用户名: 密码: 验证码:
几种中药醇沉过程颗粒生长特征与沉降模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醇沉工艺是目前我国中药制药企业最常用的分离精制方法,近年来关于中药醇沉工艺的研究报道主要集中在工艺参数优化和过程质量检测等方面,缺乏颗粒生长特征、微观形态和静置沉降模型等方面的研究。本论文以丹参、赤芍等中药浸膏为研究对象,对其醇沉过程颗粒生长特征、微观形态变化规律及静置沉降动力学等进行了系统的研究。本论文主要研究内容和结果如下:
     1.采用FBRM和PVM技术研究了丹参醇沉过程颗粒生长团聚行为。结果表明浸膏初始密度和初醇浓度对颗粒生长特征和团聚行为均存在明显的影响。当初醇浓度为95%时,丹参醇沉过程总颗粒数量呈明显的双峰分布,颗粒生长过程可分为诱导期、生长期、聚结期、破碎分散期以及相对稳定期。浸膏初始密度和初醇浓度增大,诱导期缩短,颗粒平均生长速率和最大生长速率增大。当初醇浓度小于90%时,颗粒数量呈逐渐增大然后相对稳定的平台分布,表明不同条件下,丹参醇沉过程颗粒析出动力学存在差异。PVM和有效成分测定结果表明,有效成分的损失与颗粒形态存在相关性,颗粒团聚结块程度越高,混合液中液滴越多,有效成分包裹损失越大。颗粒电位分析与蛋白质和多糖测定结果表明,丹参醇沉过程形成的颗粒带负电荷且随着混合液乙醇浓度增大,电荷量增大,表明颗粒团聚不是由颗粒静电吸引力导致,可能与颗粒的微观形态和沉淀之间分子间吸附结合作用力有关,其具体机理还有待进一步研究。
     2.以丹参、青蒿、益母草、金银花和枳壳为对象,采用FBRM-PVM联用技术,考察其醇沉过程颗粒数量、弦长分布和微观形态的变化规律,并对醇沉过程固液两相总蛋白和总糖的含量分布进行了初步研究。FBRM和PVM结果表明不同浸膏醇沉过程颗粒生长经历不同的阶段。总蛋白和总糖分析结果表明,不同浸膏醇沉过程固液两相总蛋白和总糖的含量分布存在明显差异。此外,不同浸膏醇沉过程颗粒数量和生长速率的动力学之间也存在差异,且与总糖和总蛋白在固液两相中的含量分布存在关联。其中丹参醇沉过程颗粒数量和生长速率均与液相中总糖浓度存在良好二次方抛物线关系。青蒿、益母草和金银花三种浸膏醇沉过程颗粒数量和生长速率均与固相中总糖浓度存在良好线性关系。枳壳浸膏醇沉过程颗粒数量和生长速率均与液相中总糖/总蛋白比例存在良好线性关系。以丹参为对象的颗粒数量与生长速率动力学验证结果表明所建立的模型预测性能良好,具有潜在应用价值。
     3.以丹参二次醇沉混合液静置沉降过程为研究对象,考察关键醇沉工艺参数对其颗粒沉降过程的影响。结果表明丹参醇沉混合液沉降曲线与污泥沉降过程相似,主要包括区域沉降和压缩沉降。在Vesilind方程的基础上,建立了区域沉降阶段的速率模型,其表达式为:
     Vzs=8.75×10-35e195.4p
     同时考察了醇沉混合液密度对区域沉降过程的影响,结果表明随着混合液密度增大,区域沉降速率增大。当醇沉混合液密度ρ从0.916g·mL-1增大到0.934g·mL-1时,对应的区域沉降速率Vzs从0.262cm·min-1增大到3.23cm·min-1,增大幅度达11.3倍。
     此外,建立了丹参二次醇沉混合液静置沉降过程压缩沉降阶段界面高度模型,并提出了模型参数的预测公式,同时导出了压缩沉降速率公式,提出了判断区域沉降与压缩沉降临界点的方法。
     最终建立了丹参二次醇沉混合液静置沉降全过程的分段描述模型,其表达式为:
     验证结果表明所建立的分段描述模型能准确地对丹参二次醇沉混合液静置沉降过程界面高度进行预测。该模型的建立对醇沉设备的设计和醇沉工艺运行控制具有一定的指导意义。
     4.以赤芍一次醇沉和二次醇沉为对象,考察了不同因素对醇沉混合液沉降过程的影响。结果表明药液含醇量、浸膏初始密度和初醇浓度三个因素对赤芍醇沉混合液静置沉降过程具有明显影响。随着药液含醇量增加,沉降速度逐渐增大,沉淀沉降比逐渐减小,沉降性能得到改善。当浸膏密度为1.140g·mL-1时,沉降速度最快,最终形成的固体沉淀体积最小。初醇浓度为95%条件下颗粒沉降速率最大。研究结果表明,在更高的药液含醇量条件下,同样体积的醇沉混合液在沉降终点时沉淀的体积更小,减少了固液分离时沉淀的处理量,有利于提高固液分离效率。
     在批沉降实验基础上,建立了赤芍醇沉混合液压缩沉降过程速率预测模型:Vs=(93.52-0.946PSV)×[1-(0.00153+0.0081PVI)×x]4.65
     预测结果表明所建立的压缩沉降速率模型可同时准确描述赤芍水提浸膏一次醇沉和一次醇沉浸膏二次醇沉压缩沉降过程。此外,模型对生产规模醇沉样本的预测结果良好,具有较好的生产应用意义。
Alcohol precipitation is the most widely used technology in the production of TCM to achieve initial purification and separation of a crude extract. Unfortunately, most of the reported researches about alcohol precipitation of TCM mainly paid attention to parameters optimization and content analysis in the precipitation stage, while few researches focused on particle growth characteristics, morphology and settling model. Danshen (Salvia Miltiorrhiza Bunge) and Chishao (Radix Paeoniae Rubra) and other extracts were used to systematical study the particle growth characteristics, morphology and settling model of the alcohol precipitation process. The contents and results of the dissertation were described as follows:
     1. The focused beam reflectance measurement (FBRM) and particle video microscope (PVM) technologies were introduced to study the particle growth and agglomeration processes during alcohol precipitation process of Danshen extract. The results showed that both initial extract density and initial alcohol concentration have significant effects on the particle growth and agglomeration. The variation of particle counts during the alcohol precipitation process of Danshen extract showed a significant bimodal distribution at initial alcohol concentration of95%. The particle growth process can be divided into five stages according to the variation of particle counts: induction, growth, agglomeration, breakage and relative stable stage. As the initial extract density and initial alcohol concentration increase, the induction time reduces, while the average and maximum particle growth rates increase. The particle counts increases gradually and finally reaches to almost a flat distribution at the initial alcohol concentration lower than90%. The result indicates different particle precipitation kinetics under different conditions. It can be inferred from the particle PVM images that there are some correlations between active component loss and particle morphology. Higher agglomeration leads to more droplets and greater active components loss. The results of zeta potential show that increase charge on the particles in agree with the increase ratio of polysaccharide/protein in the solid phase, indicating that electrostatic attraction is not the main reason for particle agglomeration during the alcohol precipitation process of Danshen. The mechanism of agglomeration is probably related to the particle morphology and the binding forces between particles. Further research is needed to gain a better understanding of the mechanism of agglomeration.
     2. FBRM combined with PVM were applied for studying the variation of particle number, CLD and micron morphology characteristics in the alcohol precipitation process of Danshen (Salvia Miltiorrhiza Bunge), Qinghao (Artemisiae Annua), Yimucao (Leonurus japonicus), Jinyinhua (Flos Lonicerae), Zhiqiao (Fructus Aurantii). The distribution of total protein and polysaccharide in the solid and liquid phase during the alcohol precipitation process was also investigated. The results showed that the particle growth behavior is different for different extracts. The kinetics of particle counts and growth rate are also different for different alcohol precipitation processes. During the alcohol precipitation process of Danshen extract, the chord counts and growth rate of particles are found to be a quadratic parabola function of polysaccharide concentration in the liquid phase. The kinetics of chord counts and growth rates for Qinghao, Yimucao and Jinyinhua are very similar, which shows a negative and positive linear function of polysaccharide concentration in the precipitate phase, respectively. The kinetics of chord counts and growth rates for Zhiqiao are linear functions of polysaccharide/protein in the liquid phase. The validation results of the kinetics of particle counts and growth rate for the alcohol precipitation process of Danshen extract show that the developed models performance good prediction and have potential applications.
     3. The second alcohol precipitation mixture of Danshen was used to investigate the effects of alcohol precipitation parameters on the settling process of mixture. The settling results indicated that the settling process of second alcohol precipitation mixture of Danshen can be divided into zone settling and compression settling, which is similar to the settling process of activated sludge. Based on the Vesilind function, a modified zone settling velocity model of second alcohol precipitation mixture of Danshen was developed and the expression is:Vzs=8.75×10-35e195.4p. The effects of alcohol precipitation mixture density on zone settling were investigated. The results showed that the zone settling velocity increases as the increasing of mixture density. The zone settling velocity increased from0.262to3.23cm·min-1as the mixture density increased from0.916to0.934g·mL-1, increased by as much as1130%. Meanwhile, a model describing the interface height was developed and the model parameters prediction formulas were provided. A velocity function for the compression settling was deduced from the model and a method for determining the critical time when the zone settling stage ends was established. Finally, a segmented model for describing the complete settling process was developed. The interface height equations for zone settling and compression settling stages are respectively given in the following:
     The method was applied to predict the interface height during the complete settling process of second alcohol precipitation mixture, the results showed that the settling processes could be simulated well.
     4. In order to study the settling characteristics for different alcohol precipitation process of TCM. The first and second alcohol precipitation of Chishao (Radix Paeoniae Rubra) extract were used to investigate the effects of alcohol concentration of mixture, the extract density, the initial alcohol concentration, the ratio of height to diameter (H/D) and the settling temperature on the settling process. The results showed that three factors, including mixture alcohol concentration, initial extract density and initial alcohol concentration, have significant influence on the settling process. The settling velocity increases as mixture alcohol concentration increases. Meanwhile, the Precipitate settling volume ratio (PSV) decreases, indicating settling performance improvements. Smallest precipitate volume and greatest settling velocity were obtained at initial extract density of1.140g-mL"1and initial alcohol concentration of95%, respectively. The results also showed that the higher the mixture alcohol concentration, the smaller the precipitate settling volume for same settling mixture volume. This will reduce the process load of precipitate and help to improve the efficiency of the solid-liquid separation. Therefore, settling performance of the alcohol precipitation mixture of TCM can be taken as an evaluation index in the optimization and industrial scale-up research. Under the condition of required retention rate of the active components, parameters which obtain better settling performance will accelerate the particle settling velocity and reduce the settling time, as well as the process load of precipitate.
     Furthermore, a model describing the compression settling process of first and second alcohol precipitation processes of Chishao was developed based on batch tests. The equation is:
     Vs=(93.52-0.946PSV0.5h) x [1-(0.00153+0.008IP Ⅵ)×x]4.65
     The model was validated by experiments and the results showed that the compression settling processes could be simulated well by the developed model. In addition, the model shows good prediction for the production scale alcohol precipitation sample and potential industrial application.
引文
[1]曹光明.中药制药工程学[M].北京:化学工业出版社,2004:213.
    [2]杜松,李金华,葛发欢,刘美凤,沈晓平,宋吉贤.中药醇沉工艺:计算方法、影响因素分析及过程分析技术开发[C].现代中药制药装备研究开发论坛论文集,2009:124-129.
    [3]国家卫生部.卫生部药品标准中药成方制剂.1996.
    [4]高福君,仇法新.浅谈影响中药醇沉的几个因素[J].山东中医杂志,1999,18(5):226-227.
    [5]王志平,范晋勇,刘玉强,元英进.丹参提取液的树脂吸附及醇沉工艺对比研究[J].离子交换与吸附,2003,19(6):554-560.
    [6]葛勤,张恩娟,刘迅.醇沉浓度对心脉神口服液制备中多糖含量的影响[J].中国药房,2002,13(12):719-720.
    [7]肖琼,沈平孃.中药醇沉工艺的关键影响因素[J].中成药,2005,27(2):143-144.
    [8]何雁,辛洪亮,黄恺,张尧,罗晓健.水提醇沉法中醇沉浓度对板蓝根泡腾片制备过程的影响[J].中国中药杂志,2010,35(3):288-292.
    [9]何国勇,周牡丹,童胜强,瞿海斌,颜继忠.响应面法优化丹参醇沉工艺的研究[J].中国现代应用药学,2010,27(2):118-122.
    [10]孙月霞,吴淑娥.初膏浓度对醇沉效果的影响[J].基层中药杂志,2000,14(5):36.
    [11]胡晓雁,李页瑞,袁佳,刘雪松,陈勇,张安运.多指标综合评分法优选华蟾素提取液醇沉工艺的研究[J].时珍国医国药,2012,23(4):1016-1019.
    [12]袁佳.丹参和红花提取液醇沉工艺及包裹损失现象的研究[D].杭州:浙江大学,2011.
    [13]朱梅,毕宏涛,杨威,刘杨,台桂花,周义发.乙醇浓度对人参多糖分离的影响[J].东北师大学报(自然科学版),2009,41(2):154-159.
    [14]袁淑婧,范玲,周琴妹.清咽口含片醇沉工艺优选[J].中国实验方剂学杂志,2012,18(21):25-29.
    [15]朱会霞,孙金旭.樟芝多糖提取研究[J].中国酿造,2009,12:45-48.
    [16]刘苗,于筛成,张虹,林光.中药醇沉工艺及设备浅析[J].中成药,2007,29(8):1202-1204.
    [17]袁佳,李页瑞,陈勇,王龙虎,刘雪松.多指标综合评分法优选红花提取液醇沉工艺[J].浙江大学学报(医学版),2011,40(1):27-34.
    [18]马刚欣.清热解毒口服液醇沉工艺的优选[J].中成药,2006,28(3):439-440.
    [19]丁光磊,郭红英.丹参浸膏提取工艺改进[J].安徽医药,2003,7(2):142.
    [20]高霞,王著明,温守俭.不同水提醇沉法纯化丹参代表性酚酸工艺的比较[J].吉林医学,2009,30(7):614-615.
    [21]张旭,王锦玉,仝燕,刘秀屹,马振山,王琳.中药水煎液前处理方法对大孔吸附树脂分离效果的影响[J].中国实验方剂学杂志,2011,17(24):1-4.
    [22]张寒,闫安忆,龚行楚,瞿海斌.丹参注射液生产中一次醇沉上清液浓缩工艺质控指标研究[J].中国中药杂志,2011,36(11):1436-1441.
    [23]闫安忆,龚行楚,瞿海斌.一种中药醇沉前浓缩液关键质量控制指标的辨析方法[J].中国中药杂志,2012,37(11):1558-1563.
    [24]Rattanakawin C., Hogg R. Aggregate size distributions in flocculation [J]. Colloid Surf. A-Physicochem. Eng. Asp.2001,177(2-3):87-98.
    [25]朱鑫,张建华,张宏建,毛忠贵,杨玉岭.搅拌对谷氨酸棒杆菌絮凝的影响[J].食品与发酵工业,2011,37(9):31-35.
    [26]周进东,罗兴洪,兰刚.搅拌对口服液水沉除杂的影响[J].基层中药杂志,2001,16(4):24-25.
    [27]何国勇,张翠萍,童胜强,颜继忠.丹参醇沉过程中多糖模型的建立和研[J].亚太传统医药,2009,5(5):21-27.
    [28]秦冬梅,买尔旦,马合木提,古丽仙,胡加.正交试验优化复方紫草制剂醇沉工艺[J].新疆医科大学学报,2007,30(5):464-468.
    [29]刘威,张广财,张振秋.多指标成分优选肿节风精致工艺的研究[J].辽宁中医杂志,2008,35(1):108-110.
    [30]葛文漪,黄建春,陈兆霓,焦杨,张士军,黄仁彬.正交设计法优选六月青多 糖胶囊提取及醇沉工艺[J].中国实验方剂学杂志,2012,18(21):42-46.
    [31]王东升,张世栋,李世宏,苗小楼,尚小飞,严作廷.正交试验法优化催情助孕液制备工艺[J].中国农学通报,2012,28(29):75-78.
    [32]伍勇,贺福元,曹燕,孙志良,张明军,彭涛.星点设计-效应面优化法对四物汤醇沉工艺的研究[J].中国医药导报,2009,6(3):17-21.
    [33]黄铭,郝永龙,冯垫,田长青.均匀设计优化白及胶提取工艺研究[J].中国中药杂志,2007,32(24):2672-2673.
    [34]孙海峰,孙慧峰,郭冷秋,郭雪莹,曹玲,李建武.均匀设计优化桦褐孔菌多糖提取工艺的研究[J].世界科学技术-中医药现代化,2011,23(1):124-128.
    [35]Gar Yee KOH., Chou G.X., Liu Z.J. Purification of a Water Extract of Chinese Sweet Tea Plant (Rubus suavissimus S. Lee) by Alcohol Precipitation [J]. J. Agric. Food. Chem.2009,57(11):5000-5006.
    [36]韦冬菊,闵建华,曹旻旻,章振鹏,王维,向飞军.正交试验法优选红景天的醇沉工艺[J].湖北中医杂志,2012,34(1):75-77.
    [37]涂瑶生,柳俊,张建军.近红外光谱技术在中药生产过程质量控制领域的应用[J].中国中药杂志,2011,36(17):2433-2436.
    [38]周嵩煜.近红外光谱技术在药物分析中的应用[J].中国药业,2010,19(18):84-89.
    [39]李晓明,杨滨.近红外光谱技术的研究进展及其在中药领域的应用[J].中国实验方剂学杂志,2006,12(12):69-75.
    [40]孙国祥,毕开顺.中药指纹图谱学体系在中药创制中的作用[J].色谱,2008,26(2):172-179.
    [41]张娅,王丽娜,高敏.中药指纹图谱的发展现状及其在质量控制中的应用[J].云南中医中药杂志,2010,31(11):69-73.
    [42]王勤,祝德秋,王琰.参麦注射液的制备及指纹图谱研究[J].中国药房,2006,17(19):1436-1439.
    [43]蔡皓,文红梅,周斌,居玲玲,洪敏,段金廒.玉屏风散水提醇沉浸膏的指纹图谱研究[J].中药新药与临床药理,2008,19(4):288-292.
    [44]邱丽萍,吕青涛,张发科,杨勇,杨杰,刘学鹏.当归多糖的提取分离与血清指纹图谱研究[J].中药材,2008,31(1):65-69.
    [45]丰加涛,金郁,王金成,肖远胜,梁鑫淼.基于定量指纹图谱技术的中药质量控制[J].色谱,2008,26(2):180-185.
    [46]陆臻,汝芸.丹参注射液制备工艺的改进及其指纹图谱[J].中国医院药学杂志,2007,27(6):769-772.
    [47]胡巍,陈明磊,方芸.雪荔组方水提醇沉混合液的HPLC指纹图谱研究[J].药学与临床研究,2012,20(5):476-479.
    [48]刘冰,毕开顺,孙立新,史新元,乔延江,刘珍清.近红外光谱结合不同偏最小二乘法测定乳块消片醇沉混合液中丹参素和橙皮苷含量[J].世界科学技术-中医药现代化,2009,11(3):388-396.
    [49]Huang H.X., Qu H.B. In-line monitoring of alcohol precipitation by near-infrared spectroscopy in conjunction with multivariate batch modeling [J]. Anal. Chim. Acta.2011,707(1-2):47-56.
    [50]Jin Y., Wu Z.Z., Liu X.S., Wu Y.J. Near infrared spectroscopy in combination with chemometrics as a process analytical technology (PAT) tool for on-line quantitative monitoring of alcohol precipitation [J]. J. Pharm. Biomed. Anal.2013,77:32-39.
    [51]Zeng S.S., Chen T., Wang L., Qu H.B. Monitoring batch-to-batch reproducibility using direct analysis in real time mass spectrometry and multivariate analysis:A case study on precipitation [J]. J. Pharm. Biomed. Anal.2013,76:87-95.
    [52]龚行楚,瞿海斌,程翼宇,阎安忆.一种快速检测醇沉混合液糖含量的方法.中国,201010039594.9[P].2010-01-08.
    [53]邢丽红,徐金钟,瞿海斌.近红外光谱法快速测定丹参醇沉过程中的鞣质[J].药物分析杂志,2010,30(10):1813-1816.
    [54]孙笛,袁佳,胡晓雁,刘雪松.一种基于近红外光谱的华蟾素醇沉过程指标成分及其转移率快速测定方法[J].中国中药杂志,2011,36(18):2479-2453.
    [55]翟永清,杨国忠,刘宇,刘红梅.新型红色荧光粉Sr·OY2O3:Eu的合成及其发光性能研究[J].光谱学与光谱分析,2008,28(3):522-526.
    [56]李艳红,张永明,马晶,陆海燕.水热法制备不同粒度GdVO4:Eu3+纳米荧光粉及发光性能研究[J].人工晶体学报,2011,40(4):990-995.
    [57]固旭,李东,蒋金龙,刘晓勤.Pd/C中Pd粒径调控及对多氯硝基苯的催化还原影响[J].南京理工大学学报(自然科学版),2010,34(6):838-843.
    [58]李永玲,吴占松.催化剂粒径与质量对生物质热解焦油催化裂化反应的影响[J].动力工程学报,2012,32(11):859-865.
    [59]张存,刘涛,王洪娟,王峰,潘小玉,刘晓勤.WO3/ZrO2固体超强酸改性及在酯化反应中应用研究[J].高校化学工程学报,2012,26(6):983-989.
    [60]Fu Q., Kou L.F., Gong C., Li M., Sun J., Zhang D., Liu M.N., Sui X.F., Liu K., Wang S.L., He Z.G Relationship between dissolution and bioavailability for nimodipine colloidal dispersions:The critical size in improving bioavailability [J]. Int. J. Pharm.2012,427(2):358-364.
    [61]Wang X.P., Li X., Atsuo Ito, Yu Sogo, Tadao Ohno. Particle-size-dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy [J]. Acta. Biomater.2013,9(7):7480-7489.
    [62]Shi J.P., Xu B., Sun X., Ma C.Y., Yu C.P., Zhang H.W. Light induced toxicity reduction of silver nanoparticles to Tetrahymena Pyriformis:Effect of particle size [J].Aquat. Toxicol.2013,132-133:53-60.
    [63]S. Jarrell Smith., Carl T. Friedrichs. Size and settling velocities of cohesive floes and suspended sediment aggregates in a trailing suction hopper dredge plume [J]. Conti. Shelf. Res.2011,31(10):50-63.
    [64]Gao P., Xue G, Song X.S., Liu Z.H. Depth filtration using novel fiber-ball filter media for the treatment of high-turbidity surface water [J]. Sep.Purifi.Technol. 2012,95:32-38.
    [65]赵敏.活性污泥絮体的性状及其沉降性能的探讨[J].环境科学与管理,2011,36(5):106-113.
    [66]李红.颗粒粒度检测技术综述[J].辽宁科技学院学报,2007,9(3):6-9.
    [67]熊向军.颗粒粒度粒形测量的新技术介绍-时间转换理论以及动态图像分析[J].中国粉体技术,2004,10:38-41.
    [68]倪寿亮.粒度分析方法及应用[J].广东化工,2011,38(2):223-226.
    [69]王迎,郭正阳,任春红.数字成像颗粒分析仪在聚丙烯粉料测试中的应用[J].中国粉体技术,2009,15(5):85-87.
    [70]胡松青,李琳,郭祀远,蔡妙颜.现代颗粒粒度测量技术[J].现代化工,2002,22(1):58-63.
    [71]王桂芳,吕宪俊,马少健,杨金林.颗粒粒度测试方法的比较及发展趋势[J].2008:104-108.
    [72]陈庭将.光散射法在颗粒测量技术中的应用[D].成都:西安电子科技大学,2011.
    [73]谭立新,蔡一湘,余志明,梁泰然,刘辛,谢焕文.激光粒度仪颗粒联测的结果与评价[J].中国粉体技术,2011,17(1):84-87.
    [74]李彩荣,刘缠牢,闫思思.基于CCD传感的激光粒度测试技术研究[J].应用光学,2012,33(4):774-779.
    [75]Marcela Arellano., Hayat Benkhelifa., Denis Flick., Graciela Alvarez. Online ice crystal size measurements during sorbet freezing by means of the focused beam reflectance measurement (FBRM) technology. Influence of operating conditions [J]. J. Food. Eng.2013,113(2):351-359.
    [76]Li H.Y., Martha A Grover, Yoshiaki Kawajiri, Ronald W Rousseau. Development of an empirical method relating crystal size distributions and FBRM measurements [J]. Chem.Eng.Sci.2013,89:142-151.
    [77]A.N. Saleemi., C.D. Rielly., Z.K. Nagy. Monitoring of the combined cooling and antisolvent crystallisation of mixtures of aminobenzoic acid isomers using ATR-UV/vis spectroscopy and FBRM [J]. Chem. Eng. Sci.2012,77:122-129.
    [78]Elina Hishamuddi., Andrew G.F. Stapley., Zoltan K. Nagy. Application of laser backscattering for monitoring of palm oil crystallisation from melt [J]. J. Cryst Growth.2011,335(1):172-180.
    [79]Kerstin Va.y, Wolfgang Friess., Stefan Scheler. Understanding reflection behavior as a key for interpreting complex signals in FBRM monitoring of microparticle preparation processes [S].Int. J. Pharm.2012,437(1-2):1-10.
    [80]Wu H.Q., Maury White., Mansoor A. Khan. Quality-by-Design (QbD):An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development [J]. Int. J. Pharm.2011,405(1-2):63-78.
    [81]Ali N. Saleemi., Gerry Steele., Nicholas I. Pedge., Anthony Freeman., Zoltan K. Nagy. Enhancing crystalline properties of a cardiovascular active pharmaceutical ingredient using a process analytical technology based crystallization feedback control strategy [J]. Int. J. Pharm.2012,430(1-2):56-64.
    [82]Zhao J., Wang M.L., Dong B.L., Feng Q., Xu C.X. Monitoring the Polymorphic Transformation of Imidacloprid Using in Situ FBRM and PVM [J]. Org. Pro. Res. Develop.2013,17(3):375-381.
    [83]Nyomi Uduman., Qi Y., Michael K., Danquah., Andrew F.A. Hoadley. Marine microalgae flocculation and focused beam reflectance measurement [J]. Chem. Eng. J.2010,162(3):935-940.
    [84]Rocio Jarabo., Elena Fuente., Ana Moral., Angeles Blanco., Laura Izquierdo., Carlos Negro. Effect of sepiolite on the flocculation of suspensions of fibre-reinforced cement [J]. Cem. Conc. Res.2010,40(10):1524-1530.
    [85]Lei J.J., Zhao X.Q., Ge X.M., Bai F.W. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution [J].J. Biotechnol.2007,131:270-275.
    [86]Ge X.M., Zhao X.Q., Bai F.W. Online Monitoring and Characterization of Flocculating Yeast Cell Flocs During Continuous Ethanol Fermentation [J]. Biotechnol. Bioeng.2005,90(5):523-531.
    [87]Jessica Whelan., Eilis Murphy., Alan Pearson., Paul Jeffers., Patricia Kieran., Susan McDonnell., Brian Glennon. Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration [J]. Bioprocess. Biosyst. Eng.2012,35(6):963-975.
    [88]John A. Boxall., Carolyn A. Koh., E. Dendy Sloan., Amadeu K. Sum., David T. Wu. Measurement and Calibration of Droplet Size Distributions in Water-in-Oil Emulsions by Particle Video Microscope and a Focused Beam Reflectance Method [J].Ind. Eng. Chem. Res.2010,49:1412-1418.
    [89]Hung Leba., Ana Cameirao., Jean-Michel Herri., Myriam Darbouret, Jean-Louis Peytavy., Philippe Gle'nat. Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water-in-oil emulsion:Simulation and experimentation [J]. Chem. Eng. Sci.2010,65: 1185-1200.
    [90]Carlos Giraldo, Brij Maini, Raj Bishnoi, Matthew Clarke. A Simplified Approach to Modeling the Rate of Formation of Gas Hydrates Formed from Mixtures of Gases [J]. Energy Fuels.2013,27(3):1204-1211.
    [91]何品晶,顾国维,李笃中.城市污泥处理与利用[M].北京:科学出版社,2003:108.
    [92]谭天恩,李伟.过程工程原理[M].北京:化学工业出版社,2004:75.
    [93]Zheng Y.S., David M. Bagley, Member. Numerical simulation of batch settling process [J]. J. Environ. Eng.1999,125(11):1007-1013.
    [94]温金德,杜善国.液固分离的动态理论与新型沉降槽[C].第十届全国氧化铝学术会议论文集,2004:272-276.
    [95]张玉柱.竖流式污泥沉降罐沉降性能研究[D].长沙:中南大学,2012.
    [96]周娜,袁林江.温度波动对SBR污泥沉降性的影响及其变化规律[J].中国给水排水,2011,27(7):91-95.
    [97]吴成强,杨金翠,杨敏,吕文洲.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(3):5-10.
    [98]丁峰,彭永臻,于德爽.pH值对活性污泥沉降过程的影响[J].哈尔滨建筑大学学报,2000,33(4):39-44.
    [99]官宝红,徐根良,谭天恩.碱性印染废水的pH对活性污泥的影响及其控制[J].高校化学工程学报,2002,16(3):316-320.
    [100]王淑莹,崔有为,于德爽.无机盐对活性污泥沉降性的影响[J].环境工程,2003,21(5):7-9.
    [101]V. Agridiotis., C.F. Forster., C. Carliell-Marquet. Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics Bioresource Technology [J]. Bioresour. Technol.2007,98: 2926-2934.
    [102]彭赵旭,彭永臻,于振波,刘旭亮,柴同志.不同活性污泥中污泥质量浓度对 沉降性的影响[J].哈尔滨商业大学学报(自然科学版),2012,28(1):24-26.
    [103]Andrew J. Schuler., Hoon Jang. Density effects on activated sludge zone settling velocities [J]. Water. Res.2007,41:1814-1822.
    [104]Kynch G J. A Theory of Sedimentation [J]. Transactions of the Faraday Society. 1952,148:166-176.
    [105]Vesilind. Theoretical considerations:design of prototype thickeners from batch settling tests [J]. Water. Sew. Works.1968,115(7):302-307.
    [106]Takacs I., Patry G G, Nolasco D. A Dynamic Model of the Clarification Thickening Process [J]. Water. Res.1991,25(10):1263-1271.
    [107]Naoya Yoshioka., Yutaka Hotta., Susumu Tanaka., Satoru Naito., Shinichi Tsugami. Continuous thickening of homogeneous flocculated slurries [J]. Asia Science and Technology Portal.1957,21:66-74.
    [108]Dick Young., Analysis of thickening performance of a final settling tank [C]. Proceedings of the 27th Purdue Industrial Waste Conference, Lafayette, Indiana, 1972:33-54.
    [109]S.H. Cho., F. Colin., M. Sardin., C. Prost. Settling velocity of activated sludge [J]. Water. Res.1993,27:1237-1242.
    [110]李振亮,张代钧,卢培利,许峰.基于批沉降实验研究活性污泥沉降速率[J].重庆大学学报(自然科学版),2006,29(1):112-116.
    [111]周丹,张涛.颗粒污泥沉降动力学模型研究[J].环境污染与防治,2008,30(3):36-38.
    [112]刘永红,贺延龄,刘宗宽,杨树成,李倩.厌氧反应器内颗粒污泥沉降速率的测定与研究[J].工业用水与废水,2005,36(5):45-48.
    [113]张代钧,李振亮,张天,曹海彬.基于质量守恒的二沉池一维通量模型[J].中国环境科学,2006,26(Supp1):40-44.
    [114]李振亮.二沉池一维通量模型及其应用[D].重庆:重庆大学,2006.
    [115]Scott K.J. Mathematical Models of Mechanism of Thickening [J]. Ind. Eng. Chem. Fund.1966,5(1):109-113.
    [116]Scott K.J. Theory of thickening:factors affecting settling rate of solids in flocculated pulps [J]. Trans. Inst. Min. Metall., Sect. C.1968,77(2):85-97.
    [117]李页瑞,刘雪松,王龙虎,金胤池,陈勇.中药醇沉工艺颗粒沉降过程的初步研究[J].2010,21(3):664-666.
    [118]刘晓谦,仝燕,王锦玉,王瑞珍,张彦霞,王智民.复方苦参注射液醇沉工艺优化及醇沉颗粒沉降过程研究[J].中国中药杂志,2011,36(22):3108-3113.
    [119]国家药典委员会.中华人民共和国药典(2010年版一部)[M].北京:化学工业出版社,2010:70-71.
    [120]汤伟.丹参多糖的分离纯化及免疫活性研究[D].广州:南方医科大学,2011.
    [121]袁佳,李页瑞,陈勇,王龙虎,刘雪松.多指标正交设计优选丹参水提液醇沉工艺[J].中国医药工业杂志,2010,41(11):826-829.
    [122]李朝霞,李云谷.大孔吸附树脂纯化丹参代表性酚酸的工艺研究[J].中国实验方剂学杂志,2008,14(3):30-32.
    [123]朱宁,张艳艳,高亚男,蒋巧梅,杨明,夏先明.丹参水提液絮凝澄清工艺研究[J].中成药,2008,30(10):1439-1443.
    [124]Clifford Y. Tai., Chen P.C. Nucleation, Agglomeration and Crystal Morphology of Calcium Carbonate [J]. AIChE. J.1995,41(1):68-77.
    [125]Luo Y.H., Wu G.G., Sun B.W. Antisolvent Crystallization of Biapenem: Estimation of Growth and Nucleation Kinetics [J]. J. Chem. Eng. Data.2013,58: 588-597.
    [126]Anett Perlberg., Heike Lorenz., Andreas Seidel Morgenstern. Crystal Growth Kinetics via Isothermal Seeded Batch Crystallization:Evaluation of Measurement Techniques and Application to Mandelic Acid in Water [J]. Ind. Eng. Chem. Res. 2005,44:1012-1020.
    [127]Semiu Adebayo Kareem., Haruna Mavakumba Kefas., Ternenge Joseph Chior., Ganiyu Kayode Latinwo. Kinetics of Fermentation by Enzymes:A Mathematical Approach [J]. AU Journal of Technology.15(2):109-114.
    [128]Tahmina Imam., Sergio Capareda. Fermentation kinetics and ethanol production from different sweet sorghum varieties [J]. Int. J. Agric & Biol. Eng.2011,4(3): 33-40.
    [129]Hu X.H., John C. Cunningham., Denita Winstead. Study growth kinetics in fluidized bed granulation with at-line FBRM [J]. Int. J. Pharm.2008,347(1-2): 54-61.
    [130]Ai Tee Tok., Xueping Goh., Wai Kiong Ng., Reginald B H Tan. Monitoring Granulation Rate Processes Using Three PAT Tools in a Pilot-Scale Fluidized Bed [J]. AAPS PharmSciTech.2008,9(4):1083-1091.
    [131]Hulburt H.M., Katz, S. Some problems in particle technology:a statistical mechanical formulation [J]. Chem. Eng. Sci.1964,19:555-574.
    [132]W.N. Al Nasser., F.H. Al-Salhib., M.J. Hounslow., A.D. Salman. Inline monitoring the effect of chemical inhibitor on the calcium carbonate precipitation and agglomeration [J]. Chem. Eng. Res. Des.2011,89:500-511.
    [133]W.N. Al Nasser., A. Shaikh., C. Morriss., M.J. Hounslow., A.D. Salman. Determining kinetics of calcium carbonate precipitation by inline technique [J]. Chem. Eng. Sci.2008,63(5):1381-1389.
    [134]Jorg Worlitschek., Marco Mazzotti. Model-Based Optimization of Particle Size Distribution in Batch-Cooling Crystallization of Paracetamol [J]. Cryst. Growth. Des.2004,4(5):891-903.
    [135]Norbert Kail., Wolfgang Marquardt., Heiko Briesen. Process Analysis by Means of Focused Beam Reflectance Measurements [J]. Ind. Eng. Chem. Res.2009,48: 2936-2946.
    [136]Randolph A. D., Larson M. A. Theory of Particulate Processes,2nd ed.; Academic Press:San Diego,1988.
    [137]王峰, 顾志国,印小燕.螺旋藻水溶性多糖提取液的絮凝过程[J].过程工程学报,2011,11(3):468-474.
    [138]Daniel J. Jarmer., Corinne S. Lengsfeld., Theodore W. Randolph. Nucleation and Growth Rates of Poly (L-lactic acid) Microparticles during Precipitation with a Compressed-Fluid Antisolvent [J]. Langmuir.2004,20:7254-7264.
    [139]姚新生,吴立军,吴继洲等.天热药物化学(第四版)[M].北京:人民卫生出版社,2005:70-71.
    [140]Lin L.Z., Zhao H.F., Dong Y, Yang B., Zhao M.M. Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf [J].Food. Chem.2012,130:417-424.
    [141]彭昌盛,张倩,徐兴永,于洪军,马蕾.团聚-分散行为对悬浮液Zeta电位的影响[J].中国海洋大学学报,2010,40(10):121-126.
    [142]杨艳辉.丹参多糖的初步研究[D].陕西师范大学,2007.
    [143]Mi J.N., Zhang M., Ren G.X., Zhang H.Y., Wang Y.R., Hu P. Enriched separation of protopanaxatriol ginsenosides, malonyl ginsenosides and protopanaxadiol ginsenosides from Panax ginseng using macroporous resins [J]. J. Food. Eng. 2012,113(4):577-588.
    [144]Ding Z.W., Liu L.Y., Yu J.F., Ma R.Y., Yang Z.R. Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation [J]. J. Memb Sci.2008,310(1-2):539-549.
    [145]张建伟,袁因,王春雨.壳聚糖对桑白皮水提液净化除杂的研究[J].高校化学工程学报,2010,24(2):346-249.
    [146]张建伟,刘函.复配絮凝剂对荷叶水提液的絮凝工艺研究[J].浙江大学学报(理学版),2011,38(4):440-444.
    [147]葛文漪,黄建春,陈兆霓,焦杨,张士军,黄仁.正交设计法优选六月青多糖胶囊提取及醇沉工艺[J].中国实验方剂学杂志,2012,18(21):42-45.
    [148]李利晓,夏延斌.正交实验法优化牛鼻软骨中硫酸软骨素的醇沉工艺[J].食品工业科技,2012,33(16):261-264.
    [149]孙笛,袁佳,胡晓雁,刘雪松.一种基于近红外光谱的华蟾素醇沉过程指标成分及其转移率快速测定方法[J].2011,36(18):2479-2483.
    [150]汤伟.丹参多糖的分离纯化及免疫活性研究[D].广州:南方医科大学,2011.
    [151]范步高.相对密度测定方法的改进及应用[J].上海医药,2011,32(2):78-80.
    [152]蔡靖,郑平.同步脱氮除硫污泥及其微生物生态学特性[J].化工学报,2010,61(2):462-468.
    [153]韩青青,赵红梅,穗贤杰,彭党聪.缺氧颗粒污泥特性研究[J].工业安全与环保,2008,34(7):4-7.
    [154]Adrianus C. van Haandel., Jeroen van der Lubbe. Handbook biological waste water treatment [M]. quist publishing, Leidschendam, The Netherlands.2007: 248-249.
    [155]Wett B. A straight interpretation of solids flux theory for 3-layer sedimentation model [J]. Water. Res.2002,36:2949-2958.
    [156]Joanna R. Karl., Scott A. Wells., M. ASCE. Numerical Model of Sedimentation/Thickening with Inertial Effects [J]. J. Environ. Eng.1999,125 (9): 792-806.
    [157]Ekama G.A, Barnard J.L, Gunthert F.W, McCorquodale J.A, Parker D.S, Wahlberg E.J. Secondary Settling Tanks:Theory, Modelling, Design and Operation [M]. Scientific and Technical. Report No.6, Inter-national Association for Water Quality, London,1997.
    [158]Andrew J. Schulera, Hoon Jang. Density effects on activated sludge zone settling velocities [J]. Water. Res.2007,41(8):1814-1822.
    [159]Giokas D.L., Daigger G.T., von Sperling M., Kim Y, Paraskevas P.A. Comparison and evaluation of empirical zone settling velocity parameters based on sludge volume index using a unified settling characteristics database [J]. Water. Res. 2003,37(16):3821-3836.
    [160]Christopher M. By., Peter L. Dold. Evaluation of Correlations for Zone Settling Velocity Parameters Based on Sludge Volume Index-Type Measures and Consequences in Settling Tank Design [J]. Water. Environment. Federation.1999, 71(7):1333-1344.
    [161]Von Sperling M., Froes C V. Determination of the Required Surface Area for Activated Sludge Final Clarifiers based on a Unified Database [J]. Water. Res. 1999,33(8):1884-1894.
    [162]Fitch, B. Sedimentation of flocculent suspensions:State of the art [J]. AIChE. J. 1979,25(6):913-930.
    [163]Fitch, B. Thickening theories-An analysis [J]. AIChE. J.1993,39(1):27-36.
    [164]Zhang D.J., Li Z.L., Lu P.L., Zhang T., Xu D.Y. A method for characterizing the complete settling process of activated sludge [J]. Water. Res.2006,40(14): 2637-2644.
    [165]Zhang W., Zou Z.H., Sui J. Study on Settlement Velocity of Activated Sludge [C]. Case '09 Proceedings of the 2009 ⅡTA International Conference on Control, Automation and Systems Engineering, IEEE Computer Society Washington,2009: 583-586.
    [166]Andrew J. Schulera., Hoon Jang. Causes of Variable Biomass Density and Its Effects on Settleability in Full-Scale Biological Wastewater Treatment Systems [J]. Environ.Sci.Technol.2007,41(5):1675-1681.
    [167]国家药典委员会.中国药典.北京:化学工业出版社,2005:147-148.
    [168]赵慧萍,马昆.活血注射液中赤芍提取工艺的研究[J].中国实验方剂学杂志,2006,12(8):5-7.
    [169]李岳秦,王玉丽,朱琨,胡钧刚,张飞,张伟杰.赤芍多糖提取与纯化工艺研究[J].中国食品工业,2012,3:65.
    [170]冯骞,汪翔,薛朝.剪切作用对活性污泥沉降性能的影响[J].环境科学与技术,2008,31(2):20-24.
    [171]张兰河,李军,郭静波,贾艳萍,张海丰.EPS对活性污泥絮凝沉降性能与表面性质的影响[J].化工学报,2012,63(6):1865-1871.
    [172]曹京哲.ASBR反应器中污泥沉降性能研究[J].工业水处理,2006,26(2):36-39.
    [173]张波,李文哲,王伟东,王福成,冯金.不同高径比反应器对厌氧发酵产气特性的影响[J].黑龙江八一农垦大学学报,2009,21(2):42-44.
    [174]Richardson J. F., Zaki W.N. sedimentation of fluidization:part 1 [J]. Transactions of the Institution of Chemical Engineers,1954,32:35-53.
    [175]Giokas DL., Kim Y, Paraskevas PA., Paleologos EK., Lekkas TD. A simple empirical model for activated sludge thickening in secondary clarifiers [J]. Water. Res.2002,36(13):3245-52.
    [176]Daigger GT. Development of refined clarifier operating diagrams using an updated settling characteristics database [J]. Water. Environ. Res.1995,67(1): 95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700