1988.
    [160] Peery K M, Imlay S T. Blunt-Body Flow Simulations [R].AIAA 88-2904. 1988.
    [161]范晓樯.高超声速进气道的设计、计算与实验研究[D].长沙:国防科技大学,2006.4.
    [162]李晓宇.高超声速飞行器一体化布局气动外形设计[D].国防科学技术大学,2007.11.
    [163] Wieting A R. Shock Interference Heating in Scramjet Engines [R].AIAA 90-5238. 1990.
    [164] Duquesne N, Alziary d R T. Numerical Ivestigation of a Three-Dimensional Turbulent Shock/Shock Interaction [R].AIAA 98-0774. 1998.
    [165] Curran E T, Murthy S N B. Scramjet Propulsion [M]. American Institute of Aeronautics and Astronautics InC.,2000
    [166]徐大军,蔡国飙,乐川.吸气式高超声速飞行器气动热试验研究[J].宇航学报, 2006, 26 (5):1004-1009.
    [167]雷麦芳,丁海河,王发民.高超声速飞行器前体/冲压发动机一体化气动热实验研究[J].实验流体力学, 2008, 22 (2):10-14.
    [168]田正雨.高超声速非定常复杂流场数值模拟[D].国防科技大学,2003.11.
    [169] Park C. Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles [J]. Progress in Astronautics and Aeronautics, 1985, 96:511-537.
    [170] Blottner F C. Chemically Reacting Viscous Flow Program for Component Gas Mixtures. [R].Sandia Lab Rept SC-RR-70-754. 1971.
    [171] Wood W A, Eberhardt S. Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows [R].AIAA 95-0158. 1995.
    [172] Candler G V, MacCormack R W. The Compuation of Hypersonic Ionized Flows in Chemical and Thermal Nonequilibrium [R].AIAA 88-0511. 1988.
    [173] Dunn M G, Kang S W. Theoretical and Experimental Studies of Reentry Plasmas [R].NASA CR-2232. 1973.
    [174] Bortner M H. Suggested Standard Chemical Kinetics for Flow Field Calculations-A Consensus Opinion. [M]. Inst. of Science and Technology. Univ. of Michigan.,1966
    [175] Vincenti W G, Kruger C H J. Introduction to Physical Gas Dynamics [M]. New-York:Wiley,1965
    [176] Millikan R C, White D R. Systematics of Vibrational Relaxation [J]. Journal of Chemical Physics, 1963, 39 (12):3209-3213.
    [177] Park C. Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles, Thermal Design of Aeroassisted Orbital Transfer Vehicles [M]. American Inst. of Aeronautics and Astronautics Inc.,1985
    [178]郑忠华.双模态冲压发动机燃烧室流场的大规模并行计算及试验验证[D].长沙:国防科学技术大学,2003.6.
    [179]梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟[D].长沙:国防科技大学,1998.4.
    [180]刘君.超音速完全气体和H2/O2燃烧非平衡气体的复杂喷流流场数值模拟[D].绵阳:中国空气动力研究与发展中心,1993.
    [181] Hannemann K, Schramm J M, SebastianKarl, et al. Cylinder Shock Layer Density Profiles Measured in High Enthalpy Flows in HEG [R].AIAA 2002-2913. 2002.
    [182] Eitelberg G. First Results of Calibration and Use of the HEG [R].AIAA 94-2525. 1994.
    [183] Hannemann K, Schnieder M, Reimann B, et al. The Influence and the Delay of Driver Gas Contamination in HEG [R].AIAA 2000-2593. 2000.
    [184] Bruck S, Radespiel R, Longo J. Comparison of nonequilibriumows past a simplied Space-Shuttle conguration [R].AIAA 97-0275. 1997.
    [185] Muylaert J, Walpot L, Hauser J, et al. Standard Model Testing in the European High Enthalpy Facility F4 and Extrapolation to Flight [R].AIAA 92-3905.1992.
    [186]李友荣.实用CFD的一些新进展[C].西安:第十二届全国计算流体力学会议论文集,2004.8
    [187] Oefelein J C, Drozda T G, Sankaran V. Large Eddy Simulation of Turbulence-Chemistry Interactions in Reacting Flows [C]. Denver Colorado: SciDAC,2006.6
    [188] Chen J H. Direct Numerical Simulations of Turbulent Combustion [C]. Data Management All-Hands Meeting of Sandia National Laboratories,2005.3
    [189] Lignell D, Yoo C S, Chen J. S3D: Petascale Combustion Science, Performance, and Optimization [C]. ORNL: Conference at the Cray Scaling Workshop,,2007.7
    [190]朱国林,徐庆新.计算流体力学并行计算技术研究综述[J].空气动力学学报, 2002.3, 20 (S1)
    [191]王兰.超燃冲压发动机整机非结构网格并行数值模拟研究[D].中国空气动力研究与发展中心,2007.3.
    [192]王正华.超音速飞行器底部喷流强干扰流场的并行数值计算[D].国防科技大学,1992.6.
    [193]李桦.三维超音速/高超音速复杂流场分区多机并行数值计算与实验验证[D].国防科技大学,1996.1.
    [194]杨晓辉.二维/三维超声速飞行器底部复杂流场的并行数值模拟研究[D].国防科技大学,1997.10.
    [195]侯中喜.超声速复杂流场并行数值分析与高阶格式研究[D].国防科技大学,2000.11.
    [196]张江涛. CFD显式差分计算程序的自动并行技术研究[D].国防科学技术大学,2002.1.
    [197]车永刚,王正华.隐格式并行直接求解方法研究[J].空气动力学学报, 2002.3, 20 (S1)
    [198]陈军,王正华. CFD并行应用程序的可扩展性分析[J].空气动力学学报, 2002.3, 20 (S1)
    [199]侯中喜,王承尧,梁剑寒.面向对象技术在CFD分区并行计算中的应用研究[J].空气动力学学报, 2002.3, 20 (S1)
    [200]侯中喜,王正华,王承尧. CFD中高阶格式的分区并行计算研究[J].空气动力学学报, 2002.3, 20 (S1)
    [201]李树民,朱国林,王开春.基于分区的隐式求解二维不可压NS方程的并行实现[J].空气动力学学报, 2002.3, 20 (S1)
    [202]梁剑寒,王正华,李桦, et al.超燃发动机化学非平衡流场的并行计算[J].空气动力学学报, 2002.3, 20 (S1)
    [203]倪鸿礼,贺元元,徐庆新.并行计算爆炸波在复杂地形下传播[J].空气动力学学报, 2002.3, 20 (S1)
    [204]沈清,杨晓辉,张涵信.二维超声速混合层流动稳定性的数值分析与并行计算[J].空气动力学学报, 2002.3, 20 (S1)
    [205]王开春,李树民,朱国林.三维低速NS方程的并行计算[J].空气动力学学报, 2002.3, 20 (S1)
    [206]王正华,车永刚. LM-NS3D程序的并行化及性能分析[J].空气动力学学报, 2002.3, 20 (S1)
    [207]王正华,赵文涛.二维不可压流程序在PVM环境下的并行计算[J].空气动力学学报, 2002.3, 20 (S1)
    [208]向大平,邓小刚,毛枚良.低马赫数流动分区并行计算研究[J].空气动力学学报, 2002.3, 20 (S1)
    [209]徐庆新,张玉伦.飞行器亚跨超声速流气动力并行计算研究[J].空气动力学学报, 2002.3, 20 (S1)
    [210]余舜京,徐田荣,邹维日. CFD大型软件系统分布式并行处理模型研究[J].空气动力学学报, 2002.3, 20 (S1)
    [211]张来平,徐庆新,张涵信.非结构网格及混合网格复杂无粘流场并行计算方法研究[J].空气动力学学报, 2002.3, 20 (S1)
    [212]赵文涛,王正华.湍流两相燃烧流场并行程序的改造与测试研究[J].空气动力学学报, 2002.3, 20 (S1)
    [213]周璐,王正华,李晓梅.计算流动显示的并行处理研究[J].空气动力学学报, 2002.3, 20 (S1)
    [214]周乃春,邓有奇,杨其德.战术导弹绕流流场并行计算[J].空气动力学学报, 2002.3, 20 (S1)
    [215]吕晓斌.欧拉方程的分区和并行计算[D].北京航空航天大学,2000.1.
    [216]吕晓斌,朱自强.二维跨音速Euler方程分区并行算法[J].北京航空航天大学学报, 2000.4, 26 (2)
    [217]王春武.高精度ENO格式的构造及并行计算研究[D].南京航空航天大学,2000.5.
    [218]于战华.跨声速欧拉方程并行算法研究及应用[D].南京航空航天大学,2004.3.
    [219]王学德.高超声速稀薄气流非结构网格DSMC及并行算法研究[D].南京航空航天大学,2006.4.
    [220]朱君.流体力学数值方法及并行策略研究[D].南京:南京航空航天大学,2006.4.
    [221]金君,梁德旺,黄国平, et al. NAPA软件的并行化研究和效率分析[J].南京航空航天大学学报, 2006.8, 38 (4)
    [222]杨树池.并行计算在CFD中的应用[C].第十届全国计算流体力学会议,
    [223]杨树池,乔志德.复杂流场的多块并行数值模拟[J].航空学报, 2000.3, 21 (3)
    [224]曹平宽.万亿次规模航空CFD并行算法技术初探[C].西安:第十二届全国计算流体力学会议,2004.8
    [225]李晓梅,蒋增荣.并行算法[M].长沙:湖南科学技术出版社,1992
    [226]庄礼深,吴子牛.流体力学分区算法及相关理论问题[J].计算物理, 2006.5, 23 (3)
    [227]张林波,迟学斌,莫则尧, et al.并行计算导论[M].北京:清华大学出版社,2006.6
    [228]李素循主编.典型外形高超声速流动特性[M].北京:国防工业出版社,2007.12
    [229]李素循.激波与边界层主导的复杂流动[M].北京:科学出版社,2007
    [230]侯晓吻,张林波,张云泉.万次机群系统高性能应用软件运行现状分析[J].计算机工程与科学, 2005, 31 (22):81-83.
    [231]赵毅,朱鹏,迟学斌, et al.浅析高性能计算应用的需求与发展[J].计算机研究与发展, 2007, 44 (10):1640-1646.
    [232]朱莹.浅谈高性能计算机的发展现状和瓶颈[J].科技情报开发与经济, 2008, 18 (18):123-125.
    [233] Groth C P T. TVD Flux-Difference Split Methods for High-Speed Thermochemical Nonequilibrium Flows with Strong Shocks [D]. University of Toronto,1993.
    [234]潘沙,李伟,曹文斌, et al. AUSMPW+格式在热化学非平衡数值模拟中的应用[C].贵阳:第十四届全国计算流体力学会议论文集,2009:194-199.
    [235] MacLean M, Mundy E, Wadhams T, et al. Analysis and Ground Test of Aerothermal Effects on Spherical Capsule Geometries [R].AIAA 2008-4273. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700