用户名: 密码: 验证码:
液固流化床粗煤泥分选机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗煤泥分选问题成为影响精煤产率提高的主要瓶颈。大直径重介旋流器和浮选柱的大量应用,在提高产品质量和分选效果的同时,也一定程度上降低了介于重选和浮选粒度交界附近粗煤泥的分选效果。而液固流化床分选机的分选原理能够吻合粗煤泥本身的粒度范围窄、需要低密度分选的特点,是一种结构简单、分选效果较好的新技术,国内研究才刚刚起步。研制开发具有自主知识产权的液固流化床粗煤泥分选机对我国选煤技术的发展,尤其是粗煤泥分选技术的发展起到巨大的推动作用,具有十分重要的意义。
     论文将化工上的多管分布器和侧流分布器结合起来设计了新型的流体分布器,并设计了液固流化床粗煤泥分选机,申请了设备专利。先后经过初步构思模型、设计模型机、实验室试验、内部流场的模拟及相关流体动力学研究、分选分层机理研究、半工业试验系统构建及半工业试验,设计并制作了2FBCC-1500液固流化床粗煤泥分选机,分别在成庄选煤厂末煤车间和葛店选煤厂进行了工业试验,结果表明:对成庄选煤厂螺旋分选机尾煤分选试验,取得了>0.125mm粒级的E值均在0.07-0.10之间,合格精煤产率超过了30%,粗煤泥分选试验取得了精煤灰分在10-11%之间,尾煤灰分63%以上,精煤产率在73%-76%之间的良好指标,其分选效果明显优于螺旋分选机,全厂精煤总产率提高1个百分点以上。而在比张双楼选煤厂粗煤泥难选的情况下,葛店选煤厂分选机工业试验取得了与张双楼选煤厂进口粗煤泥分选机相同的分选效果,可使全厂的总精煤产率提高4个百分点,经济效益显著。工业运行表明:液固流化床粗煤泥分选机设计合理,系统稳定,指标波动小,自动化程度较高,操作简单。
     根据目前国内大多选煤工艺存在不同程度的重选和浮选背粗煤泥的现象提出了增加液固流化床粗煤泥分选的三段选煤新工艺。根据液固流化床分选机的入料中高灰细泥基本都进入到溢流的特点,首次指出工业生产中从工艺上降低入料中的高灰细泥含量及强化精煤的脱泥效果是液固流化床粗煤泥分选机成功应用的关键,并提出了包括预先脱泥浓缩、流化床分选机溢流脱泥脱水在内的液固流化床+浮选柱的煤泥分选回收新模式。设计的液固流化床粗煤泥分选机的分选性能达到了设计要求,填补了我国在液固流化床粗煤泥分选机研究领域的空白。
The separation of coarse slime has become the key point affecting the clean coal yield. Application of a great deal of dense-media cyclones of large diameter and flotation columns has improved the product quality and the separation effect, but which has reduced the separation effect of coarse slime which is between gravity separation and flotation. The separation theory of Liquid-Solid Fluidized Bed coarse slime separator(LSFBCSS)can match the characteristics of narrow granularity bound, low density separation of coarse slime. It is a new technology with excellent separation results and with simple configuration. The research about it has just begun in China. Excogitate of LSFBCSS with independent intellectual property has the pivotal imputes to the development of coal separation technology of our country, especially to the evolution of coarse slime separation technology. It has great significance indeed.
     The research of distributor combining the multi-pipe distributor with the side-flow distributor used in chemical engineering are carried out, finally the new separator is designed and patented. After the process of conceiving principium model, model design, laboratory tests, simulation of inside flow, research of associated hydrokinetics, research of separation stratification theory, construction of pilot test system and pilot test, the Liquid-Solid Fluidized Bed Separator 2FBCC-1500 was designed and manufactured, and the relevant industrial trial has been carried out in Chengzhuang and Gedian preparation plant respectively. The results have been concluded as follows: In Chengzhuang preparation plant, the separation trial was carried out with the tailings of the spiral separator,the E values of particles more than 0.125 mm are all between 0.07 and 0.10 and the eligibility clean coal yield is more than 30% have been achieved, while the ash content of cleaned coal is between 10% and 11%, the ash content of tailings is more than 63% and the clean coal yield is between 73% and 76% in the separation of coarse slime. The separation effect is better than that of the spiral separator markedly, and the clean coal yield of the whole preparation plant increases more than one percent. The separation effect of particles larger than 0.125mm in Gedian preparation plant is equal to that of Zhangshuanglou preparation plant with the import coarse slime separator, but the pollution of feed in former is more serious. The clean coal yield of the whole preparation plant increases four percent,which will bring great benefit in economy. The industrial test shows that the LSFBCSS has been reasonablely designed with high stability, low undulation in results, lofty auto-control system and easy operation.
     According to the inefficient separation effect of the coarse slime existing in most of domestic coal separation technology, three stage coal separation technology adding Liquid-Solid Fluidized Bed coarse slime separation has been applied for the first time. According to the characteristics that all the fine slime with high ash content goes into the overflow, which will increase the ash content of the clean coal, the opinion that reducing the content of fine slime of high ash and strengthen the effect of desliming is the key point to the successful use of LSFBCSS in industry is pointed out for the first time, also the new flowsheet for coal recovery using Liquid-Solid Fluidized Bed and flotation column, including desliming and concentrating of the feed, desliming and dehydration of the overflow product of Liquid-Solid Fluidized Bed Separator, has been developed. The separation capability of LSFBCSS has reached the design requirement and filling a domestic gap in this field.
引文
[1]刘峰.近年选煤技术综合评述[J].选煤技术,2003(6)):1-13.
    [2]常耀鸿,张延玺,王建设等.中国煤炭工业可持续发展研究[J].太原科技,2007(7):10-14.
    [3]李延锋.细粒煤在液固流化态介质中高效分离研究[D].徐州:中国矿业大学,2004.
    [4]欧泽深.煤炭洗选和脱硫的最佳工艺——重介质旋流器与微泡浮选柱的合理配合.内部资料.
    [5]杨俊利.我国选煤技术现状及其发展方向[J].第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:16-18.
    [6]高丰.粗煤泥分选方法探讨[J].选煤技术,2006(3):40-43.
    [7]王建军,焦红光,谌伦建.细粒煤液固流化床分选技术的发展与应用[J].煤炭技术,2007(4):81-83.
    [8]于开平,魏镜弢,张文彬.细粒重选设备开发研究探讨[J].云南冶金,2001,30 (3):10-12.
    [9]焦红光,谌伦建,铁占续.细粒煤重选设备的技术现状与分析[J].煤炭工程,2006(2):14-17.
    [10]叶大武.我国选煤的发展及其对策[J].第十届全国煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:3-7.
    [11]王怀法:近年来选煤技术的发展与思考[J],第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:19-21.
    [12]石常省,王泽南,谢广元.煤泥分级浮选工艺的研究与实践[J].煤炭工程,2005(3):58-60.
    [13]编委会.选煤标准使用手册[M].北京:中国标准出版社,1999:102-117.
    [14]赵寒雪,胡炳双,王铁军.螺旋分选机处理煤泥的研究与实践[J].应用能源技术,2004,(04):10-11.
    [15]王方东,魏光耀.螺旋分选机在选煤厂中的应用[J].煤炭加工与综合利用,2006(2):15-17.
    [16]李延锋,刘炯天,张文军,等.煤炭洗选脱硫新工艺探讨[J].第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:242-249.
    [17]戴少康.选煤工艺设计的思路与方法[M].北京:煤炭工业出版社,2003:61-82.
    [18]彭荣任.重介质旋流器选煤[M].北京:冶金工业出版社,1998:242-249.
    [19]戴少康.澳大利亚模块式重介选煤厂的工艺特点及在我国应用的局限性评析[J].煤炭加工与综合利用,2003(4):10-13.
    [20]杨建国,欧泽深,张守军.重介质旋流器选煤工艺的探讨[J].煤炭加工与综合利用,2002(1): 11-13.
    [21]朱金波.用复合脉动水流特性降低跳汰机分选下限及分选机理研究[D].徐州:中国矿业大学博士论文,1998.4.
    [22]符东旭,熊许波.跳汰床层密度分布规律的研究[J].选煤技术,2001(1):13-17.
    [23]李志刚,郭其涛.粗煤泥对末煤跳汰机系统的影响及解决方法[J],选煤技术,2002(4):25-26.
    [24]杨润全,吕子虎,王怀法.细粒煤重力分选设备与技术发展现状[J].中国矿业,2005(12):4-7.
    [25]张悦秋,谢广元,俞和胜.煤泥重介旋流器选煤技术现状及发展[J].煤炭工程,2005(12):14-16.
    [26]王建明.西曲矿选煤厂煤泥重介系统的改造[J].山西焦煤科技,2003(12):38-39.
    [27]阮明武,康为民.水介旋流器在粗煤泥回收作业中的应用[J].选煤技术,2002(3):38.
    [28]欧泽深.粉煤处理的若干问题探讨[R].煤炭学会年会论文.2002.12.
    [29]周晓华,赵朝勋,刘炯天.煤泥脱硫技术现状及发展方向[J].选煤技术,2002(1):52-55.
    [30]张鸿波,边炳鑫,赵寒雪.螺旋分选机结构参数对分选效果的影响[J].煤矿机械,2002(08): 24-25.
    [31]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001:239-243.
    [32]孙永新.螺旋分选机在王坡选煤厂的应用[J].煤炭加工与综合利用,2007(3):37-39.
    [33]张秀捧.煤泥分级浮选工艺的研究与实践[D].中国矿业大学硕士学位论文,2003.10.
    [34]高淑玲,王卓雅,王永田等.赵各庄矿业公司选煤厂实施分级浮选工艺的试验研究[J]:选煤技术, 2004(6):13-15.
    [35]张志文.TBS干扰床及其在粗煤泥分选中的应用[J],中国煤炭,2006(12):50-52.
    [36]王大鹏,陈警卫,王全强,等.液固流化床高效分选粗煤泥初步研究[J].煤炭技术,2005(7):80-81.
    [37]沈丽娟.螺旋分选机结构参数对选煤的影响[J].煤炭学报,1996(01):73-78.
    [38]赵宏霞,杜高仕,李敏.干扰床分选技术的研究[J].煤炭加工与综合利用,2005(2):16-18.
    [39] R.Q. Honaker.High capacity fine coal cleaning using an enhanced gravity concentrator[J].Minerals Engineering, 1998,11(12):1191-1199.
    [40]陈子彤,刘文礼,赵宏霞,等.干扰床分选机分选粗煤泥的试验研究[J].煤炭工程,2006(5):69-70.
    [41] B.H. Kim, M.S. Klima.Development and application of a dynamic model for hindered-settling column separations[J].Minerals Engineering, 2003,11(11):403–410.
    [42] K.P. Galvin, S.J. Pratten, S.K. Nicol.Dense medium separation using a teetered bed separator[J].Miner. Eng.,1999(12):1059–1081.
    [43]卫中宽.干扰床分选机(TBS)在张双楼选煤厂的应用[J].煤炭加工与综合利用,2003(1):11-14.
    [44] Galvin Kevin Patrick, Pratten Stephen John, Nguyen Tram Lam Giang,‘Differential Settling in a Teeter Bed Separator’, World Congress on Particle Technology 3, Brighton, U.K. 1998:803-808.
    [45] K. P. galvin,S Pratten, G Nguyen-Tran-lam Etc..Dynamics of a teetered bed separator[A].XIII International Coal Preparation Congress[C], Australian Coal Preparation Society, 225-235.
    [46] Galvin, K.P., Pratten S.J. and Nicol, S.K. . Dense Medium Separation Using a Teetered-Bed Separator[J].Minerals Engineering,1999 (12):1059-1087.
    [47] Maharaj, L. Pocock, J., Loveday, B.K..The effect of distributor configuration on the hydrodynamics of the teetered bed separator[J].Minerals Engineering, 2007, 20(11):1089-1098.
    [48] K. P. Galvin, S. J. Pratten, N. Lambert, A. M. Callen, J. Lui.Influence of a jigging action on the gravity separation achieved in a teetered bed separator[J].Minerals Engineering,2002,15(12):1199-1202.
    [49] J.N. Kohmuench,M.J. Mankosa.Process engineering evaluation of the CrossFlow separator[J].Minerals & Metallurgical Processing.2002,19(2):43-49.
    [50] Kohmuench, J.N., Mankosa, M.J. etc.Industrial applications of the CrossFlow separator[J].2005 HeavyMinerals Conference Proceedings, HMC 2005:189-195.
    [51] K.P. Galvin, S. Pratten, G. Nguyen Tran Lam.A generalized empirical description for particle slip velocities in liquid fluidized beds[J].Chemical Engineering Science,1998,19(11):1045-1052.
    [52] E. Doroodchi, J. Zhou a, D.F. Fletcher, K.P. Galvin.Particle size classification in a fluidized bed containing parallel inclined plates[J].Chemical Engineering Science,2005,19(9):162–171.
    [53] K.P. Galvin, E. Doroodchi, A.M. Callen, N. Lambert, S.J. Pratten.Pilot plant trial of the reflux classifier[J].Minerals Engineering,2001:19-25.
    [54] Nguyentranlam, G., Galvin, K.P..Particle classification in the reflux classi.er[J].Minerals Engineering,2001(14):1081–1091.
    [53] J. Zhou, K. Walton, D. Laskovski, P. Duncan and K.P. Galvin.Enhanced separation of mineral sands using the Reflux Classifier[J].Minerals Engineering, 2006,19(15):1573-1579.
    [54] K.P. Galvin, A. Callen, J. Zhou, E. Doroodchi.Performance of the reflux classifier for gravity separation at full scale[J].Minerals Engineering, 2004,7 (5):19–24.
    [55] Galvin, K.P., Nguyentranlam, G..Influnence of parallel inclined plates in a liquid fluidized bed system[J].Chemical Engineering Science, 2001:1231-1234.
    [56] K.P. Galvin,E. Doroodchi,A.M. Callen,N. Lambert,S.J..Pratten Pilot plant trial of the reflux classifer[J].Minerals Engineering 2002(15):19-25.
    [57] G. Kapure, C. Kari, S.M. Rao and N.D. Rao.The feasibility of a slip velocity model for predicting the enrichment of chromite in a Floatex density separator[J].International Journal of Mineral Processing,2007,82(2):86-95.
    [58] Partha Venkatraman,Weng S.Kow..application of floatex/spiral circuit in processing silica sand[J].2000 SME Annual Meeting. Preprint No00-162.
    [59] Michael J. Mankosa Jaisen N. Kohmuench.In-plant testing of the hydrofloat separator for coarse phosphate recovery final report[J].florida institute of phosphate research,July 2002:8-38.
    [60] M·曼科萨.水力浮选分选机的半工业试验研究[J].国外金属矿选矿,2001(5):40-44.
    [61] Kohmuench, J.N., Luttrell, G.H., and Mankosa, M.J.. Coarse particle concentration using the HydroFloat Separator.Minerals & Metallurgical Processing,2001,18(2):187-195.
    [62]《中国选矿设备手册》编委会.中国选矿设备手册[M].北京:科学出版社,2006:488-491.
    [63]邹健,周鲁生,李锐,等.AFX-1 00复式流化分级机的开发及工业试验研究[J].金属矿山,2006(3): 32-36.
    [64] Snoby,R.J,Grotiohann,P. and Jungmann,Andreas, Allflux-New technology for separation of coal slurry in the size range of 3 to 0.15 mm, 16th internation coal preparation conference, 1999:126-139.
    [65]陈子彤,刘文礼,赵宏霞,等.干扰床分选机工作原理及分选理论基础研究[J].煤炭工程,2006(4): 64-66.
    [66]刘文礼,陈子彤,位革老,等.干扰床分选机分选粗煤泥的规律研究[J].选煤技术,2007(4):11-14.
    [67]陈子彤,刘文礼,赵宏霞,等.干扰床分选机分选粗煤泥的试验研究[J].煤炭工程,2006(5): 69-70.
    [68]赵宏霞,杜高仕,李敏,等.干扰床分选技术的研究[J].煤炭加工与综合利用,2005(2):16-18.
    [69]梅国民,王全强,刘焕胜.细粒煤分选方法评述[J].煤炭技术,2005(12):60-62.
    [70]刘炯天.旋流-静态微泡浮选柱与洁净煤制备研究[D].北京:中国矿业大学博士论文,1999.06.
    [71]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001:102-117.
    [72]周晓四.重力选矿技术[M].冶金工业出版社,2006:6-32.
    [73]姚书典.重选原理[M].北京:冶金工业出版社,1992.
    [74]李贤国,张荣曾.重力选矿原理[M].北京:煤炭工业出版社,1992.
    [75]桂夏辉.液固流化床粗煤泥分选基础研究[D].徐州:中国矿业大学,2007.
    [76] V.S. Patwardhan, C. Tien.Sedimentation and liquid fluidization of solid particles of different sizes and densities[J].Chem. Eng. Sci. 1998:1051–1060.
    [77] A. Chen, J.R. Grace, N. Epstein, C.J. Lim. Steady state hydrodynamic model for continuous particle classification in a liquid fluidized bed[J].Fluidization, United Engineering Foundation,New York,2001:413– 420.
    [78] Mohammad Asif, Ahmed A. Ibrahim.Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds[J].Powder Technology,2002,(28)2:241- 254.
    [79]吴建章,朱永义.气固流态化用于谷物分选的研究[J].粮食与饲料工业,2006(6):11-13.
    [80]吴建章,朱永义.气固流态化技术用于小麦分级的研究[J].粮食与饲料工业,2002(9):4-6.
    [81]赵京华,赵学笃,张振京.颗粒状群体物料空气动力学特性研究[J ].农机化研究,1989 (3) :5-10.
    [83]韦鲁滨.矿物分离过程动力学[M].徐州:中国矿业大学出版社,2002.
    [84]骆振幅.流态化分选理论[M].徐州:中国矿业大学出版社,2002.
    [85]郭德.下降介质流影响下颗粒的分层机理[J].煤炭学报.2002, 27(3):325-327.
    [86]张远君.两相流体动力学[M].北京:北京航空学院出版社,1987:73-77.
    [87]岳湘安.液-固两相流基础[M].北京:石油工业出版社,1996:40-55.
    [88] G.K.巴切勒.流体动力学引论[M].北京:科学出版社,1997:265-287.
    [89]孟晓刚,倪晋仁.固液两相流中颗粒受力及其对垂直分选的影响[J].水利学报,2002(9):6-13.
    [90]倪晋仁,曲轶众.固液两相流中固体颗粒的垂直分选模型[J].水动力学研究与进展,2003 (3):349-354.
    [91]曲轶众,倪晋仁,孟晓刚.固液两相流中固体颗粒的垂直分选机理[J].水动力学研究与进展, 2003(4).483-488.
    [92]王瑞金,张凯王刚编著.Fluent技术基础与应用实例[M].北京:清华大学出版社,2003.
    [93]吴琳,周昆颖.液固流化床颗粒速度场和固含率的数值模拟[J].北京化工大学学报,2006(4):95-97.
    [94]高晓根,刘文东,魏耀东,等.液固流化床内床层动态特性的CFD模拟[J].燃料化学学报, 2006(4):492-498.
    [95] Mohammad Asif.Predicting binary-solid fluidized bed behavior using averaging approaches[J].Powder Technology,2002(15):226–238.
    [96] Asif, M. Expansion bahavior of a binary-solid liquid fluidized bed with large particle size difference [J].Chemical Engineering and Technology,2001,24(10):1019-1024.
    [97] H. Moritomi, T. Yamagishi, T. Chiba.Prediction of complete mixing of liquid-fluidized binary solid particles[J].Chem. Eng. Sci. 1996 (81):297– 305.
    [98] R. Escudiéa,b, N. Epsteina, J.R. Gracea, H.T. Bia.Effect of particle shape on liquid-fluidized beds of binary (and ternary) solids mixtures: segregation vs. mixing[J].Chemical Engineering Science, 2005,(21)8:1528– 1539.
    [99] S. Barghi, C.L. Briens, M.A..Mixing and segregation of binary mixtures of particles in liquid–solid fluidized beds[J].Powder Technology, 2003,131(2):223-233.
    [100]荣国强,崔雯.浮选柱液位自动控制系统设计探讨[J].矿业工程,2007(3):35 - 37.
    [101]荣国强,刘炯天,刘莉君,等.旋流-静态微泡浮选柱液位自动控制系统设计[J].金属矿山,2007(5):62 - 64.
    [102]谢国龙,俞和胜,杨頲.粗煤泥分选设备及其应用分析[J].煤矿机械,2008(3):117 -119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700