用户名: 密码: 验证码:
大功率LED封装用水玻璃基导热胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低大功率LED封装热阻,本文采用模数为3.4的水玻璃溶液为基体,片状的六方BN为填料,BN尺寸分别为0.1-0.5μm和5-10μm,研究了一种绝缘型导热胶。本文通过对比不同浓度的水玻璃粘合强度,确定了具有最佳粘合强度的水玻璃浓度。研究了BN在水玻璃溶液中的分散稳定性,通过XRD和FTIR研究固化后水玻璃基导热胶的成分变化。通过对比不同固化温度条件下的粘合强度,结合DSC/TG曲线确定了最佳固化工艺。研究了BN含量和尺寸对粘合强度的影响。最后,用稳态热流法和激光法测试不同尺寸和含量BN的水玻璃导热胶的体热导率和界面热阻,研究BN尺寸和含量对体热导率的影响。
     试验结果发现模数3.4,浓度为40%的水玻璃溶液在80℃固化1.5小时具有最佳粘合强度30MPa,随后随着浓度和温度升高粘合强度降低。0.1-0.5μm的BN加入水玻璃溶液中会产生氨气,而5-10μm的BN只有在加热条件下才会有明显氨气产生,但是这种反应不会持续进行下去,当BN表面被氧化之后反应便停止进行。通过实验发现在加热条件下机械搅拌或者超声震荡可以使BN稳定分散在水玻璃溶液中。随着BN含量的增加和尺寸的增大,水玻璃粘合强度逐渐降低,而热导率的变化与之相反。稳态热流法测试结果显示,对于5-10μm的BN,热导率随着含量增大线性增加,BN含量30Phr时热导率可以达到3.96W/m?K。对于0.1-0.5μm的BN,含量超过10Phr热导率增加缓慢,当含量达到50Phr时热导率为2.436W/m?K。激光法测试数据显示BN(5-10μm)含量30Phr热导率为4.852W/m?K,BN(0.1-0.5μm)含量30Phr热导率为2.639W/m?K。
     试验结果分析认为BN填充的水玻璃基导热胶具有热导率高、稳定好、成本低的优点,可以满足大功率LED封装散热的要求,具有一定的应用前景。
To reduce the thermal resistance of high-power LED packaging, this paper investicates a insulate heat conductive adhesive, which is water glass based and filled with hexagonal sheet boron nitride. There are two types of BN(0.1-0.5μm, 5-10μm). This paper determines the concentration of the best adhesive strength by comparing different concentration of sodium silicate. This paper investigates the dispersion stability of BN in water glass and the composition of cured adhesives by XRD and FTIR. Combined with the DSC/TG curve, we determine the best cured temperature of water glass by comparing the adhesive strength of different concentration of water glass. Investigate the effect of BN content and size on the adhesive strength. Finally, this paper tests the heat conductivity and interface resistance of water glass based adhesive by Steady-State Heat Flow method and the Laser-Flash method.
     It was found that 40wt% water glass has the best adhesive strength 30MPa when cure at 80℃for 1.5 hours. Then the adhesion strength decreases with temperature and concentration increasing 0.1-0.5μmBN can react with water glass and release ammonia. Howere, 5-10μmBN can only react with it under heated conditions. Neither of the reactios can complete, because that reaction will stope when the surface of BN has been completely oxidated. Experimental results demonstrate that BN partical can disperse in water glass stability by maechanical stirring and ultrasonic vibrating under heated conditions. With the increase of BN content and size, the bonding strength of water glass decreases, while the thermal conductivity changes in contrast. Steady-state heat flow method test results for the 5-10μmBN show that thermal conductivity increases linearly with increasing concentration. When BN content is 30Phr thermal conductivity can be achieved 3.96W/m?K. For 0.1-0.5μmBN, thermal conductivity increases slowly after the concentration is more than 10Phr. when the content increases to 50PHR,the thermal conductivity can reaches 2.436W/m?K. Laser method test data show 30PhrBN (5-10μm) thermal conductivity is 4.852W/m?K, 30PhrBN(5-10μm) thermal conductivity is 2.639W/m?K.
     The water glass based adhesive has high thermal conductivity, stability and low cost advantages. Water glass adhesive can meet the heat dissipation requirements of LED packaging and has a certain applied prospects.
引文
1 H. J. Round. A Note on Carborundum. Electrical World.1907, 49: 309
    2 Nick Holonyack Jr, S. F. Bevaqua. Coherent(Visible) Light Emition From Ga(As1-xPx) Junction. Applied Physics Letters. 1962, 1: 82-83
    3 Russell D. Dupuis et al.. History Development and Applications of Hight-Brightness Visible Light-Emitting Diodes. Journal of Lightwave Technology. 2008, 26: 1154-1171
    4 http://www.nature.com/doifinder/10.1038/nphoton.2006.78
    5 M. Arik, C. Becker, S. Weaver and J. Petroski. Thermal Management of LEDs: Package to System. The International Society for Optical Engineering. 2004
    6 Mehmet Arik. Effect of Chip and Bonding Defects on the Junction Temperatures of High-Brightness Light-Emitting Diodes. Optical Engineering. 2005, 44: 11
    7 L. R. Trevisanello et al.. Thermal Stability Analysis of High Brightness LED during High Temperature and Electrical Aging, Proceeding of Seventh International Conference on Solide State Lighting. 2007, 6669
    8 N. Narendran et al.. Solid State Lighting: Failure Analysis of White LEDs, Journal of Crystal Growth. 2004, 268(3-4): 449-456
    9 Albert Welsh Jr. et al.. Die-Attach Epoxy Reliability of InGaN LED’s, Proceedings of SPIE. 2002, 4776
    10 Adam Christensen, Minseok Ha, Samuel Graham. Thermal Management Methods for Compact High Power LED Arrays. Proceeding of SPIE. 2007, 6669
    11 R. Prasher. Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials. J. Heat Transf.. 2001, 123: 969-975
    12 P. Zhou, K. E. Goodson. Modeling and Measurement of Pressure-Dependent Junction-Spreader Thermal Resistance for Integrated Circuits. Proc. ASME Int. Mechanical Engineering Congr. And Exposition. 2001: 51-67
    13 J. J. Fuller, E. E. Morotta. Thermal Contact Conducatance of Metal/Polymer Joints: An Analytical and Experimental Investigation. J. Thermophys. Heat Transf.. 2001, 15(2): 228-238
    14 R. S. Prasher, J. C. Shipley, S. Prstic, P. Koning, J. Wang, Rheological Study of Micro Particle Laden PolymericThermal Interface Materials. Int. Mechanical Engineering Congr. And Exposition, New Orleans. 2002
    15 R. S. Prasher, P. Koning, J. Shipley, A. Devpura. Dependence of Thermal Conductivity and Mechanical Rigidity of Particle Laden Polymeric Thermal Interface Materials on Particle Volume Fraction. J. Electron. Packag. 2003, 125(3): 386-391
    16 R. S. Prasher, J. Shipley, S. Prstic, P. Koning, J. L. Wang. Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. J. Heat Transf. 2003, 125(6):1170-1177
    17 R. S. Prasher. Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface material. Thermal Phenomena. 2004
    18 R. S. Prasher, J. C. Matayabus. Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material. IEEE Trans. Compon. Packag. Technol.. 2004, 27(4):702-709
    19 E. E. Marotta, S. LaFontant, D. McClafferty, S. Mazzuca. The effect of Interface Pressure on Thermal Joint Conductance for Flexible Graphite Materials: Analytical and Experimental Study. Proc. 2002 Intersoc. Conf. Thermal Phenomena. 2003, pp: 663-670
    20 X. Hu, L. Jiang, K. E. Goodson. Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions. 9th Intersoc. Conf. Thermal and Thermomechanical Phenomena in Electronic System. Las Vegas. 2004
    21 X. Hu, S. Govindasamy, K. E. Goodson. Two-Medium Model for the Bond Line Thickness of Particle Filled Thermal Interface Materials. Int. Mechanical Engineering Congr. and Exposition, Anaheim, CA, 2004
    22 V. Singhal, T. Siegmund, S. V. Garimella. Optimization of Thermal Interface Materials for Electronics Cooling Applications. IEEE Trans. Compon. Packag. Technol.. 2004, 27(2): 244-252
    23 L. C. Davis, B. E. Artz. Thermal Conductivity of Metal-Matrix Composites. J. Appl. Phys.. 1995.77(10): 4954-4960
    24 C. W. Nan, R. Birringer, D. R. Clarke, H. Gleiter. Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance. J. Appl. Phys.. 1997, 81(10): 6692-6699
    25 J. D. Felske. Effective Thermal Conductivity of Composite Spheres in a Continuous Medium with Contact Resistance. Int. J. Heat Mass Transf.. 2004, 47: 3453-3461
    26 A. G. Every, Y. Tzou, D. P. H. Hassleman, R. Raj. The Effect of Particle Size on The Thermal Conductivity of ZnS/Diamond Composites. Acta Metallurgica et Materialia. 1992, 40(1): 123-129
    27 R. Prasher. Surface. Chemistry and Characteristic Based Model for The Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials. J. Heat Transf.. 2001, (123): 969-975
    28 A. K. Das, S. S. Sadhal. Analytical Solution for Constriction Resistance with Interstitial Fluid. Heat Mass Transf.. 1998, 34. pp: 111-119
    29 Campbell, R.C., S.E. Smith, R.L. Dietz, Measurements of Adhesive Bondline Effective Thermal Conductivity and Thermal Resistance Using the Laser Flash Method. Annual IEEE Semiconductor Thermal Measurement and Management Symposium. 1999, pp: 83-97
    30 L. Fan., et al. Electrical and Thermal Conductivities of Polymer Composites Containing Nano-Sized Particles. Proceedings Electronic Components and Technology Conference. 2004
    31 Yunsheng Xu, D. D. L. Chung. Increasing the Thermal Conductivity of Boron Nitrides and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatment. Composite Interface. 2000, 7(4): 243-256
    32 Nikkeshi, M. Kudo, T. Masuko. Dynamic Viscoelastic Properties and Thermal Properties of Ni Powder-Epoxy Resin Composites. Journal of Applied Polymer Science. 1998, 69(13): 2593-2598
    33 M. Ohashi, et al.. Spherical Aluminum Nitride Fillers for Heat Conducting Plastic Packages. Journal of the American Ceramic Society. 2005, 88(9): 2615-2618
    34 J. James, Licari, W. Dale Swanson. Adhesives Techonology for Electronic Aoolications. William Andrew publishing. 2005: 95-169
    35 Haiping Hong, Dustin Thomas, Andy Waynick et al.. Carbon Nanotube Grease with Enhanced Thermal and Electrical Conductivity. J. Nanopart Res. 2010, 12: 529-535
    36 S. Ravi Prasher. Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Material. IEEE Transactions on Components and Packaging Technologies. 2004, 27(4)
    37 L. Ralph et al.. Low Melting Point Thermal Interface Material. IEEE Intersociety Conference on Thermal Phenomena. 2002, pp: 671-676
    38 K. H. Uzma Bangi A. Parvathy Rao et al.. Physico-Chemical Properties of Ambiently Dried Sodium Silicatebased Aerogels Catalyzed with Various Acids. J. Sol-Gel Sci. Technol.. 2009, 50: 87-97
    39 Xiaohong Yang, Weiling Zhu, Qiao Yang. The Viscosity Properties of Sodium Silicate Solutions. J. Solution Chem.. 2008, 37: 73-83
    40卢晨,季敦生,朱纯熙.水玻璃的基本组成及定量测定,上海交通大学学报,1997,31(9)
    41 L. Jonathan Bass, L. Gary. Turner, Anion Distributions in Sodium Silicate Solutions. Characterization by 29SI NMR and Infrared Spectroscopies, and Vapor Phase Osmometry, J. Phys. Chem. B 1997, 101: 10638-10644
    42朱纯熙.水玻璃硬化的认识过程.无机盐工业.2001,33(1):22-25
    43阿方萨斯.粘接与胶黏剂技术导论.潘顺龙等译.第二版.化学工业出版社,2005:115-140
    44 J. M. Clemens, Lasance. The Urgent Need for widely-Accepted Methodes for Thermal interface Materials. 19th IEEE Semi-Therm Symposium. 2003: 123-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700