用户名: 密码: 验证码:
球形离散颗粒抑制热喷流红外辐射规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海湾战争以及近年的几次中东局部战争以来,红外制导武器对现代化高价值作战平台的威胁已得到广泛认可。与此相对的是飞行器发动机动力性能的不断提高,使其红外辐射相应增加。飞行器发动机是一个高温动力设备,如果以牺牲其动力性能换取红外辐射的降低显然是不现实的,这就使得其红外辐射的消除或大幅度减弱成为一个非常困难的任务,因而红外辐射的抑制方法及其理论研究具有很高的军事价值。
     针对发动机后向,由热空腔-尾喷流形成的红外辐射是飞行器的重要辐射源,气溶胶红外遮蔽技术就是针对其开展的一种红外抑制技术,并已在少数军事大国得到实际应用。气溶胶红外遮蔽的实质是利用悬浮的粒子对红外辐射能量的散射和吸收特性,达到抑制高温尾喷流红外辐射传输的效果。此外,目前红外制导武器的探测窗口多数都在中红外(3~5μm)波段,也有一部分兼顾中、远红外(8~14μm)两个大气窗口。
     论文以此为研究背景,从离散颗粒的光学消光特性研究入手,结合实验研究,分析获得球形离散颗粒抑制热喷流(含热空腔)红外辐射传输的主要影响因素,最后通过系统的数值研究探讨了这几个因素对红外抑制率的影响规律。研究波段以中红外为主,研究角度为喷流后向0o~90 o。
     研究结果表明,影响离散颗粒红外抑制规律的因素可分为两个方面:一方面与颗粒本身的光学特性有关,其中涉及的基本因素是颗粒粒径和颗粒的复折射率,通过这两个因素确定辐射传输计算中所需的消光效率因子、非对称因子以及颗粒的前向散射因子,进而影响辐射传递规律;另一方面与颗粒在喷流射流中的扩散分布,即与每个计算单元体中的颗粒数浓度密切相关,其中涉及的主要因素有粒径、喷射浓度、喷射速度、颗粒导热系数等。
     以上因素中粒径对抑制率的影响规律最为复杂,不仅直接影响颗粒消光特性参数,还影响到颗粒在喷流中的扩散规律及单位体积内的颗粒数浓度,研究范围内显示粒径在1.0μm左右最佳;复折射率的实部对抑制率的影响不大,虚部的影响显著,最佳值在3.0左右;喷射浓度的提高可显著提高红外抑制率,但抑制率并不是随喷射浓度的增加成线性增大;喷射速度对抑制率有一定影响,当颗粒的喷射速度与喷射点当地的喷流速度接近时,可一定程度上提高抑制率;由于研究的颗粒尺度较小,颗粒的导热系数对抑制率的影响并不显著。
     此外从离散颗粒的研制出发,研究显示首先应该根据入射波长确定合适的颗粒粒径,其次选择的颗粒材料以能获得较高的消光效率因子,兼顾相对较小的非对称因子及前向散射因子为选材基本原则。
During the last 40 years, infrared radiation (IR) guided missiles have been the leading killer of combat aircraft. The aero engine is one of the most important IR sources of aircraft and it becomes to be much more distinct with the increase of its performance. This results in a great challenge of IR suppression of combat aircraft especially the aero engine. Thus understanding and controlling aircraft IR signature are the essential and significant element in addressing the mission effectiveness of future conflicts.
     Aerosol obscure is one of effectual techniques of IR suppression, which has been applied to decrease the IR signature of hot air exhausted from aero engine in a few countries. Scattering and absorbing of IR energy can be combined together with the small particles suspended in obscure, and the transmission of IR will be reduced according to those.
     All the results show that the IR signature of exhausted hot air from aero engine is affected by the optical characters of discrete particles and the distributions of discrete particles in aerosol at the same time. And the basal parameters of optical character is complex index of refraction, which is decided by extinction efficiency factor, asymmetry factor and forward scattering factor. The distribution of discrete particles in aerosol is decided by the diameter, velocity, thermal conductivity and thickness of discrete particles.
     It was found in investigations that the rule of IR signature affected by the diameter of discrete particles was the most complicated. And there existed the best IR signature extinction when the diameter of particles was in the range of 1.0μm.
     The results presented that the IR signature is much more sensitive to the imaginary part of complex index of refraction than the real part. Better IR signature was achieved when the imaginary part of complex index of refraction equals 3.0.
     Among these three parameters of velocity, thermal conductivity and thickness of discrete particles, the IR signature was decreased greatly in the case of higher thickness and it decreased a certain extant in the case of larger velocity. The diameter of discrete particles is so small that the IR signature was affected by thermal conductivity faintly.
     Experimental and numerical results also demonstrated that the chosen of discrete particle in aerosol should confirm the diameter by wavelength firstly, select the material whose extinction efficiency factor is higher, and pick out the material whose asymmetry factor, forward scattering factor are lower followed.
引文
[1]钟华,李自力.隐身技术[M].北京:国防工业出版社,1999.
    [2]吴凤明.导弹:战争的革命[M].北京:海潮出版社,2001.
    [3]乔小晶,任慧,焦清介,等.新型红外干扰剂FeCl3-ZnCl2-GIC的研究[J].火工品,2002,(4):20~22.
    [4]周梁,田武.隐身技术的发展趋势[J].高新技术,2001,(2):27~29.
    [5]刘世良.红外隐身技术发展综述[J].中国航天,1994,(7):41~44.
    [6]徐南荣,翟荣贞.飞行器的红外特征[J].红外与激光工程,1999,28(1):8~14.
    [7]刘世良.红外隐身技术的研究及发展[J].湖北航天科技,1993,(4):7~12.
    [8]谈浩元.红外隐身和探测的现状和发展[R].江苏省航空航天学动力专业学术年会,1991.
    [9]李世祥.光电对抗技术[M].北京:国防科技大学出版社,2000.
    [10]王淑先.飞机红外隐身与反隐身技术基础研究[C].洛阳:航空航天部612所,1~7.
    [11]栾大龙,刘勇.红外隐身技术与反红外隐身技术[J].红外与激光技术,1995,24(3):18-21.
    [12]程启东.飞行器的红外隐身技术[J].光的世界,1993,11(3):29~29.
    [13]付伟.红外有源干扰机作用机理及发展现状[J].电光与控制,1999,(4):54~60.
    [14] JI.琼斯.隐身技术-黑色魔力的艺术[M].洪旗等译.北京:航空工业出版社,1991.
    [15]吴林山.气溶胶抑制红外辐射研究[D],硕士学位论文.南京:南京航空航天大学,1992.
    [16]吴明忠,刘怀忠.红外隐身技术在飞行器中的应用[J].红外技术,1998,(3):9~12.
    [17]李毅.非球形微粒及其形成烟幕的消光机理研究[D].南京:南京理工大学,2001.
    [18]刘勇波,樊祥,水心恒.抗红外成像制导技术浅析[J].光电对抗与无源干扰,2002,(3):5~9.
    [19]谈和平,夏新林,刘林华,等.红外辐射特性与传输的数值计算——计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [20] Herman Ii M, lirowninn R S. Determination of the effective imaninarp term of the com-plea refractive index of atmospheric dust by remote sensinn: the Diffuse-Direct radiation method [J]. Acrnos. Sci., 1975, (32): 918~925.
    [21] Kinn M D, Herman Ii. M, Determination of the mound albedo and the index of absorption of atmospheric particulates by remote sensinn, Part I: Theory[J]. Acrnos. Sci., 1978, (36): 163~173.
    [22] Liu Jinhuan, Zhou Xiuji. Simultaneous determination of aerosol size distribution and refractiveindex and surface albedo from radiance. PartI: T heorv[J]. Adv. Acrnos. Sci., 1986, (3):162~171.
    [23]尉东胶,邱金桓.大气气溶胶折射率虚部的宽谱反演方法Ⅰ.理论[J].大气科学,1998, 22(5):677~685.
    [24]尉东胶,邱金桓.大气气溶胶折射率虚部的宽谱反演方法Ⅱ.对比实验与应用研究[J].大气科学,2000,24(2):145~151.
    [25]李国华,张敬斌,胡欢陵,等.光散射和消光参量对气溶胶折射系数的敏感性分析[J].光学学报,1994,14(5):551~553.
    [26]李放,吕达仁.利用消光谱反演气溶胶复折射率的一种新方法及其应用[J].遥感技术与应用,1995,10(12):1~8.
    [27]刘黎平,钱永甫.气溶胶粒子形状对其辐射特性影响的研究[J].南京大学学报,1996, 32(2)316~321.
    [28] Jiaming Shi, Leilei Chen, Yongshun Ling, et al. Infrared extinction of artificial aerosols and the effects of size distributions[J]. International Journal of Infrared and Millimeter Waves, 1998, 19(12).
    [29] K Madhavi Lataa, K V S , Badarinath, T V Ramakrishna Rao,et al. Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2003,(78):257~268.
    [30] P Ristori, L Otero, J Fochesatto, et al.Aerosol optical properties measured in Argentina: wavelength dependence and variability based on sun photometer measurements[J].Optics and Lasers in Engineering. 2003,(40):91~104.
    [31] Karsten Schmidt, Tom Rother, Jochen Wauer. An overview of different methods to treat light scattering on nonspherical aerosol particles[J]. J Aerosol Sci, 1999, 30(l):857-858.
    [32] Wenbo Suna, Timo Nousiainenb, Karri Muinonenc, et al. Light scattering by Gaussian particles: a solution with finite-difference time-domain technique[J]. Journal of Quantitative pectroscopy & Radiative Transfer, 2003,79(80):1083–1090.
    [33]曹茂永,赵永林,张逸芳.煤矿粉尘光损耗与消光系数问题的探讨[J].山东矿业学院学报,1997,16(2):183~186.
    [34]唐刚,单平.煤矿粉尘双波长消光法测量研究[J].环境技术,1997,(6):19~21.
    [35]李毅,潘功配,周遵宁.碳黑消光性能的影响因素[J].火工品,2000,(7):7~10.
    [36]李毅,潘功配,周遵宁.烟幕凝聚粒子的消光特性研究[J].兵工学报,2003,22(3):184~187.
    [37]阮立明,余其铮,刘林华,等.块状及粒子煤灰复折射率的研究[J].工程热物理学报,1997,18(5):620~623.
    [38]周英彪,柳朝晖,阮立明,等.燃烧微粒复折射率及辐射特性参数的求解[J].华中理工大学学报,1997,25(增刊):74~76.
    [39]刘林华,余其铮,阮立明,等.煤、灰粒子的辐射特性[J].燃烧科学与技术,1996,2(2):127~133.
    [40]阮立明,余其铮,刘林华,等.煤及灰辐射特性参数的研究[J].热能动力工程,1995,10(5):297~102.
    [41]朱震,叶茂.光散射粒度测量中Mie理论的高精度算法[J].光电子激光,1989,10(2): 135~138.
    [42]王君,何俊发,王莲芬,等.简易Mie散射数值计算方法的研究[J].应用光学,2005, 26(4):13~16.
    [43] A L CROSBIE, G W DAVIDSON. Dirac-Delta Function Approximations to the Scattering Phase Function [J]. J. of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(4): 391~409.
    [44]沈建琪,刘蕾.经典Mie散射的数值计算方法改进[J].中国粉体技术,2005,11(4):1~5.
    [45]田贵才,林琨智,赵学平.Al20-C复合微粒子群的光学截面及红外发射率光谱的计算[J].吉林大学自然科学学报,2000,4:51~54.
    [46]徐明霞,陈春林,梁辉,等.Al203-Si02系纳米粉的微观结构与红外发射特性[J].应用化学,2000,17(2):160~163.
    [47] D Sadot,N S Kopeika. Effects of forward scatter of infrared and visible light on atmospheric coherence diameter: theory and validation[A]. Israel: SPIE 8th Meeting on Optical Engineering [C]:24~34.
    [48]帅永,董士奎,刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].红外与毫米波学报,2005,24(2):100~104.
    [49]聂传虹,韩元杰.粉末气溶胶红外消光作用的试验与理论分析[J].桂林电子工业学院学报,2002,22(1):50~55.
    [50]韩启祥,谈浩元.气溶胶抑制尾喷口红外辐射的实验研究[J].南京航空航天大学学报,1995,(6):341~345.
    [51]段瑞伟.气溶胶红外隐身材料的研究[D].南京:南京航空航天大学,2003.
    [52]么东升.气溶胶红外消光特性机理研究[D].南京:南京航空航天大学,2005.
    [53]陈雄斌.气溶胶喷射系统的设计及其性能研究[D].南京:南京航空航天大学,2005.
    [54]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社,1997.
    [55]张幼文.红外光学工程[M].上海:上海科学技术出版社,1981.
    [56]理查特·丹尼斯.气溶胶手册[M].梁鸿富,卢正永译.北京:北京原子能出版社,1988.
    [57]余其铮.辐射换热原理[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [58] H C Van De Hulst. Light Scattering by small particles[M]. New York John Wiley & Sons Inc 1957;
    [59]陈衡.红外物理学[M].北京:国防工业出版社,1985.
    [60]王兴安,梅飞鸣.辐射传热[M].北京:高等教育出版社,1989.
    [61]杨晔,张镇西,蒋大宗.Mie散射物理量的数值计算[J].应用光学,1997,18(4):17~19.
    [62]徐立勤,曹伟.电磁场与电磁波理论[M].北京:科学出版社,2006.
    [63]高建明,凌永顺,时家明.干扰烟幕中的最佳消光参数的定量分析与研究[J].光电对抗与无源干扰,1997,(3):1~6.
    [64] A L CROSBIE, G W DAVIDSON. Dirac-Delta Function Approximations to the Scattering Phase Function [J]. J. of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(4): 391~409..
    [65]谭锟,胡欢陵.光学粒子计数器测量结果的订正[J].光学学报,1984,4(1):55~60.
    [66]白林,辛宇天.消光材料的物理特性及消光系数的测试方法[J].光电对抗与无源干扰, 2002,(3):17~18.
    [67]韩秀荣.新型红外烟幕剂的消光特性及发展趋势[J].航载武器,1996,(4):48~52.
    [68]刘文菁,黄世鸿,李良福.大气气溶胶虚折射指数及其与元素的相关性[J].气象科学,2002,22(1):40~45.
    [69] Matthias Bohnet. VDI-Forschungsheft 507[M]. Dusseldorf:VDI-Verlag Gmbh,1965.
    [70] Ludwig C B et al. Handbook of Infrared Radiation from Combustion Gases NASA SP-3080, 1973.
    [71]徐南荣,朱谷君.热空腔—喷气流的组合辐射[J].航空动力学报,1995,10(3):295~298.
    [72]金捷,朱谷君,徐南荣,等.发动机高速排气系统红外辐射特性的数值计算和分析[J].航空动力学报,2002,17(5):582~585.
    [73]郝金波,董士奎,谈和平.固体火箭发动机尾喷焰红外特性数值模拟[J].红外与毫米波学报,2003,22(4):246~250.
    [74] P. G. Saffman. The Lift on a Small Sphere in a Slow Shear Flow[J]. Fluid Mech., 1965,(22): 385~400.
    [75] Ana Zbogar, Flemming Frandsen. Surface Emissivity of Coal Ashes[J].IFRF Combustion Journal.2003,05.
    [76]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [77] A.Coppalle, P. Vervisch. The Total Emissivities of High-Temperature Flames[J]. Combust. Flame, 1983, (49):101-108.
    [78] T. F. Smith, Z. F. Shen, J. N. Friedman. Evaluation of Coefficients for the Weighted Sum of Gray Gases Model[J]. J. Heat Transfer, 1982, (104):602-608.
    [79] D. K. Edwards, R. Matavosian. Scaling Rules for Total Absorptivity and Emissivity of Gases[J]. J. Heat Transfer, 1984,(106):684-689.
    [80]王明东,施燕妹.飞行器尾焰红外辐射的一种工程算法[J].红外与激光工程,1998, 27(6):1~4.
    [81] Craigf, Bohren, Donaldr et al. Absorption and Scattering of Light by Small Particles[J]. New York:John Wiley&Sons,1983.
    [82]李毅.非球形微粒及其形成烟幕的消光机理研究[D].南京:南京理工大学,2001.
    [83] Jiaming Shi, Leilei Chen, Yongshun Ling etal. Infrared Extinction Of Artificial Aerosols And The Effects Of Size Distributions[J]. International Journal of Infrared and Millimeter Waves, 1998, 19(12).
    [84] Wladyslaw Witold Szymanski. Aerosol concentration measurement with multiple light scattering system and laser aerosol spectrometer[J]. Atmospheric Research, 2002 , (62):255–265.
    [85] William C. Malm, Derek E. Day. Estimates of aerosol species scattering characteristics as a function of relative humidity[J]. Atmospheric Environment, 2001,(35):2845-2860.
    [86]吴健,杨春平,刘建斌.大气中的光传输理论[M].北京:北京邮电大学出版社,2005.
    [87] Dave J V. Scattering of Visible Light by Large Water Sphere[J]. 1969, 8(Appl):155.
    [88] Aden A L. Electromagnetic Scattering from Spheres with Sizes Comparable to the Wavelength[J]. J Appl Phys,1951,(22):601.
    [89] Harris R D and Young S J et al. Final report: study of radiative scattering concept of plume infrared radiation obsuration[J]. UtahState University and Chom is try and Physics Laborratory of The Aerospace Corporation, Contract No.F49620-77-c-0121,1978.
    [90] Negrelli D E, Lloyd J, Novotny J L. A theotetial and experimental study of adiation-convection interaction in a diffusion flame[J]. J.Heat Transfer, 1997,(99):212-220.
    [91] K.A.Fuller, G.W.Kattawar,and Ru T.wang. Electromagnetic scattering from two dielectric spheres:further comparisons between theory and experiment[J]. 1986,25:2521-2529.
    [92] B.T.Draine, P.J.Flatau. Discrete-dipole approximation for scattering calculations[J]. J.Opt.Soc.Am.A,1994, 11:1491-1499.
    [93] S.Stein. Addition theorems for spherical wave function[J]. Q.Appl.Math,1961, 19:15-24.
    [94] T.A.Witten,L,M.Sander. Diffusion-limited Aggregation[J]. Phy Rev B,1987, 27:5686– 5697;
    [95] Ludwig C B et al. Handbook of Infrared Radiation from Combustion Gases NASA SP-3080,1973;
    [96]甄仌,谈和平,张昊春.蒙特卡洛法、离散传递法中的假散射与射线效应[J].工程热物理学报,2004,25(4):661~663.
    [97] Huangling Hu,Min Zhang, Yu Xin et al. Measurement and analysis Urban aerosol[J].IEEE, 1999, 5661(1): 1060~1061.
    [98]乔小晶,任慧,焦清介等.新型干扰剂FeCl3-ZnCl-GIC的研究[J].火工品,2002,4:20~22.
    [99]刘黎平,钱永莆.气溶胶粒子形状对其辐射特性影响的研究[J].南京大学学报,1996, 32(2):316~321.
    [100]杨洋,赵远,乔立杰,等.1.06μm激光的大气传输特性[J].红外与激光工程,1999, 28(1):15~19.
    [101]曹茂永,赵永林,张逸芳.煤矿粉尘损耗与消光系数问题的探讨[J].山东矿业学院学报,1997,16(2):183~186.
    [102]侯文学.气溶胶李子的基本特征及在光电无源干扰中的作用[J].光电对抗与无源干扰,1997,(3):7~10.
    [103]田贵才,陈海霞.大气气溶胶符合微粒子的光学截面及红外发射率光谱的计算[J].原子与分子物理学报,2003,20(1):119~122.
    [104]王小东,吴健,邱荣,等.MIE散射系数的改进算法[J].光电工程,2006,33(3):24~27.
    [105]李霖峰,张雷,董磊,等.光后向散射法烟尘浓度的实验研究[J],光子学报,2006,35(6): 915~918.
    [106]朱震,王式民,叶茂,等.前向光散射粒子消光测量的校正[J].激光杂志,1998,19(6):32~35.
    [107]董士奎,余其铮,谈和平.一种新的CO2高温辐射特性窄带模型参数计算方法[J].工程热物理学报,2001,22(增刊):177~180.
    [108]王自亮.粉尘消光系数的确定方法[J].煤炭学报,2000,25(4):404~407.
    [109]游君,周怀春,侯玉波.求解颗粒吸收系数和散射系数的一种新算法[J].自然科学报,2002,30(2):57~59.
    [110]任智斌,卢振武,刘玉玲,等.Mie理论归一化散射光强的研究[J].光电子·激光,2003, 14(1):83~85.
    [111]卢永生,徐友仁,刘木林,等.微粒散射消光系数的测定及理论[J].河海大学学报,1996,24(4):53~57.
    [112]魏合理,刘庆红,宋正方,等.红外辐射在雨中的衰减[J].红外与毫米波学报,1997, 16(6):418~424.
    [113]赵建华,袁宏永,苏国锋,等.烟雾浓度及粒径的激光探测实验研究[J].激光与红外, 2000,30(5):277~279.
    [113]黄兴忠,金亚秋.任意取向球形聚粒子极化散射及起数值模拟[J].电波科学学报, 1996,11(3):7~13.
    [114]周效峰,陶淑芬.关于Mie理论移植问题的讨论[J].曲靖师专学报,2000,19(3):37~39.
    [115]王庆安,钱珉,王景岚.水滴和冰球后向散射截面的实验研究[J].南京气象学院学报,1987,10(3):268~275.
    [116]张伟清,宜益民,韩玉阁.半透明吸收、散射性介质内辐射传递系数的新型计算方法[J].宇航学报,2006,27(3):483~488.
    [117] Wang Xuewei, Xiongzhang, Li Haiyan et al. A practical aerosol model of infrared smoke[J].Proc.of SPIE, 2003, 4891:431~434.
    [118] S.A.Weisrose, G.Shadmon. Radiative transfer calculations through an aerosol cloud[J]. Radial transfer,1984, 31(1):63~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700