用户名: 密码: 验证码:
降低ARGG汽油烯烃含量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了国内外催化裂化工艺技术和汽油质量的现状及进展情况;分析了ARGG装置的特点和及其汽油质量情况;指出了汽油质量所存在的主要问题是汽油中烯烃含量过高。在了解国内外清洁汽油生产技术的基础上,结合装置实际和汽油质量现状,制定了降低ARGG汽油烯烃含量的技术方案和工艺路线,通过文献查阅、技术调研、方案设计、中型试验、工业试验等一系列研究和工业装置应用,使ARGG汽油烯烃含量降低到35v%以下,满足了国家新汽油标准(GB17930-1999)的要求。
     现有汽油降烯烃方法可归纳为以下四种:直接在现有装置上添加汽油降烯烃助剂或采用新的降烯烃催化剂,以达到降烯烃的效果;采用先进的汽油降烯烃工艺(如MGD、MIP、FDFCC等工艺)对现有装置进行适当改造,以达到降烯烃的效果;往催化汽油中调入直馏汽油的方法来降低汽油烯烃含量;用轻汽油醚化、汽油加氢—异构化、重整、烷基化、MTBE等装置生产的低烯烃、高辛烷值汽油来调合催化汽油,以达到降烯烃目的。通过对以上四种方案进行认真研究后,从技术、投资、成本、装置构成和汽油质量特征等因素考虑,本研究制定了以添加汽油降烯烃助剂和催化剂及对现装置进行技术改造实施MGD工艺两种方案来开展降低ARGG汽油烯烃含量的技术研究工作。
     通过对LAP汽油降烯烃助剂的中型试验研究和ARGG工业试验研究,结果表明:LAP助剂具有一定的选择性裂化、氢转移、芳构化等功能,在系统中加入5m%左右的LAP助剂时,能使汽油烯烃含量降低约5个百分点。但LAP助剂本身的性能不稳定,易产生水热失活,同时降低了柴油的十六烷值,因此,LAP助剂对本工业装置而言并不太合适。
     通过对催化剂活性的研究表明:提高催化剂活性有利于降低汽油烯烃含量,在工业试验研究中,MGD工艺条件下,当系统的催化剂活性从64.6提高到71.1时,汽油烯烃含量可以41.2%下降到37.6%。通过RAG—8催化剂和RAG-6催
    
    化剂的对比研究结果表明:RAG一8降烯烃的效果略优于RAG一6催化剂。在反
    应温度为5巧℃、RAG一8催化剂在系统藏量占25%时,汽油汽油烯烃含量可从
    39.2%降低到38.7%。
     在中型装置和ARGG工业装置上考察了反应温度、剂油比、空速、汽油回炼
    比例等主要工艺参数变化对汽油烯烃含量的影响,研究结果表明:
     随着反应温度的降低,汽油烯烃含量降低。在工业试验研究中,当反应温度
    从520℃降低到5沁℃时,汽油中的烯烃含量从42.9%降低到39.8%。
     提高剂油比有利于降低汽油烯烃含量。在工业试验研究中,当剂油比从8.57
    提高到9.46时,汽油烯烃含量从42.6%下降到37.1%。
     降低空速、即降低装置的处理量)有利于降低汽油烯烃含量,在工业试验研
    究中,当处理量从128t/h降低到95t/h时,汽油的烯烃含量从41.6%下降到36.7%。
     提高汽油回炼比例有利于降低汽油烯烃含量。在工业试验研究中,当汽油的
    回炼比例从巧%增加到24%时,汽油烯烃含量可从42,1%下降到37.3%。
     对ARGG工业装置实施毗D工艺技术改造后,分别研究了毗D工艺条件下,粗汽
    油、稳定汽油、凝缩油等不同汽油馏分回炼时的降烯烃效果,研究结果表叽:凝
    缩油回炼降烯烃效果最好,稳定汽油次之,粗汽油最差。
     重点研究了将稳定汽油进行切割后分离出轻汽油进行回炼的降烯烃效果,研
    究结果表明:由于汽油中80%以上烯烃都富集在轻汽油中,因此,轻汽油回炼具
    有很好的降低汽油烯烃含量的效果。
     在中型试验、工业试验等一系列研究的基础上,最后在ARGG装置上进行
    一了轻汽油回炼的工业应用研究,同时考察了各主要工艺参数对产品分布、产品质
    量的影响。三个月的工业应用结果表明:
     采用轻汽油回炼具有很好的降烯烃效果,汽油的烯烃含量可以直接降低到
    35v%以下,满足了国家新的汽油标准GB 17930一1999要求。同时,柴油等其它
    产品质量没有变化,产品分布表现为:汽油收率下降,液化气、柴油和丙烯收率
    
    都有一定的增加,于气收率、生焦率、加工损失变化不大;装置总液收率略有__主
    斗
     本研究在汽油全馏分回炼的MGD工艺基础上,对汽油馏分进行切割分离得
    到富集烯烃的轻汽油进反应器进行改质,找到了一种适合ARGG工艺降烯烃的
    技术方案和工艺路线,切合实际、经济可行,对同类装置的汽油质量升级换代具
    有借鉴意义。
This paper introduces the technology of catalytic cracking at home and abroad, the quality of the gasoline and its development; It analyses the characters of the ARGG unit and the quality of the gasoline; It points out the main problem on the quality of the gasoline is over olefin content. After we have known the productive technology of the clean gasoline at home and abroad, we defined the technical scheme and technological route of how to reduce the olefin content in the gasoline in the ARGG unit, according to the reality of the gasoline. After we carried out a lot of research (looking up some documents, making some technology investigation and research, designing the schemes, doing some middle-sized experiments, doing some industrial experiments, etc.) and the commercial application in the unit, we reduced the ARGG gasoline's olefin content to below 35v%. So the quality of the gasoline can meet the new national standard (GB17930-1999).
    At present, there are four ways of reducing the olefin content in the gasoline. Firstly, we add some co-catalysts or some new catalyst in order to reduce the olefin content in the gasoline in the present unit directly; Secondly we adopt some excellent technologies that can reduce the olefin content (such as MOD, MIP, FDFCC and so on ) to revamp the present unit properly; Thirdly, we can reduce the olefin content by adding some straight run gasoline to the catalytic gasoline; Fourthly, we can blend the catalytic gasoline with the high octane value gasoline containing low olefin, which can be produced by the etherification of the light gasoline, hydrogenation, iso-merization, reformation of the FCC gasoline and MTBE, etc. After researching the four ways carefully, and considered some elements such as the technology, investment,
    
    
    cost, the structure of the unit, the characters of the quality of the gasoline, we defined two ways to carry out the research work of how to reduce the olefin content in the gasoline produced by the ARGG unit. One way is use of some co-catalyst and catalyst, the other is to revamp the present unit by carrying out MGD process.
    Having done some middle-sized experiment on the LAP co-catalyst and some commercial test in the ARGG unit, we find that LAP co-catalyst have some functions of selective cracking, hydro-transfering and aromatization. added some LAP co-catalyst at a 5% additive share in total catalyst inventory, the olefin content in the gasoline can be reduced by 5 percentage points. But the LAP co-catalyst itself is unstable and deactivate easily, the cetane number of the diesei oil is reduced. So LAP isn't suitable for the industrial unit.
    The research on the activity of the catalyst proves that improving the active of the catalyst is beneficial to reducing the olefin content in the gasoline, the result of the MGD industrial experiment is: the activity of the catalyst in the system is raised from 64.6 to 71.1, the olefin content in the gasoline can be reduced from 41.2% to 37.6%. compared Rag-8 catalyst with Rag-6, we find Rag-8 is better than Rag-6 at reducing the olefin content. When the reaction temperature is 515℃ and the rag-8 is 25% in the system , the olefin content in the gasoline can be reduced from 39.2% to 38.7%.
    We inspected effect on olefin content of the varies of the main technological parameters (the reaction temperature, catalyst to oil ratio, the weight space velocity, the proportion recycle of the naphtha, etc.) in the middle-sized unit and ARGG industrial unit. It shows that: When the reaction temperature is reduced, the olefin content is reduced too. In the research of the industrial experiment, the olefin content in the gasoline can be reduced from 42.9%to 39.8% when the reaction temperature is
    
    
    reduced from 520℃ to 510℃.
    Improving the catalyst to oil ratio is beneficial to reducing the oiefin content in the gasoline. In the research of the industrial experiment, the oiefin content in the gasoline can be reduced form 42.6%to 37.1% when the catalyst to oil ratio is risen from 8.57 to 9.46.
    Improving the weigh
引文
[1] 仇延生.汽油的烯烃对发动机排放的影响.石油炼制与化工,2000,31(4):40-45
    [2] Auto/Oil Air Quality Improvement Research Program. SAE 920325, 1992
    [3] Bond T J, Gerry F S, et al. Intake Valve Deposit Control A Laboratory Program to Optimize Fule/Additive Performance. SAE 892115, 1989
    [4] 何奕工,舒兴田.我国清洁汽油燃料的发展趋势与对策.中国工程科学,2002,4(2):28-35
    [5] Mcca.SJ,朱宇清.FCC技术进展:工业实例.南炼科技,1998,5(1):50-54
    [6] Bell, L. Oil &Gas Journal, December 21, 1992: pp.54-56
    [7] 陆庆云.FCC流化裂化培训教学片参考教材.北京:中国石油化工总公司电教中心,1992
    [8] Venuto, P. B.; Habib, E.T.Jr: Fluid Catalytic Cracking with Zeolite Catalysts, Chemical Industriesl/1;(Marcel Dekker, Inc.; New York and Basel)1979; 26-28
    [9] 钱伯章.面向21世纪的炼油催化技术的新进展[J].工业催化,1998,6(3):3-7
    [10] Niccum M W, et al. 1998 NPRA Annual Meeting, AM-98-18, San Francisco: 1998
    [11] Nakamura D. Oil &Gas Journal, 2001, 99(52): 68
    [12] Schnaithng M V, et al. 1998 NPRA Annual Meeting, AM-98-40, San Francisco: 1998
    [13] 郑灌生.迎接清洁燃料的挑战.见:面向21世纪石油炼制技术交流会论文集,南京,1999:168
    [14] 张德义.进一步提高我国催化裂化工艺技术和实际运行水平.第七届催化裂化年会论文集,上海,2000:1-8
    [15] 张立新.21世纪初期中国炼油工业技术进步的展望.炼油,2000,5(3):10-18
    [16] 李淑勋,王凤秀等.我国重油催化裂化催化剂的发展.抚顺石油学院学报,2002,22(3):-27-32
    [17] 张立新.我国催化裂化技术的发展方向,炼油设计.2001,31(3):-1-5
    [18] 李善亮,亓玉台.重油催化裂化技术近期动态.抚顺石油学院学报,1999,19(2):
    
    -18-23
    [19] 刘家明,蒋荣兴.运筹工程设计技术 推进清洁燃料生产进展.见:清洁燃料生产工艺与工程技术专题研讨会论文集.北京:中石化出版社,2002:3-12
    [20] 王宏民.降低催化汽油烯烃助剂LAP—1的应用实验.河南化工,2002,(8):-26-27
    [21] 闫宏.LAP降烯烃助剂的工业应用.天然气与石油,2001,19(2):-14-17
    [22] 王龙延 王国良.降低催化裂化汽油烯烃助剂的工业试验.炼油设计,2000,30(7):-47-50
    [23] 王龙延 王国良.降低催化裂化汽油烯烃含量的LAP助剂的工业应用.炼油设计,2001,31(9):-23-27
    [24] 俞文豹 齐旭东.降低FCC汽油中烯烃含量的LGO—A助剂工业应用.石油炼制与化工,2002,33(1):-14-17
    [25] Herbst, Joseph A, et al. Resid Catalystic Cracking Process Utilzin-g ZSM-5 for Increased Gasoline Octane. USP 4 867 863.1989
    [26] 宋爱萍.提高汽油质量的工艺技术进展.石油规划设计,2001,12(6):-10-12
    [27] 刘惠斌,吴凯,申建华.降低催化裂化汽油烯烃含量LBO-12催化剂的工业应用.炼油设计,2001,31(2):39-42
    [28] 秦松,赵春林,张忠东.降烯烃催化剂和助剂的研制与工业化开发.见:2001年石油炼制技术大全论文集.北京:中石化出版社
    [29] 徐志成,许明德.催化裂化催化剂GOR的氢转移活性与降低汽油烯烃含量性能的研究.石油炼制与化工,2002,33(1).-22-26
    [30] 黄费喜,富跃军.降烯烃GOR—C催化剂在催化裂化装置的应用.炼油设计,2001,31(9):-38-39
    [31] 齐旭东,丁占民.GOR—C催化剂在辽河VGO催化裂化装置中的应用.石油炼制与化工,2001,32(10):-1-4
    [32] 黄费喜,富跃军.催化裂化降烯烃催化剂GOR—C应用.扬子石油化工,2001,16(2):-6-9
    [33] 王斌,田辉平.GOR—Q降低汽油烯烃含量催化裂化催化剂的工业应用.石油炼制与化工,2002,33(7):-5-9
    [34] 蔡锦华,沈荣民.使用GOR—KC催化剂降汽油烯烃.高桥石化,2001,16(4):-10-13
    [35] 钟孝湘,张执刚,黎仕克等.催化裂化多产液化气和柴油工艺技术的开发与应用.
    
    石油炼制与化工,2001,32(11):1-5
    [36] 胡勇仁,彭永强,张执刚等.催化裂化多产液化气和柴油技术在广石化的工业应用.石油炼制与化工,2001,32(12):16-20
    [37] 潘爱民.多产液化气和柴油技术在重催装置的工业应用.广石化科技,2000年,4:6-14
    [38] 康飚,王庆元,康庆山等.福建炼化公司催化裂化装置应用MGD技术的工业试验.石油炼制与化工,2002,33(2):19-23
    [39] 田勇,高金森,徐春明.优化工艺条件降低催化裂化汽油烯烃含量.石油炼制与化工,2001.32(10):26-29
    [40] 许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP.石油炼制与化工,2001,32(8):1-5
    [41] 钱伯章.生产清洁汽油的MIP工艺实现工业化.炼油设计,2002,32(9):-28-28
    [42] 马伯文,袁裕铭.采用先进技术 提高装置运行水平.炼油设计,2002,32(3):-33-36
    [43] 张建芳,山红红,李正等.两段提升管催化裂化新技术的开发.石油学报,2000,16(5):66-69
    [44] 丛森滋,李胜山,丁红春等.两段提升管催化裂化工业化试验装置的设计与运行,催化裂化协作组第九届年会报告论文集.2003:215-217
    [45] 刘昱.灵活双效催化裂化(FDFCC)工艺的工程设计及工业应用.炼油设计,2002,32(8):24-28
    [46] 顾约伦.清洁化烷基化工艺.高桥石化,2002,17(6):56-56
    [47] 任立国,仲崇民.SO4.-/ZrO2固体超强酸催化剂研究(Ⅳ)—邻二甲苯与苯乙烯的烷基化反应.抚顺石油学院学报,2002,22(4):17-19
    [48] S. M. Black,C.D.Gosling, K. Z. Steigieder, et al. Meeting Growing Alkylate with AlkyleneTM Technology. In: NPRA Annual Meeting, 2000
    [49] 刘志刚,刘耀芳.异丁烷与丁烯烷基化的工艺装置综述.天然气与石油.2002,20(2):21-25
    [50] Ignatius J, Jarvelin H, Lindqvit P. Hydrocarbon Processing, 1995, 74(2): 51-53
    [51] Pescarollo E, Trotta R, Sarathy P R. Hydrocarbon Processing, 1993, 72(2): 53-58
    [52] 李亚军,李吉春.催化裂化轻汽油醚化技术.石化技术与应用,2002,20(3):184-
    
    189
    [53] 单江萍.汽油醚化技术.新疆石油科技,2002,12(1):71-75
    [54] 王天普,王迎春等.轻汽油醚化技术在FCC汽油改质中的作用.石油炼制与化工,2001,32(8):64-66
    [55] Scherzer, J.; Octane-Enhancing Zeoiitic FCC Catalysts; Marcel Dekke-r, Inc., New York,(19900,pp.89-97
    [56] Julius Scherzer. Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Carat Rev-Sci Eng, 1989, 31(3): 215-354
    [57] Suarez, w; Internal Communication, April, 1990
    [58] Mott,R.W.; Choosing FCC Operating Conditions, A Series of Compromises; Grace Davison Los Angeles Refiners Seminar; October, 1988
    [59] 邱中红,陆友宝.增产液化石油气及降低汽油烯烃含量的裂化催化剂RAG-8研究开发.见:催化裂化协作组第九届年会报告论文集.洛阳:催化裂化协作组,2003:361-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700