用户名: 密码: 验证码:
舰船气泡尾流的前向光散射特性及探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高舰船光尾流自导中对气泡尾流的感知能力,论文提出了一种新的前向光尾流探测技术。这种探测技术通过探测尾流气泡的前向散射光,反演光束在气泡尾流中的小角度近似光辐射传输模型,获得气泡尾流的气泡数密度这项特征参数从而实现对尾流的感知。针对前向光尾流探测的特点,在分析尾流气泡光散射特性的基础上建立了小角度近似光辐射传输模型。与传统的前向小角度近似辐射传输方程相比,论文中的模型做了两项改进:用修正的二阶高斯函数代替传统的一阶高斯函数拟合气泡群的散射相函数,对辐射传输中的约化强度进行了前向散射修正。最后采用研制的样机对模拟的尾流气泡进行了探测实验,验证了论文提出的探测方法的可行性。
     论文首先研究了尾流气泡的光散射特性,包括单个气泡散射特性、气泡群散射特性和光束在气泡尾流中的传输特性。对单个气泡散射特性的分析包括光学效率因子、偏振特性、强度分布特性、能量分布特性等;在此基础上,研究了气泡群散射光的强度分布特性和能量分布特性。为便于分析能量分布特性,引入了能量分布函数的概念和表达式。根据尾流气泡的大部分生命时间内覆盖着有机膜的实际情况,对气泡散射特性的分析又分为干净气泡、覆盖着不同成分有机膜和不同厚度有机膜的脏气泡几种情况。对气泡光散射特性的分析采用的方法为Mie理论。根据分析得到的气泡群散射光的强度和能量分布特性,改进了小角度辐射传输方程中已有的相函数高斯拟合方法,同时对约化强度进行了前向散射修正。基于改进的小角度辐射传输方程,研究了光束在尾流中传输的复散射效应,探讨了测量尾流光束衰减的复散射校正和气泡数密度与光束在尾流中衰减的关系,为设计探测尾流气泡数密度的样机提供了理论支持。
     在分析光束在尾流中传输特性的基础上,探讨了通过探测尾流气泡的前向散射光信号获取气泡数密度的方法。论文提出了一种适用于复散射条件下的基于辐射传输方程的反演法,即根据小角度辐射传输方程的解,通过数值计算得到一系列关于气泡数密度和光束能量透射比的点,然后采用曲线拟合法获得气泡数密度与光束能量透射比之间的函数关系式。实际探测尾流时,只要测量到了透射比,就可以由这个关系式得到实际的气泡数密度。
     为了验证论文提出的探测方法的有效性,需要已知尺度分布和数密度的尾流气泡作为基准。论文中采用电化学方法,用电解水产生的氢气泡来模拟尾流气泡。通过显微照相、图像处理和统计分析方法获得产生的氢气泡的尺度分布;通过控制电解电流按能量守恒的方法获得产生的氢气泡的数密度。
     最后,研制了一套实验样机,包括光学系统、电子系统、上位机软件和机械结构等。用这套样机对模拟的尾流气泡进行了探测实验,测量到的数密度与模拟尾流的数密度符合较好,从而验证了论文提出的探测技术的可行性。
To improve the apperception for bubbles wakes by optical technique in wakes homing, a new technology for detection of bubbles wakes is proposed. This technology arrives at the apperception by detection of forward light scattered by wake bubbles, inversion of light beam transfer model in small angle approximation and obtainment of the bubbles' number density in wakes. According to the characteristics of detecting bubbles wakes by forward light scattering, the model of light transfer in small angle approximation is established based on light scattering properties of wake bubbles. Compared to traditional transfer equation in small angle approximation, this model has two improvements. One is that correctional linear combination of two Gauss function replaces old one Gauss function in phase function fit; the other is the correction of forward scattering to un-scattering intensity. Finally, the method is confirmed to be feasible by detecting simulated wake bubbles using the testing equipment developed in this paper.
     Firstly, the light scattering properties of wake bubbles are investigated, which include the scattering properties of single bubble, bubble populations and the extinction features of light beam transferring in bubbles wakes. The optical efficiency factor, polarization, intensity distribution and energy distribution of light scattered by single bubble are discussed. Based on single bubble's light scattering properties, the characteristics of light scattered by bubble populations are studied. The energy distribution function is introduced for analyzing the energy distribution of light scattering conveniently. According to the fact that bubbles in ocean are coated with organic film in their most part of lifetime, the searches for bubbles' scattering characteristics includes clean bubbles and dirty bubbles coated with different component and thickness organic film. The approach used to research into the bubbles scattering is Mie theory. According to the properties of intensity and energy distribution of bubbles' light scattering, traditional Gauss fit for scattering phase applied in traditional transfer equation in small angle approximation is improved, and the forward scattering error is also corrected. Based on the improved transfer equation, the multiple scattering, the correction to multiple scattering and the relationship between bubbles number density and light beam attenuation are analyzed when light beam propagates through bubbles wakes. These analyses give a theoretical support for design of testing equipment for detecting bubbles number density.
     Secondly, the approaches, which obtain bubbles' number density by detecting forward light scattered by wake bubbles, are discussed, on basis of transfer characteristics of light beam in wakes. An inversion method to transfer equation is presented, which is fit for multiple scattering. A series of points about bubbles number density and energy transmission ratio are obtained by numeric calculation utilizing the solution of improved light transfer equation in small angle approximation. Then function between bubbles number density and energy transmission ratio can be gotten by fit the points in the least squares sense. So in actual detection of wake bubbles, one can easily obtain the bubbles number density utilizing the function, after the energy transmission ratio is measured.
     Thirdly, wake bubbles are simulated by hydrogen bubbles produced by water electrolysis. To validate the method of obtaining bubbles number density presented in this paper, a wake bubbles having known size distribution function and number density is necessary to act as benchmark. Here, the simulated wake bubbles' size distribution function is gotten by micrography, digital image processing and statistic analysis; the number density is achieved by controlling the current in electrolysis in terms of current conservation.
     Lastly, testing equipment for validating the detecting method proposed in this paper is designed and manufactured, which consists of optical system, electronic system, PC software and mechanical structure. The simulated wake bubbles were detected by the testing equipment, and the number density measured by the testing equipment is fairly consistent with the number density controlled in electrochemistry, which confirm that the technology presented in this paper is feasible.
引文
[1]Zhang X,Lewis M,Bissett W P,et al.Optical influence of ship wakes.Appl.Opt.,2004,43(15):3122-3132.
    [2]Trevorrow M V,Vage S,Farmer D M.Acoustical measurements of microbubbles within ship wakes.J.Acoust.Soc.Am.,1994,95(4):1922-1930.
    [3]Miner E W,Griffin O M,Skop R A.Near-surface bubble motions in sea water.NRL-MR-5756,1986.
    [4]Peltzer R D,Garrett W D,Smith P M.A remote sensing study of surface ship wake.Int.J.Remote Sens.,1987,8(5):689-704.
    [5]Lyden J D,Hammond R R,Lyzenga D R,et al.Synthetic aperture radar imaging of surface ship wakes.J.Geophys.Res.,1988,93(C10):12293-12303.
    [6]Peltzer R D,Griffin O M,Barger W R,et al.High-resolution measurement of surface-active film redistribution in ship wakes.J.Geophys.Res.,1992,97(C4):5231-5252.
    [7]Shen L,Zhang C,and Yue D K P.Free-surface turbulent wake behind towed ship models:Experimental measurements,stability analyses and direct numerical simulations.J.Fluid Mech.2002,469:89-120.
    [8]冀邦杰,周德善,张建生.基于舰船尾流光效应的制导鱼雷.鱼雷技术,2000,8(3):40-43.
    [9]周德善.舰船气泡尾流几个特征参数的研究.西安705研究所,2001,142-149.
    [10]Garrettson G A.Bubble transport theory with application to the upper ocean.J Fluid Mech,1973,59:187-206.
    [11]Stewart M B,Miner E W.Bubble dynamics in a turbulent ship wake.NRL-MR-6055,1987.
    [12]Ezerskii A,Sandler B,Selivanovskii.Echo-ranging observations of gas bubbles near the sea surface.Sov Phys Acoust,1989,35:483-484.
    [13]Carrica P M,Bonetto F J,Drew D A.The interaction of background ocean air bubbles with a surface ship.Int J Numer Meth Fluids,1998,28:571-600.
    [14]Carrica P M,Drew D,Bonetto F.A polydisperse model for bubbly two-phase flow around a surface ship.Int J Multiphase Flows,1999,25:257-305.
    [15]Pinkel R,Merrifield M,Smith J.Advance in Doppler sonar technology.Proceedings of the IEEE Fifth Waking Conference on Current Measurement,1995.
    [16]Vagle S,Burch H.Acoustic measurements of the sound speed profile in the bubbly wake formed by a small motor boat.J.Acoust.Soc.Am.,2005,117(1):153-163.
    [17]Gasparovic R F.Observation of ship wakes from space.AIAA-92-1354,1992.
    [18]Davis G E.Scattering of Light by an Air Bubble in Water.J.Opt.Soc.Am.,1955,45(7):572-581.
    [19]Maston P L.Critical angle scattering by a bubble:physical-optics approximation and observations.J.Opt.Soc.Am.1979,69(9):1205-1211.
    [20]Kingsbury D L,Maston P L.Mie scattering near the critical angle of bubbles in water.J.Opt.Soc.Am.1981,71(3):358-363.
    [21]Maston P L,Kingsbury D L.Scattering by a bubble in water near the critical angle:interference effects.J.Opt.Soc.Am.1981,71(2):192-196.
    [22]Dean C E,Maston P L.Critical angle light scattering from bubbles:an asymptotic series approximation.Appl.Opt.,1991,30(33):4764-4776.
    [23]Maston P L,Billeue S C and Dean C E.Scattering of light by a by a coated bubble in water near the critical and Brewster scattering angles.SPIE,1988,925:308-316.
    [24]Langley D S,Maston P L.Glory in optical backscattering from air bubbles.Phys.Rev.Let.,1981,47(13):913-916.
    [25]Arnott W P and Maston P L.Optical glory of small freely rising gas bubbles in water:observed and computed cross-polarized backscattering pattens.J.Opt.Soc.Am.A.1988,5(4):496-506.
    [26]Langley D S,Maston P L.Forward glory scattering from bubbles.Appl.Opt.,1991,30(24):3452-3458.
    [27]Stramski D.Gas microbubbles:An assessment of their significance to light scattering in quiescent seas.SPIE,1994,Vol.2258:704-710.
    [28]Zhang X,Lewis M,Lee M,et al,Volume scattering function of natural bubble populations.Limnol.Oceanogr,2002,47(5):1273-1282.
    [29]Zhang X,Lewis M,Johnson B.Influence of bubbles on scattering of light in the ocean.Appl.Opt.,1998,37(27):6525-6536.
    [30]Konkhanovsky A A.Optical properties of bubbles.J.Opt.A:Pure Appl.Opt.2003,5:47-52.
    [31]Courmontagne P.An improvement of ship wake detection based on the radon transforms.Signal Processing,2005,85:1634-1654.
    [32]Scherbakov A,Hanssen R,Vosselman G.Ship wake detection using Radon transforms of filtered SAR imagery.SPIE,2958:96-106.
    [33]Velegrakis A F,Vousdoukas M I,Vagenas A M,et al.Field observation of waves generated by passing ships:A note.Coastal Engineering,2007,54:369-375.
    [34]张建生,孙传东,冀邦杰,等.水中气泡的运动规律和光学散射特性.鱼雷技术,2000,8(1):22-25.
    [35]张建生,吕青,冀邦杰,等.实验室模拟尾流的光学研究.光子学报,2001,30(9):1146-1149.
    [36]张建生,刘健康,冀邦杰,等.真实尾流的光学特性.光子学报,2002,31(9):1284-1288.
    [37]张建生,冀邦杰,刘娟,等.差动式探测方法研究气泡的光学性质.鱼雷技术,2005,13(2):25-28.
    [38]张建生,林书玉,刘鹏,等.船舶尾流散射光信号及一维离散小波分析.光子学报,2007,36(11):2106-2110.
    [39]张晓晖,葛卫龙,朱东华.鱼雷激光尾流自导方法的研究.中国激光,2004,31(11):1355.
    [40]张晓晖,雷选华,饶炯辉,等.舰船尾流激光制导方法的研究.激光技术,2005,29(5):494-500.
    [41]RAO Jionghui,LU Gang,YAN Kecheng,et al.Research on photoelectric detection technique applied to underwater detection system using pulsed laser.SPIE,2007,6622-93.
    [42]饶炯辉,杨克成,张晓晖,等.采用脉冲激光探测模拟的舰船气泡尾流.光学与光电技术,2007,5(5):40-42.
    [43]Li Wei,Yang Kecheng,Xia Min,et al.Computation of the scattering intensity distribution for natural light scattered by an air bubble in water.J.Opt.A:Pure Appl.Opt.,2006,8(1):93-99
    [44]Wei Li,Kecheng Yang,Min Xia,et al.Computation for angular distribution of scattered light on a coated bubble in water.J.Opt.A:Pure Appl.Opt.,2006,8(9):926-931
    [45]Jun Liang,Kecheng Yang,Min Xia,et al.Monte Carlo simulation for modulated pulse bathymetric light detecting and ranging systems.J.Opt.A:Pure Appl.Opt.,2006,8(5):415-422
    [46]Xia Min,Yang Kecheng,Zhang Xiaohui,et al.Monte Carlo simulation of backscattering signal from bubbles under water.J.Opt.A:Pure Appl.Opt.,2006,8(3):350-354
    [47]夏珉,杨克成,郑毅等.水体光学参数对水中气泡场激光雷达探测影响的研究.激光杂志,2008,29(1):72-73.
    [48]张毓芬,田稷,王成龙.舰船尾流消光特性分析.光电子技术与信息,2003,16(4):40-42.
    [49]苏丽萍,任德明,曲彦臣,等.舰船尾流散射特性的研究.激光杂志,2007,28(1):70-71.
    [50]苏丽萍.尾流的激光散射特性和轮廓的半实物仿真研究.博士学位论文,哈尔滨:哈尔滨工业大学,2007.
    [51]Van de Hulst H C.Light Scattering by Small Particles.New York:John Wiley &Sons,1957.
    [52]Kerker M.The scattering of light and other electromagnetic radiation.New York:Wiley Press,1969.
    [53]Bohren C F,Huffman D R.Absorption and Scattering of Light by Small Particles.New York:John Wiley & Sons,1983.
    [54]Toon Q B,Ackerman T P.Algorithms for the calculation of scattering by stratified spheres.Appl.Opt.,1981,20(20):3657-3660.
    [55]Sudiarta I W,Chylek P.J.Mie-scattering formalism for spherical particles embedded in an absorbing medium.J.Opt.Soc.Am.A.2001,18(6):1275-1278.
    [56]Xu H.Calculation of the near field of aggregates of arbitrary spheres.J.Opt.Soc.Am.A.2004,21(5):804-809.
    [57]Lentz W J.Generating Bessel functions in Mie scattering calculations using continued fractions.Appl.Opt.,1976,15(3):668-671.
    [58]Grehan G,Gouesbet G.Mie theory calculations:new progress,with emphasis on particle sizing.Appl.Opt.,1979,18(20):3489-3493.
    [59]Wiscombe W J.Improved Mie scattering algorithms.Appl.Opt.,1980,19(9):1505-1509.
    [60]Gouesbet G,Grehan G,Maheu B.Computations of the g_n coefficients in the generalized Lorenz-Mie theory using three different methods.Appl.Opt.,1988,27(23):4874-4883.
    [61]Wang R T,Van de Hulst H C.Rainbows:Mie computation and the Airy approximation.Appl.Opt.,1991,30(1):106-117.
    [62]Wu Z S,Guo L X,Ren K F.Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres.Appl.Opt.,1997,36(21):5188-5198.
    [63]Grainger R G,Lucas J,Thomas G E.Calculation of Mie Derivatives.Appl.Opt.,2004,43(28):5386-5393.
    [64]Du H.Mie-Scattering Calculation.Appl.Opt.,2004,43(9):1951-1956.
    [65]吴健,杨春平,刘建斌.大气中光的传输理论.北京:北京邮电大学出版社,2005.
    [66]徐峰,蔡小舒,沈嘉祺.米氏理论的近似及在粒度测量中的应用.光学学报,2003,23(12):1464-1469.
    [67]杨晔,张镇西,蒋大宗.关于大颗粒Mie散射与Fraunhofer衍射问题的分析比较.激光技术,1998,22(1):18-21.
    [68]Glantschnig W J,Chen S H.Light scattering from water droplets in the geometrical optics approximation.Appl.Opt.,1981,20(14):2499-2509.
    [69]Ungut A,Grehan G,Gouesbet.Comparisons between geometrical optics and Lorenz-Mie theory.Appl.Opt.,1981,20(17):2911-2918.
    [70]石丸 A.随机介质中波的传播和散射,黄润恒,等译.北京:科学出版社, 1986.
    [71]夏珉.水下气泡层激光雷达探测的蒙特卡洛仿真与实验研究.博士学位论文,武汉:华中科技大学,2007.
    [72]Yao G,Wang L.Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media.Phys.Med.Biol,1999,44:2307-2320
    [73]Tinet Eric,Avrillier Sigrid,Tualle Michel Jean.Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media.J.Opt.Soc.Am.A,1996,13(9):1903-1915
    [74]Bogucki D J,Piskozub J,Carr M E,et al.Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow.Optics Express,2007,15(21):13988-13996.
    [75]Hansen G M.Mie scattering as a technique for the sizing of air bubbles.Appl.Opt.,1985,24(19):3214-3219.
    [76]Ludlow I K,Everitt J.Inverse Mie problem.J.Opt.Soc.Am.A,2000,17(12):2229-2235.
    [77]Wang Naining,Zhang Hongjian.A study of the accuracy of optical Fraunhofer diffraction size analyzer.Particulate Science and Technology,1986,4:403-408.
    [78]徐峰,蔡小舒,赵志军,等.光散射粒度测量中采用Fraunhofer衍射理论或Mie理论的讨论.中国粉体技术,2003,9(2):1-6.
    [79]Malvern instruments Ltd.Laser diffraction for particle size analysis-why use Mie theory.Particle Size Analysis,2000,11:28.
    [80]王乃宁,蔡小舒,郑刚,等.颗粒粒径的光学测量技术及应用.北京:原子能出版社,2000.
    [81]陈俊,沈建琪.时间阈内的消光起伏光谱法.上海理工大学学报,2004,26(6):503-508.
    [82]Shifrin K S.Physical Optics of Ocean Water.New York:AIP translation series,1988:224-232.
    [83]Gregory J.Turbidity fluctuations in flowing suspensions.J.Colloid Interf.Sci.,1985,105(2):357-371.
    [84]Wessely B,Altmann J,Ripperger S.The use of statistical properties of transmission signals for particle characterization.Chem.Eng.Technol.,1996,19:438-442.
    [85]Breitenstein M,Krauter U,Riebel U.The fundamentals of particle size analysis by transmission fluctuation spectrometry.Part 1:A theory of temporal transmission fluctuations in dilute suspensions.Part.Part.Syst.Charact.,1999,16:249-257.
    [86]Breitenstein M,Riebel U,Shen J.The fundamentals of particle size analysis by transmission fluctuation spectrometry.Part 2- A theory on transmission fluctuations with combined spatial and temporal averaging.Part.Part.Syst.Charact.,2001,18:234-141.
    [87]Shen J,Riebel U.Transmission fluctuation spectrometry in concentrated suspensions Part one:Effects of the monolayer structure.Part.Part.Syst.Charact.,2004,21:429-439.
    [88]Riebel U,Shen J.Transmission fluctuation spectrometry in concentrated suspensions Part two:Particle overlapping.Part.Part.Syst.Charact.,2004,21:440-454.
    [89]Shen J,Riebel U.Transmission fluctuation spectrometry in concentrated suspensions Part three:Measurements.Part.Part.Syst.Charaet.,2005,22:14-23.
    [90]Cai X,Li J,Ouyang X.In-line measurement of pneumatically conveyed particles by a light transmission fluctuation method.Flow Measurement and Instrumentation,2005,16:315-320.
    [91]蔡小舒,李俊峰,欧阳新,等.光脉动法煤粉实时在线监测技术进展.华北电力大学学报,2003,30(6):38-42.
    [92]Shen J,Riebel U,Guo X.Measurements of particle-size distribution and concentration by transmission fluctuation spectrometry with temporal correlation.Optics Letters,2005,30(16):2098-2100.
    [93]苏明旭,任宽芳,Grehan G.光复散射对消光法粒径测量的影响:复散射模型与数值模拟.光学学报,2004,24(5):696-699.
    [94]Swanson N L,Billard B D,Gennaro T L.Limits of optical transmission measurements with application to particle sizing techniques.Appl.Opt.,1999,38(27):5887-5893.
    [95]Kokhanovsky A A,Weiehert R.Multiple light scattering in laser particle sizing.Appl.Opt.,2001,40(9):1507-1513.
    [96]Gomi H.Multiple scattering correction in the measurement of particle size and number density by the diffraction method.Appl.Opt.,1986,25(19):3552-3558.
    [97]Hirleman E D.General solution to the inverse near-forward-scattering particle sizing problem in multiple-scattering environments:theory.Appl.Opt.,1999,38(27):5887-5893.
    [98]Schnablegger H,Glatter O.Sizing of colloidal particles with light scattering:corrections to beginning multiple scattering.Appl.Opt.,1995,34:3489-3501.
    [99]尉世民,王乃宁,吴伟亮.考虑复散射的颗粒群光散射蒙特卡罗算法研究.华东工业大学学报,2007,19(4):59-64.
    [100]梁铨廷.物理光学.北京:机械工业出版社,1987:32-33.
    [101]Johnson B D,Cooke R C.Bubble population and spectra in coastal water:A hotographie approach.J.Geophys.Res.1979,84:3761-3766.
    [102]O'Hern T J,D'Agostino,Acosta A J.Comparison of holographic and coulter counter measurement of cavitation nuclei in the ocean.J.Fluids Eng.,1988,110(2):200-207.
    [103]Su M Y,Todoroff D,Cartmill J.Laboratory comparision of acoustic and optical sensors for microbubbles measurement.J.Atmos.Ocean Tech.,1994,11:170-181.
    [104]Farmer D M,Vagle S.Waveguide propagation of ambient sound in the ocean-surfance bubble layer.J.Acoust.Soc.Am.,1989,86:1897-1908.
    [105]Vagle S,Farmer D M.The measurement of bubble size distribution by acoustical backsatter.J.Atmos.Ocean Tech.,1992,9:630-644.
    [106]Trevorrow M V.Boundary scattering limitation of fish detection in shallow waters.Fisheries Research,1998,35:127-135.
    [107]Ito S.Optical wave propagation in discrete random media with large particles-a treatment of the phase function.Appl.Opt.,1993,32(9):1652-1656.
    [108]Kuga Y,Ishimaru A,Chang H W,et al.Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory.Appl.Opt.,1986,25:3803-3805.
    [109]Fante R L.Propagation of electromagnetic waves through turbulent plasma using transport theory.IEEE Trans.Antennas Propag.,1973,21:750-755.
    [110]Tam W G,Zardecki A.Multiple scattering corrections to the Beer-Lambert law.1:Open detector.Appl.Opt.1982,21(13):2405-2412.
    [111]Zardecki A,Tam W G.Multiple scattering corrections to the Beer-Lambert law.2:Detector with a variable field of view.Appl.Opt.1982,21(13):2413-2420.
    [112]Zardecki A,Deepak A.Forward multiple scattering corrections as a function of detector field of view.Appl.Opt.1983,22(19):2970-2976.
    [113]Deepak A.,Box M.A.Forward scattering corrections for optical extinction measurements in aerosol media.1:Monodispersions.Appl.Opt.,1978,17(18):2900-2908.
    [114]Deepak A.,Box M.A.Forward scattering corrections for optical extinction measurements in aerosol media.2:Polydispersions.Appl.Opt.,1978,17(19):3169-3176.
    [115]Voss K.J.,Austin R.W.Beam attenuation measurement error due to small-angle scattering acceptance.J.Atmos.Ocean.Technol.,1993,10:113-121.
    [116]Piskozub J.,Stramski D.Terrill E.,et al.Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments.Appl.Opt.,2004,43(24):4723-4731.
    [117]吴伟亮.气固两相流测量技术及在电厂煤粉管道在线监测应用的研究.博士学位论文,上海:上海理工大学,1999:37-38.
    [118]李小明,王冶,毕勤成,等.气泡在不同液体中上升速度的实验研究.西安交 通大学学报,2003,37(9):971-978.
    [119]Gonzalez R C,Woods R E.数字图像处理(第二版).阮秋琦,等译.北京:电子工业出版社,2007.
    [120]National Instruments Coporation.NI Vision Concepts Manual.2005.
    [121]Bogucld D J,Domaradzki J Andrzej,Stramski D,et al.Comparison of near-forward light scattering on oceanic turbulence and particles.Appl.Opt.,1998,37(21):4669-4677.
    [122]Lumanauw D.Hydrogen bubble characterization in alkaline water electrolysis.Master degree paper,UMI,Metallurgy and Materials Science University of Toronto,2000.
    [123]孟建波,桑革,薛炎,等.多种电极的SPE水电解性能研究.电化学,2007,13(2):156-159.
    [124]Tanaka Y,Uchinashi S,Saihara Y,et al.Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer.Electrochin Acta,2003,48(27):4013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700