用户名: 密码: 验证码:
基于神经网络方法的鸟撞飞机风挡反问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空器低空高速性能的发展,以及生态环境保护工程卓有成效的工作,飞行器结构鸟撞问题越来越引起人们的注意。在国内外鸟撞飞机风挡的研究中,鸟撞实验是最终、也是最有效的检验方法。现有的鸟撞实验数据分散严重,因而对风挡设计的指导作用较低,同时也无形中增加了实验的次数。
     本文采用鸟撞实验、有限元数值模拟与神经网络相结合的方法研究鸟撞飞机风挡过程中风挡的响应以及鸟撞实验中撞击力与撞击参数的获得。本文构造了小波动态延时反馈神经网络,并详细分析了该网络的学习理论、学习方法、实现手段、网络结构、网络的推广能力以及提高网络训练效率的改进算法。本文提出的神经网络方法采用被撞击体上选定两位置点的应变-时间历程数据,即可高精度反演出撞击力-时间历程以及撞击点坐标及撞击动能等撞击参数。网络训练过程平稳、训练效率高,同时具有较高的抗干扰能力,完全可以满足鸟撞问题工程与理论研究要求。
     在鸟撞正问题的研究中,本文详细推导了大变形粘弹性接触-碰撞有限元分析的基本理论、数值计算方法、求解过程、关键技术以及上述内容在LS-DYNA3D中的具体应用,算例考察了LS-DYNA3D在求解碰撞以及大变形问题上的计算精度,同时推导了线弹性材料、双线性弹塑性材料以及非线性粘弹性材料增量法迭代方程,编制了相应的用户自定义材料子程序,并进行了子程序验证。在此基础之上建立了鸟撞风挡有限元模型,通过考察该模型的单元类型、结构尺寸、材料模型、边界条件以及与实际鸟撞实验实测数据对比分析,认为本文建立的鸟撞风挡有限元模型正确可靠且计算精度较高,完全可以满足神经网络训练过程中正问题求解的要求,同时也完全可以作为工程中风挡设计分析模型使用。
     本文系统总结了鸟撞实验的全部过程、主要仪器设备的工作原理与性能参数,分析了鸟撞实验动态数据采集系统中位移、应变与撞击压力传感器测量系统的测量范围、测量精度及其工作特点,提出了一种更适合鸟撞实验的撞击合力计算拟合方法:加权因子法,同时应用软件工程原理编制了“鸟撞实验计算
    
    西北工业大学博士论文
    机数据分析系统”(CAOABIE),目前该软件己经在320厂鸟撞实验室以及
    !RAN一Esfahan空军鸟撞实验室中得到重点应用并获得好评。根据已有的研究
    成果,本文提出了鸟撞实验的改进方案,可以在满足实验测量要求的基础上简
    化实验过程,提高实验效率。
With the development of the aircraft performance at low altitude and high speed, as well as the marked progress of eco-environmental protection, the issue of bird impact to aircraft has been concerned more and more. In the research of bird-impact to aircraft windshield, the experiment is always the ultimate and the most effective method. But the existing data of bird impact are highly disperse, so that they do less help for the design of windshield and also cost more to experimental work.
    In this thesis, a combined method of finite element numerical simulation with neural network is studied to obtain the dynamic response, the impetus forces and impact parameters of windshield during bird impact. The thesis presents A wavelet-dynamic-delay-feedback (WDDF) type of neural network and makes in-deep studies of the WDDF theoretical framework, learning theory and method, improved training effectiveness, power to extend, and technical implementation. The presented neural network takes strain-time data as input at two locations on the back of struck body, and gives highly precise outputs of the impact force-time data, impact kinetic energy and the coordinates of impact position. Also the network shows many advantages of high training efficiency, robustness and anti-jamming energy, as well as the extensive applicability to the academic study and practical requirement of bird impact issue.
    In the positive-issue research of bird impact, the thesis carefully explores the basic theories, finite element numerical method and key techniques of the solution process in LS-DYNA3D software system for contact-impact issue of viscoelastic bodies at large deformation. The well-chosen cases examine the accuracy of solutions in LS-DYNA3D for large deformation impact issues. Under the proof work, the incremental constitutive equation of bilinear and nonlinear viscoelastic materials are derived, coded and verified in LS-DYNA3D. On the basis of the above mentioned theoretical and case-computational work, the element types, structural dimensions, materials, boundary conditions and calculative effects of the finite element modeling (FEM) for bird-impact windshield are all carefully studied, and some practical experiments of bird-impact to windshield are made. It follows that the FEM established in this thesis is well agreed with the experimental results and also shows that it is a reliable and highly accurate model with satisfying the requirement of trainings to the WDDF neural network and engineering windshield design.
    The thesis systematically describes the detailed experiments of bird impact, including the major test principles and properties of the instruments used in the experimental system. The dynamic data of displacement, strain and impetus force acquired from the experimental collection system are also well analyzed for
    
    
    
    measuring precision and errors. Based on the underlying work and experimental features, the thesis proposes a simple, practical and well accurate impetus resultant force fitting method, weighted factor fitting method. A line-off data processing software system for bird-impact experiment, named as CADABIE, is well designed under the principle of software engineering, and has been applied, with high praise, in bird-impact laboratory in the factory numbered 320 and Esfahan bird-impact laboratory of IRAN.
    According to all the research of this thesis, an improved and promising project of bird impact experiment combined with the WDDF neural network can be suggested, which will be high efficiency.
引文
[1] 梁惠钧,民用飞机鸟撞的统计资料,飞机工程,1983(3),81~83
    [2] 魏岳江,俄美军事故频频,国际航空,2001(1),50~51
    [3] 郑永强,陈烨,中南地区鸟害防治工作的几点体会,民航经济与技术,2000(12),56~57
    [4] 周加良,飞机鸟撞事故分析、预防及建议,宁波大学学报,1994,7(1),16~23
    [5] 粟牧怀,李海,减少鸟害事件确保民用航空安全,民航经济与技术,2000(6),52~54
    [6] 周加良,我国鸟撞事故统计,国际航空,1991(9),56~57
    [7] Brown KM, Erwin RM, Richmond ME, Buckley PA, Tanacredi JT, Avrin D, Managing Birds and Controlling Aircraft in the Kennedy Airport-Jamaica Bay Wildlife Refuge complex: The Need for Hard Data and Soft Opinions, Environmental Management, 2001, 28 (2): 207~224
    [8] Kelly TA, Require Bird Strike Reports, Aviation Week & Space Technology, 1998, 148 (20): 6~6
    [9] 臧曙光,飞机风挡抗鸟撞设计研究,中国建筑材料科学研究院学位论文,1999
    [10] K. K. Stevens, Force Identification Problems: An Overview, Proc SEM Sprin9 Meeting, Houston, 1987, 838~844
    [11] V.I. Bateman, T. G. Carrie, D. k. Gregory, S. W. Attaway and H. R. Yoshimura, Force Reconstruction for Impact Tests, J. Vibration & Acoustics 1991, 113, 192~200
    [12] M.T. Martin, Inverse Problems in Structural Dynamics, Ph.D. Thesis. Purdue University, 1994
    [13] P. E. Hollandsworth and H. R. Busby. Impact Force Identification Using The General Inverse Technique, Int. J. Impact Engng, 1989, 8, 315~322
    [14] H. Inoue, H. Ishida, K. Kishimoto and T. Shibuya, Measurement of Impact Load by Using an Inverse Analysis Technique, Int. J. dap. Soc. Mech. Engrs, 1991, 34, 453~458
    [15] Keeyoung Choi, Fu-Kuo Chang, Identification of Impact Force and Location Using Distributed Sensors, AIAA Journal, 1996, 34(1), 136~142
    [16] 魏培军,章梓茂,弹性动力学反问题的不适定性及其广义解,力学与实践,2001,23(3),43~45
    [17] 邹振祝,冯文杰,弹性动力学反问题研究概况,石家庄铁道学院学报,2000,13(3),7~12
    [18] 杨慧珠,张高远,鲁小荣,动力学的反问题,固体力学发展趋势,北京:北京理工大学出版社,1995,55~73
    [19] 许锋,陈怀海,鲍明,机械振动载荷识别研究的现状与未来,中国机械工程,2002,13(6),526~531
    [20] 方远等编著,振动模态分析技术,北京:国防工业出版社,1993,169~173
    [21] 智浩,文祥荣,缪龙秀,林家浩,动态载荷的频域识别方法,北方交通大学学报,2000,
    
    24(4),5~10
    [22] 刘恒春,朱德懋,孙久厚,振动载荷识别的奇异值分解法,振动工程学报,1990,3(1),24~33
    [23] 傅志方,饶柱石,周海亭,一种动态载荷的识别方法,上海交通大学学报,1997,31(3),5~7
    [24] 任建亭,范宗喜,邱阳,弹性-粘弹性复合结构的动态载荷识别,应用力学学报,1997,14(2),95~101
    [25] 智浩,文祥荣,缪龙秀,林家浩,基于模态分析法的结构动载荷识别研究,北方交通大学学报,2000,24(4),11~14
    [26] 唐秀近,动态力识别的时域方法,大连工学院学报,1987,26(4),21~27
    [27] 唐秀近,时域识别动载荷的精度问题,大连理工大学学报,1990,30(1),31~37
    [28] 胡以怀,周轶尘,动态载荷时域识别方法的研究,机械强度,1994,16(2),36~39
    [29] 初良成,区乃泗,邬瑞锋,动态载荷识别的时域正演方法,应用力学学报,1994,11(2),9~18
    [30] 时战,许士斌,初良成,李桂华,利用脉冲响应函数识别载荷的时序法,振动工程学报,1995,8(3),235~242
    [31] 文祥容,智浩,孙守光,结构动态载荷识别的精细逐步积分法,工程力学,2001,18(4),117~122
    [32] 赵玉成,袁数清,李舜酩,许庆余,动态载荷的小波正交算子变换识别法,机械强度,1998,20(2),127~133
    [33] 杨萍,胡立志,基于正交算子的动力学模型的建立,甘肃工业大学学报,1998.24(4),33~38
    [34] 孙道恒,胡俏,徐灏,力学反问题的神经网络分析法,计算结构力学及其应用,1996,13(3),308~312
    [35] 阎平凡,张长水,人工神经网络与模拟进化计算,北京:清华大学出版社,2000
    [36] 尚钢,吴代华,基于神经网络对扁壳结构载荷位置识别问题的研究,固体力学学报,2001,22(1),61~63
    [37] 张方,朱德懋,基于神经网络模型的动载荷识别,振动工程学报,1997,10(2),156~161
    [38] Kumpatis,Kannan Parthasarathy, Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transaction on Neural Networks, 1990, 1(1), 4~27
    [39] Cook A B,Fuller C R,O Brien W F, et al, Artificial Networks in Detection for Predicting Nonlinear Dynamic Helicopter Loads, AIAA Journal, 1994, 32(5), 2337~2344
    [40] 徐宜桂,马西庚,史铁林,杨叔子,周轶尘,基于神经网络的动力学反解算法及其应用研究,机械工程学报,1998,34(4),106~110
    [41] 董聪,郦正能,夏人伟,何庆芝,多层前向网络研究进展及若干问题,力学进展,1995,25(2),186~196
    [42] 梁艳春,计算智能与力学反问题中的若干问题,力学进展,2000,30(3),321~331
    [43] Liang Y C, Zhou C G, Wang Z S, Identification of Restoring Forces in Non-Iinear Vibration Systems Based on Neural Networks, Journal of Sound and Vibration,
    
    1997,206(1):103~108
    [44] 林家浩,智浩,郭杏林,平稳随机振动载荷识别的逆虚拟激励法(一),计算力学学报,1998,15(2),127~136
    [45] 智浩,郭杏林,林家浩,平稳随机振动载荷识别的逆虚拟激励法(二),计算力学学报,1998,15(4),395~428
    [46] 张培文,平稳随机振动载荷谱识别方法的实验研究,大连理工大学学位论文,导师:郭杏林,2000
    [47] 熊盛武.李元香,康立山,陈毓屏,用演化算法求解抛物型方程扩散系数的识别问题,计算机学报,2000,23(3),261~265
    [48] 熊盛武,李元香,演化参数反演方法,武汉大学学报,2001,47(1),38~41
    [49] 王书法,邬月琴,李卓球,智能结构载荷识别的有限元反分析方法,力学与实践,2000,22(5),17~19
    [50] J. F. Doyle, A Genetic Algorithm for Determining the Location of Structural Impacts, Experimental Mech, 1994, 34, 37~44
    [51] 张方,朱德懋,张福祥,动载荷识别的时间有限元模型理论及其应用,振动与冲击,1998,17(2),1~4.
    [52] 路敦勇,吴淼,动态载荷识别的SWAT方法研究,振动与冲击,1999,18(4),78~94
    [53] 饶柱石,施勤忠,荻原一郎,基于逆系统分析法的多输入-多输出系统动态载荷的优化估计,振动与冲击,2000,19(2),9~12
    [54] R. W. Jordan and G. S. Whiston, Remote Impact Analysis by Use of Propagated Acceleration Signals Ⅱ: Comparison Between Theory and Experiment, J. Sound & Vibration 1984, 97, 53~63
    [55] Shim, V P W, Toh S L and Gong S W, The Elastic Impact Response of Glass/Epoxy Laminated Ogival Shells, J. Impact Engng, 1996, 18(6), 633~655
    [56] WU E, Yeh J C, Yen C S, Identification of Impact Forces at Multiple Locations on Laminated Plates, AIAA Journal, 1994, 32: 2433~2439
    [57] Varoto P S, McConnell K G, On the Identification of Interface Forces and Motions in Coupled Structures, Proceedings of the 17th IMAC, Kissimmee FL, USA, 1999: 2031~2035
    [58] Kreitinge T J, Non-parametric Force Identification from Structural Response, Soil Dynamics and Earthquake Engineering, 1992, 11(5): 269~277
    [59] J. F. Doyle, A Wavelet Deconvolution Method for Impact Force Identification, Experimental Mechanics, 1997, 37(4), 403~408
    [60] C. Chang and C. T. Sun, Determining Transverse Tmpact Force on A Composite Laminate by Signal Deconvolution, Experimental Mech, 1989, 29: 414~419
    [61] J. F. Doyle, Force Identification From Dynamic Responses of A Bi-Material Beam, Experimental Mech, 1993, 33, 64~69
    [62] J. F. Doyle, Determining the Contact Force During the Transverse Impact of Plates, Experimental Mech, 1987, 27, 68~72
    [63] Gauil, Hurlebaus S, Identification of the Impact Location on A Plate Using Wavelets,
    
    Mechanical Systems and Signal Processing, 1997, 12(6), 783~795
    [64] M.T. MARTIN and J. F. DOYLE, Impact Force Identification from Wave Propagation Responses, J.Impact Engng, 1996, 18(1), 65~77
    [65] S. Q. Lin and C.N.Bapat, Extension of Clearance and Impact Force Estimation Approaches to A Beam-stop System, Journal of Sound and Vibration, 1993, 163(3), 423~428
    [66] 周加良,徐国民,汤宏光,南昌飞机制造公司的鸟撞实验方法及设备,国际航空,1990(7),56~57
    [67] Bokulich F, Bird-Strike Tests Begin on JPATS Trainer, Aerospace Engineering, 1997, 17(12): 15~15
    [68] MACHALEK MJ, TAYLOR RJ, A Bird-Aircraft Strike Hazard Expert System (Bashes), AI Applications, 1991, 5 (3): 1~8
    [69] 江西洪都航空工业集团公司650研究所,鸟撞实验数据处理及初步仿真软件技术总结,2002
    [70] 中华人民共和国国家军用标准,GJB-2464-95,1995
    [71] 中华人民共和国国家军用标准,GJB 67.3-85,1985
    [72] 邓梁波,汤玄春,鸟撞动响应有限元分析程序—BINA程序,AFFD系统工程报告,1989
    [73] Barber John P, Taylor henry P, Wilbeck James S, Bird Impact Forces and Pressures on Rigid and Compliant Targets, ADAO61313, 1978
    [74] Barber John P, Bochman L T, Wibeck J S, The Modeling of Bird Impact Loads, AD AO65049, 1978, 65~81
    [75] Lin J H, Zhang W S and Li J J, Structural Responses to Arbitrarily Coherent Stationary Random Excitations, Computers and Structures, 1994, 50(5), 626~633
    [76] Peterson R L, Barber J P, Bird Impact Force in Aircraft Windshield Design, AFFDL-TR 75~150, 1976
    [77] McCarty R.E, Finite Element Analysis of F-16 Aircraft Canopy Dynamic Response to Bird Impact Loading, AIAA 80-0804,1980
    [78] R E 麦克卡迪,涂顶立译,刘观兴校,F-16A飞机抗鸟撞单块式定向有机玻璃座舱盖设计的有限元分析,AIAA81-1640,1980
    [79] Brockman, Robert A.MAGNA: A Finite Element System For Three-dimensional Nonlinear Static and Dynamic Structural Analysis, Computer & Structures, 1981, 13: 415~423
    [80] McCarty R E, Hart J L, Validation of the MANGA computer program for nonlinear finite element analysis of aircraft transparency bird impact, ADP003229, 1983, 921~972
    [81] Mccarty R E, MAGNA computer simulation of bird impact on the TF-15 Aircraft canopy, ADA140701, 1983
    [82] Mccarty R F, Nonlinear Dynamic Finite Element Analysis for the Bird Impact Response of A Preprototype T-38 Aircraft Windshield System, Report of Air Force
    
    Wright Aeronautical Laboratory, 1985
    [83] Samuelson L A, Nisson F, Theoretical evaluation of the structure performance of Swedish fighter aircraft windshield subjected to impact, ADP003-235, 1983
    [84] Lawver D, Nikodym L, Tennant D, Levine H, Non-linear Numerical Modeling of Aircraft Impact, International Journal of Crashworthiness, 2001, 6 (4): 451~469
    [85] 臧曙光,武存浩,汪如海,马眷荣,飞机前风挡鸟撞动力响应分析,航空材料学报,2000,20(4),41~45
    [86] 武存浩,杨嘉陵,臧曙光,马眷荣,鸟撞高速摄影实验与过程研究,北京航空航天大学学报,2001,27(3),332~335
    [87] 张启桥,许宗庆,飞机圆弧风挡鸟撞动响应研究,航空学报,1991,12(2),B100~B105
    [88] 张志林,张启桥,李铭兴,飞机圆弧风挡鸟撞动响应分析,航空学报,1992,13(9),A538~A542
    [89] 王礼力,朱锡雄,施绍裘,干苏,包合胜,鸟撞高速飞机风挡若干问题的冲击动力学研究,航空学报,1991,12(2),B27~B33
    [90] 侯海,结构非线性动力响应分析及其在鸟撞问题中的应用,西安,西北工业大学硕士学位论文,导师:叶天麒,1992
    [91] 文坚,鸟撞载荷下Y12飞机前风挡非线性动力响应分析,航空学报,1990,11(11),A573-A577
    [92] 高德平,李清红,叶片鸟撞击的理论和实验研究,航空动力学报,1990,5(4),335~338
    [93] 陈伟,尹晶,范尔宁,鸟撞击叶片时的载荷模型,航空动力学报,1993,8(4),363~367
    [94] 尹晶,范尔宁,鸟撞击载荷的冲量与时间因素的确定,南京航空航天大学学报,1994,26(1),68~74
    [95] 尹晶,李清红,叶片非线性瞬态响应计算方法与参数选择,南京航空航天大学学报,1995,27(4),571~576
    [96] 陈伟,尹晶,宋迎东,高德平,平板叶片斜撞击瞬态响应的计算分析,南京航空航天大学学报,1996,28(6),854~857
    [97] 陈伟,漆文凯,高德平,载荷与响应耦合下叶片鸟撞击响应分析,航空动力学报,1998,13(1),93~112
    [98] 张鹏,复合材料结构抗撞击损伤设计分析技术,应用力学学报,2001,18(增刊),151~155
    [99] 段世慧,复合材料低速冲击损伤及其智能控制,西北工业大学飞机系博士学位论文,导师:叶天麒,2001
    [100] 张鹏,在接触撞击问题中的双协调子结构分析技术,应用力学学报,2000,17(2).
    [101] Barber J P, Taylor H R, Wilbeck J S, Bird Impact Forces and Pressure on Rigid and Compliant Target, Structure Dynamics and Materials Conf. Proce.26th, April15~17, AIAA0713, 1985, 341~356
    [102] Kim M, Vahdati M, Imregun M, Aeroelastic Stability Analysis of A Bird-Damaged Aeroengine Fan Assembly, Aerospace Science and Technology, 2001, 5(7): 469~482
    [103] 王爱俊,厉蕾,飞机风挡鸟撞击有限元数值模拟,航空计算技术,1998,28(3),
    
    55~59
    [104] 王爱俊,乔新,厉蕾,飞机层合风挡鸟撞击有限元数值模拟,宇航学报,1998,19(4),446~450
    [105] 谢宗蕻,卞文杰,昂海松,乔新,蜂窝夹芯结构雷达罩鸟撞有限元分析与模拟,爆炸与冲击,1999,19(3),235~242
    [106] 龚尧南,许素强,飞机风挡透明件的鸟撞分析,航空学报,1991,12(2),B73~B78
    [107] 施绍裘,于苏,王礼力,国产航空有机玻璃在冲击载荷下的热粘弹性力学响应,宁波大学学报(理工版),1990,3(2),66~68
    [108] 朱锡雄,朱国瑞,黄旭昇,陈江瑛,航空用有机玻璃(PMMA)的非线性热粘弹性—塑性本构关系,航空学报,1992,13(11),A594~A601
    [109] 张雄,陆明万,王建军,任意拉格朗日-欧拉描述法研究进展,计算力学学报,1997,14(1),91~102
    [110] 岳宝增,李笑天,ALE有限元方法研究及应用,力学与实践,2002,24(2),7~11
    [111] Nomura T. ALE Finite Element Computations of Fluid-Structure Interaction Problems, Comput Method Appl mech Eng, 1994,112(1/4): 291~308
    [112] Johnson G R, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Engineering Fracture Mechanics, 1985, 21(1), 31~485
    [113] 谢兰生,孙良新,范绪箕,非线性粘弹性结构鸟撞击动响应分析,南京航天航空大学学报,1995,27(6),738~743
    [114] 朱正茂、彭湃,Borland C++ Builder5实用编程技术,北京:中国水利水电出版社,2001
    [115] 王炳武,MATLAB5.3实用教程,北京:中国水利水电出版社,2000
    [116] 刘志俭,MATLAB应用程序接口用户指南,北京:科学出版社,2000
    [117] The Mathworks, Inc, MATLAB user's Guide, 2001
    [118] The Mathworks,Inc, MATLAB Reference Guide, 2001
    [119] The Mathworks,Inc, MATLAB Application Program Interface Guide, 2001
    [120] The Mathworks,Inc, MATLAB Neural Network Toolbox User's Guide, 2001
    [121] 王礼立,应力波基础,北京:国防工业出版社,1985
    [122] 马晓青、韩峰,高速碰撞动力学,北京:国防工业出版社,1998
    [123] 徐之纶,弹性力学,北京:高等教育出版社,1982
    [124] 李人宪,有限元法基础,北京:国防工业出版社,2002
    [125] 姜晋庆,张铎,结构弹塑性有限元分析法,北京:宇航出版社,1990
    [126] 徐秉业,刘信声,应用弹塑性力学,北京:清华大学出版社,1995
    [127] 朱伯芳,有限单元法原理与应用(第二版),北京:中国水利水电出版社,1998
    [128] 马宏仁,吴斌,弹性动力学及其数值方法,北京:中国建材出版社,2000
    [129] 王尚文,余旭东,赵育善,飞行器结构动力学,西安:西北工业大学出版社,1998
    [130] 宋天霞,非线性结构有限元计算,武汉:华中理工大学出版社,1996
    [131] 殷有泉,固体力学非线性有限元引论,北京:北京大学清华大学出版社,1987
    [132] 周光泉,刘孝敏,粘弹性理论,合肥:中国科学技术大学出版社,1996
    
    
    [133] 匡振邦,非线性连续介质力学,西安:西安交通大学出版社,1989
    [134] 王礼立,杨黎明,固体高分子材料非线性粘弹性本构关系,冲击动力学进展.合肥:中国科学技术大学出版社,1992,88-116
    [135] Zhong ZhiHua and Nilson, L, A Contact searching Algorithm for General 3-D Contact-Impact Problems, Computer & Structures,1990, 327~335
    [136] Zhong ZhiHua, Finite Element Procedures for Contact-Impact Problems, Oxford: Oxford University Press, 1993
    [137] Taylor, R.L., and Kanoknukuchai,W., A Finite Element Method for Dynamic Contact/Impact Problems, Int. J. Numer. Methods Eng, 1993, 36, 2123~2140
    [138] 美国ANSYS股份有限公司,ANSYS/LS-DYNA算法基础和使用方法(5.6版),1999
    [139] The MacNeal-Schwendler Corporation, MSCIDYTRAN User's Manual, 1991
    [140] ANSYS Inc., ANSYS Theory Release 5.7, 2001
    [141] Livermore Software Technology Corporation, LS-DYNA Theoretical Manual, 1998
    [142] Livermore Software Technology Corporation, LS-DYNA Keyword User's Manual, 2001
    [143] Livermore Software Technology Corporation, LSPOST: A New Post Processor For LS-DYNA, 1999
    [144] Livermore Software Technology Corporation, eta/PostGL User's Manual, 1999
    [145] Whirley R G, Engelmann B E, DYNA3D: A Nonlinear, Explicit, Three-dimensional Finite Element Code for Solid and Structural Mechanics User manual, Report UCRL-MA-107254, California: University of California, Lawrence Livermore National Laboratory, 1993, 33~120
    [146] 焦李成,神经网络系统理论,西安:西安电子科技大学出版社,1992
    [147] Yao X, Evolving Artificial Neural Networks, Proc IEEE, 1999, 87(9), 1423~1447
    [148] 邵黎霞,戴文琰,人工神经网络方法在力学反问题研究中的应用,宁波高等专科学校学报,200,12(4),40~44
    [149] 徐宜桂,史铁林,杨叔子,基于神经网络的结构动力模型修改和破损诊断研究,振动工程学报,1997,10(1),8~12
    [150] 虞和济,陈长征,张省,周建男,基于神经网络的智能诊断,北京:冶金工业出版社,2000
    [151] Pandey, P.C, Nonlinear Analysis of Plates Using Artifical Neural Network, J. Structural Engineering, 1994, 21(1), 65~78
    [152] Wu,X, Use of Neural Networks in Detection of Structural Damage, Computer & Structures, 1992, 42(2), 649~659
    [153] Chen Fu chuang, Back-Propagation Neural Networks for Nonlinear Self-Tuning Adaptive Control, IEEE Control Systems Magazine, 1990, 44~48
    [154] Sarkav D, Methods to Speed up Error BP Learning Algoritmn, ACM Computing Survey, 1995, 27:519~592
    [155] Funahashi K, Multilayer NN and Bayes Decision Theory, Neural Networks, 1998, 11: 209~213
    
    
    [156] 袁曾任,人工神经网络及其应用,北京:清华大学出版社,2000
    [157] 何明一,神经网络与信号处理系统——有限精度设计理论, 西安:西北工业大学出版社,1998
    [158] 贺江峰等,一种BP网络结构和学习参数自整定的学习算法,人工智能新进展:第三届中国人工智能联合学术会议论文集,北京:清华大学出版社,1994,133~135
    [159] 刘文丽等,基于假设检验的异常训练数据训练样本点的剔除方法,中国人工智能新进展,北京:北京邮电大学出版社,2001,463~466
    [160] 高小榕,杨福生,采用同伦BP算法进行多层前向神经网络的训练,计算机学报,1996,19:687~694
    [161] Vittorio Maniezzo, Genetic Evolution of the Topology and Weight Distribution of Neural Network, IEEE, Trans on Neural Networks, 1994, 5(1), 39~53
    [162] 陈吉红,基因遗传算法用于人工神经网络的训练,华中理工大学学报,1992,20(1),215~222
    [163] 周祥,陈丙珍,何小荣,一种用于BP神经网络训练的改进遗传算法,2001,52(10),925~927
    [164] 阮炯,顾凡及,蔡志杰,神经动力学模型方法和应用,科学出版社,2002
    [165] 赵隆茂,杨桂通,动力响应数值分析中的hourgass现象,计算力学学报,2003,20(1),53~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700