用户名: 密码: 验证码:
小檗胺与紫杉醇纳米微球的构建及其体外协同抑瘤效应评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨小檗胺(Berbamine,BA)与常用化疗药物紫杉醇(Paclitaxel,PTX)联合给药对于人胃癌细胞株的影响;并且采用自行合成的聚己内酯—聚乙二醇(methoxypoly(ethylene-glycol)-polycaprolactone,mPEG-PCL)二亲嵌段共聚物,通过纳米沉淀法,分别制备小檗胺载药纳米微球及小檗胺与紫杉醇双药载药纳米微球;通过考察其各项理化表征、释放性质以及体外协同抗肿瘤活性来明确载药纳米微球在肿瘤治疗中的优势,为这种新型的控释纳米给药系统的进一步开发提供科学根据。
     方法:应用中效原理(Median-effect Principle,Chou—Talalay联合指数法)进行统计分析,绘制小檗胺与紫杉醇单药及联合用药对肿瘤细胞生长的剂量-效应曲线,确定联合用药时对肿瘤细胞的效应(Fa)与合用指数(CI)的关系,判定药物间的相互作用。通过开环聚合法,制备mPEG-PCL二亲嵌段共聚物,采用优化的o/w乳化扩散/挥发法,制备负载小檗胺的纳米粒子;优化制备工艺并考察载体的结构、分子量、纳米粒子的形态、粒径分布、体外释药特性等性质。以MTT法,评价载药纳米微球在体外对于胃癌细胞株MKN-28、BGC-823的协同抗肿瘤活性。
     结果:第一,在一定的浓度范围内小檗胺单药与紫杉醇单药对BGC-823与MKN-28细胞均显示出了明显的生长抑制效果。当将各个对应浓度的两药联合作用于胃癌细胞株时生长抑制效果进一步提高,低浓度的小檗胺与紫杉醇的协同杀伤效果明显强于高浓度下的两药协同效果。第二,所制备的小檗胺和紫杉醇的单药及双药载药纳米粒子呈规整的球形,粒径小于100nm,小檗胺最高载药量为15.28%,包封率为87±3.4%。体外释放实验显示,载药粒子具有缓释特征。荧光标记粒子的细胞摄取实验证实,微球可通过胞吞作用进入细胞,在细胞内释放药物,这是微球不同于裸药的抗肿瘤机制。小檗胺载药纳米微球与裸药小檗胺对于肿瘤细胞的杀伤作用相差不大,且都具有浓度以及时间依赖性。第三,小檗胺与紫杉醇双药载药微球的粒径小于100nm。双药微球中紫杉醇的载药量为16.9±2.1%,包封率为16.9±2.1%;而双药微球中小檗胺的载药量与紫杉醇接近,为14.8±1.9%,包封率达到了84.7±7.4%。体外释放曲线显示双药微球表现为一个缓慢释放的特点。由细胞生存率曲线可以见到在BGC-823细胞系上,双药载药微球所造成的细胞杀伤明显强于同样浓度的紫杉醇单药,显示了小檗胺与紫杉醇被载入高分子微球后仍然具有良好的协同生长抑制效果。
     结论:小檗胺在体外胃癌细胞系上显示了其具有增强紫杉醇生长抑制效果的协同作用,而以小檗胺为模型药物构建的载药纳米微球及小檗胺与紫杉醇双药载药纳米微球具有一定的缓释特征,同时在体外也显示了一定的协同生长抑制作用,具有良好的应用前景和价值。
Objectives: To evaluate the effect of Berbamine (BA) and Paclitaxel (PTX) on human gastric cancer cell lines. The nanoparticles loading BA or BA together with PTX were prepared from methoxy poly(ethylene-glycol)-polycaprolactone (mPEG-PCL) by nanopreticipation method. The physiochemical properties, release properties and the in vitro synergistic antitumor effect of the nanoparticles was evaluated to elucidate the superiorty of polymeric nanoparticles in the treatment of cancer and the prospect of this nanoscale controlled release drug delivery system.
     Methods: Median effect analysis was employed to determine the interaction between BA and PTX by analyzing the relationship between fraction affected (Fa) and the combination index (CI) acquired from the dose-effect curve. The amphiphilic block copolymer was prepared by ring opening polymerization. The o/w emulsion method was applied to prepare BA-loaded nanoparticles. The structure and molecular weight of the copolymer as well as the shape, diameter and in vitro release properties of the nanoparticles was studied. The synergistic antitumor effect of the nanoparticles on gastric cancer cell lines MKN-28 and BGC-823 was determined using MTT assay.
     Results: Both BA and PTX inhibited the growth of MKN-28 and BGC-823 cells. Synergistic effect of BA and PTX was observed, which was more obvious at lower concentrations. The BA-PTX nanoparticles was spherical with the diameter less than 100nm. The maximum loading content and encapsulating efficiency of BA were 15.28% and 87±3.4%, respectively. The nanoparticles exhibited sustained release pattern as to the in vitro release test. The nanoparticles entered cells via endocytosis, which was proved in the cellular uptake studies. BA nanoparticles showed similar cytotoxicity compared to BA free drug with concentration and time dependence. The BA-PTX nanoparticles was also smaller than 100nm. The maximum loading content and encapsulating efficiency of PTX were 16.9±2.1% and 16.9±2.1%, which were 14.8±1.9% and 84.7±7.4% as to BA. The release profile of the double nnaoparticles was also sustainable. As to the cytotoxicity against BGC-823 cell lines, the double nanoparticles showed much more prominent effectiveness compared to free PTX. This confirmed that BA and PTX showed satisfactory effect after being loaded into the copolymeric nanoparticles.
     Conclusions: BA can reinforce the antitumor effect of PTX on gastric cancer cell lines. At the same time, the BA-loaded and BA-PTX-loaded nanoparticles showed sustained release pattern as well as synergistic antitumor effect in vitro, which implied the prospect of this drug delivery system.
引文
1 黄峻,黄祖瑚.内科查房手册【M】.南京.江苏科学技术出版社,1999,30.
    2 胡晓抒,周晓农,孙宁生,等.江苏省恶性肿瘤分布态势地理信息系统的空间分析【J】.中华流行病学杂志,2002,22(1):73-74.
    3 Sengupta S,Eavarone D,Capila I,Zhao G,et al.Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system[J].Nature.2005,436(70):568-572.
    4 Devalapally H,Duan Z,Seiden MV,et al.Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer[J].Cancer.2007,121(8):1830-1838.
    5 van Vlerken LE,Duan Z,Selden MV,et al.Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J].Cancer Res.2007,67(10):4843-4850.
    6 Brannon-Peppas L,Blanchette JO.Nanoparticle and targeted systems for cancer therapy[J].Adv Drug Deliv Rev.2004,56(11):1649-1659.
    7 Chavanpatil MD,Patil Y,Panyam J.Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux[J].Pharm.2006,320(1-2):150-156.
    8 Jung J,Lee IH,Lee E,et al.PH-Sensitive Polymer Nanospheres for Use as a Potential Drug Delivery Vehicle[J].Biomacromolecules.2007,8(11):3401-3407.
    9 Bae Y,Diezi TA,Zhao A,et al.Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents[J].Control Release.2007,122(3): 324-330.
    10 Philip PA.Experience with docetaxel in the treatment of gastric cancer[J].Semin Oncol.2005,32(2-4):24-38.
    11 Ohtsu A.Current status and future prospects of chemotherapy for metastatic gastric cancer:a review[J].Gastric Cancer.2005,8(2):95-102.
    12 Roth AD,Ajani J.Docetaxel-based chemotherapy in the treatment of gastric cancer[J].Ann Oncoi.2003,14(2):41-44.
    13 Dorr RT.Pharmacology and toxicology of Cremophor EL diluent[J].Ann Pharmacother.1994,28(5):11-14
    14 赖春丽,黄婉锋,祝晨冻,等.抗肿瘤中药新药开发探讨[J】.中药材,2003,26(9):677-680.
    15 Monti DA,Yang J.Complementary medicine in chronic cancer care[J].Semin Oncol.2005,32(2):225-231.
    16 Zhu FS,Si JM.Regulative effect of traditional Chinese medicine on gene-expression related to precancerous lesion of gastric cancer[J].Chin J Integr Med.2005,11(1):76-80.
    17 Wu X,Chen D.Effects of Gekko sulfated polysaccharide on the proliferation and differentiation of hepatic cancer cell line[J].Cell Biol Int.2006,10(8):659-664.
    18 Letasiova S,Jantova S.Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells[J].Cancer Lett.2006,239(2):254-262.
    1.Zhu HJ,Wang JS,Guo QL,et al.Reversal of P2glycop rotein mediated multidrug resistance in K562 cell line by a novel synthetic calmodulin inhibitor,E6[J].Biol Pharm Bull,2005,28(10):1974-1978.
    2.Zhou J,LiuM,Aneja R,et al.Reversal of P2glycop rotein2mediated multidrug resistance in cancer cells by the c2Jun NH22terminal kinase[J].Cancer Res,2006,66(1):445-452.
    3.张文卿,刘叙仪,韩复生,等.中药方剂R_1对耐阿霉素人乳癌细胞P-糖蛋白表达的影响[J】.中药 药理与临床,1996,12(1):18-21.
    4.郑瑾,刘强.活血化瘀中药复方诱导K562细胞凋亡[J].第四军医大学学报,2003,24(3):427.
    5.陈培丰.清热解毒法诱导肿瘤细胞凋亡的研究[J].浙江中医学院学报,2003,27(1):12.
    6.刘京生,吕占军,董风兰,等.雄黄诱导肿瘤细胞凋亡的实验研究[J].河北中医,2000,22(11):874-876.
    7.Wei J,Liu B,Wang L,et al.Synergistic interaction between tetrandrine and chemotherapeutic agents and influence of tetrandrine on chemotherapeutic agent-associated genes in human gastric cancer cell lines[J].Cancer Chemother.Pharmacol,2007,60:703-711.
    8.Wang T,Wei J,Qian X,et al.Gambogic acid,a potent inhibitor of survivin,reverses docetaxel resistance in gastric cancer cells[J].Cancer Lett.2008,262(2):214-222
    9.潘启超,田晖.多种中药单体逆转肿瘤多药耐药性[J].科学通报,1995,40(20):1901-1904.
    10.陈宝安,杜鹃,张春秀,等.应用蛋白质芯片对汉防己甲素单用及与屈洛昔芬伍用逆转白血病细胞耐药机理的研究[J].中国实验血液学杂志,2005,13(6):999-1003.
    11.句还松,韩哲武.小檗胺的抗氧化作用[J].中国药理学报 1990,11(6):539-541.
    12.Li BY,Fu B,Zhao YL,et al.Effects of berbamine on intracellular calcium concentration in cultured Hela cells[J].Acta Pharmacol Sin 1999,20(11):1011-1014.
    13.李柏岩,乔国芬,赵艳玲,等.小檗胺对ATP诱导的培养平滑肌及心肌细胞内游离钙动员的影响[J].中国药理学报 1999,20(8):705-708.
    14.朱希伟.小檗胺抗肿瘤作用的实验研究[J].中西医结合杂志 1986,6(10):611-613.
    15.田晖,潘启超.对苄基异喹啉类生物碱粉防己碱与小檗胺逆转多药耐药性的比较研究[J].药学学报 1997,32(4):245-250.
    16.He L,Liu GQ.Effects of various principles from Chinese herbal medicine on rhodamine 123accumulation in brain capillary endothelial cells[J].Acta Pharmacol Sin 2002,23(7):591-596.
    17.Endicott JA,Ling V.The biochemistry of P-glycoprotein-mediated multidrug resistance[J].Ann Rev Biochem 1989,58:137-171.
    18.Chou TC,Talalay P.Quantitative analysis of dose-effects relationships:the combined effect of multiple drugs on enzyme inhibitors[J].Adv Enzyme Regul.1984,22(1):27-55.
    19.2.Chou TC,Motzer RJ,Tong Y,et al.Computerized quantitation of synergism and antagonism of Taxol,Topotecan,and Cisplatin ainst human terato-carcinoma cell growth:a rational approach to clinical protocol design[J].Journal of the National Cancer Institute.1994,86(20):1517-1524.
    20.3.Scott MK,David P,Christopher AB,et al.Cytotoxic effects of Topotecan combined with various anticancer agents in human cancer cell lines[J].Journal of the National Cancer Institute.1996,88(11):734-741.
    21.4.McDaid HM,Johnston PG.Synergistic interaction between paclitaxel and 8-chloro-adenosine-3',5'-monophosphate in human ovarian carcinoma cell lines[J].Clin Cancer Res.1999,5(1):215-220.
    22.Evans WE,Relling MV.Pharmacogenomics:translating functional genomics into rational therapeutics[J]. Science. 1999,286:487-491.
    23. Michael M, Doherty MM. Drug metabolism by tumours: its nature, relevance and therapeutic implications [J].Expert Opin Drug Metab Toxicol. 2007,3(6):783-803.
    24. Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy [J]. J Clin Oncol. 2005,23(1):205-229.
    25. Michael M, Doherty MM. Drug metabolism by tumours: its nature, relevance and therapeutic implications [J].Expert Opin Drug Metab Toxicol. 2007,3(6):783-803.
    26. Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy [J]. J Clin Oncol. 2005,23(1): 205-229
    27. O'Connor R, Clynes M, Dowling P, et al. Drug resistance in cancer - searching for mechanisms, markers and therapeutic agents [J]. Expert Opin Drug Metab Toxicol. 2007,3(6):805-817.
    28. Alisi A, Balsano C. Enhancing the efficacy of hepatocellular carcinoma chemotherapeutics with natural anticancer agents [J]. Nutr Rev. 2007, 65(12):550-553.
    1.Sinha R,Kim GJ,Nie S,et al.Nanotechnology in cancer therapeutics:bioconjugated nanoparticles for drug delivery[J].Mol Cancer Ther 2006,5:1909-1917.
    2.Chau Y,Panigrahy RF,Dang NM,et al.Anti-tumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models[J].Cancer 2005,118:1519-1526.
    3.Soga O,van Nostrum CF,Fens M,et al.Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery[J].Controlled Release 2005,103:341-353.
    4.Kataoka K,Harada A,Nagasaki Y.Block copolymer micelles for drug delivery:Design,Characterization and biological significance[J].Adv Drug Deliv Rev 2001,47:113-131.
    5.Cai DY,Feng SS.Methoxy poly(ethylene glycol)-poly(lactide)(MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs[J].Biomaterials 2004,25:2843-2849.
    6.Peppas LB,Blanchette JB.Nanoparticle and targeted systems for cancer therapy[J].Adv Drug Deliv Rev 2004,56:1649-1659.
    7.Gref R,Minamitake Y,Peracchia MT,et al.Biodegradable long-circulating polymeric nanospheres[J].Science 1994,263:1600-1603.
    8.Yasugi K,Nagasaki Y,Kato M,et al.Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier[J].Controlled Rel 1999,62:89-100.
    9.Savic R,Luo L,Eisenberg A,et al.Micellar nanocontainers distribute to defined cytoplasmic organelles [J].Science 2003,300:615-618.
    10.Bae Y,Nishiyama N,Fukushima S,et al.Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property:Tumor Permeability,Controlled Subcellular Drug Distribution,and Enhanced in Vivo Antitumor Efficacy[J].Bioconjugate Chem 2005,16:122-130.
    11.G.S.Kwon,T.Okano.Polymeric micelles as new drug carriers[J].Adv Drug Del Rev 1996,21:107-116.
    12.Maeda H,Wu J,Sawa T,et al.Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J].Control Release 2000,65:271-284.
    13.Kwon G,Suwa S,Yokoyama M,et al.Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartateblock copolymer-adriamycin conjugates[J].Control Release 1994,29:17-23.
    14.Yokoyama M,Fukushima S,Uehara R,et al.Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor[J]. Control Release 1998,50:79-92.
    15.Sasatsu M,Onishi H,Machida Y.In vitro and in vivo characterization of nanoparticles made of MeO-PEG amine/PLA block copolymer and PLA[J].Pharm 2006,317:167-174.
    16.Avgoustakis K,Beletsi A,Panagi Z,et al.PLGA-mPEG nanoparticles of cisplatin:in vitro nanoparticle degradation,in vitro drug release and in vivo drug residence in blood properties[J].Controlled Release 2002,79:123-135.
    17.Li X,Li R,Qian X,Ding Y,et al.2008.Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate,Eur J Pharm Biopharm,2008,70:726-734.
    18.Liu B,Yang M,Li X,et al.Enhanced Efficiency of Thermally Targeted Taxanes Delivery in a Human Xenografi Model of Gastric Cancer.J Pharm Sci 2008,97:3170-3181.
    19.句还松,韩哲武.小檗胺的抗氧化作用.中国药理学报[J].1990,11:539-541.
    20.Li BY,Fu B,Zhao YL,et al.Effects of berbamine on intracellular calcium concentration in cultured Hela cells[J].Acta Pharmacoi Sin 1999,20:1011-1014.
    21.李柏岩,乔国芬,赵艳玲,等.小檗胺对ATP诱导的培养平滑肌及心肌细胞内游离钙动员的影响.中国药理学报[J].1999,20:705-708.
    22.朱希伟.小檗胺抗肿瘤作用的实验研究[J].中西医结合杂志 1986,6:611-613.
    23.Hu Y,Xie J,Tong YW,et al.Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells[J].Control Release 2007,118:7-17.
    24.Hu Y,Jiang X,Ding Y,et al.Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles[J].Biomaterials 2003,24:2395-2404.
    25.Zhang L,Yang M,Wang Q,et al.10-Hydroxycamptothecin loaded nanoparticles:Preparation and antitumor activity in mice[J].Control Release 2007,119:153-162.
    26.Zhang L,Hu Y,Jiang X,et al.Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice[J].Control Release 2004,96:135-148.
    27.Hawley AE,Illum L,Davis SS.Preparation of biodegradable,surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake[J].Pharm Res 1997,14:657-661.
    28.Tang W,Hemm I,Bertram B.Recent development of antitumor agents from chinese herbal medicines;part Ⅰ.Low molecular compounds[J].Planta Med 2003,69:97-108.
    29.Li W,Chen Z,Liao Y,et al.Separation methods for toxic components in Traditional Chinese Medicines [J].Anal Sci 2005,21:1019-1029
    30.Haba Y,Kojima C,Harada A,et al.Preparation of poly(ethylene glycol)-modified poly(amido amine)dendrimers encapsulating gold nanoparticles and their heat-generating ability[J].Langmuir 2007,23:5243-5246.
    31. Abdelwahed W, Degobert G, Stainmesse S,et al.Freeze-drying of nanoparticles: formulation, process and storage considerations [J]. Adv Drug Deliv Rev 2006, 58:1688-1713
    32. Chawla JS,Amiji MM. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen [J]. Pharm 2002, 249:127-138.
    33. Oyewumi MO, Yokel RA, Jay M, et al. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice [J]. Control Release 2004,95:613-626.
    34. Chavanpatil MD, Patil Y,Panyam J. Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux [J]. Pharm 2006, 320:150-156.
    35. Barraud L, Merle P, Soma E, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles forhepatocellular carcinoma cells in vitro and in vivo [J]. Hepatol 2005,42:736-743.
    1.Sengupta S,Eavarone D,Capila I,et al.Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system[J].Nature 2005,436:568-572.
    2.Devalapally H,Duan Z,Seiden MV,et al.Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer[J].Cancer 2007,121:1830-1838.
    3.Van Vlerken LE,Duan Z,Seiden MV,et al.Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J].Cancer Res 2007,67:4843-4850.
    4.HuizingM T,MisserV H S,Pieters R C,et al.Taxanes:a new class of antitumour agents[J].Cancet Invest.1995,13:381-404
    5.L iggins R T,HunterW L,Burt HM.Solid-state characterization of paclitaxel[J].Pharm.Sci 1997,86:1458-1463
    6.W.J.Gradishar,S.Tjulandin,N.Davidson,et al.Phase Ⅲ trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer[J].Journal of Clinical Oncology,2005,23:7794-7803
    7.S.J.Clarke,L.P.Rivory.Clinical pharmacokinetics of docetaxel[J].Clinical Pharmacokinetics,1999,36:99-114
    8.C.J.Langer.CT-2103:emerging utility and therapy for solid tumours[J].Expert Opinion on Investigational Drugs,2004,13:1501-1508
    9.HuizingM T,MisserV H S,Pieters R C,et al.Taxanes:a new class of antitumour agents[J].Cancer Invest.1995,13:405-406
    10.L iggins R T,HunterW L,Burt HM.Solid-state characterization of paclitaxel[J].Pharm.Sci,1997,86:1458-1463
    11.Goldsp iel B R.Paclitaxel pharmaccutical issues:p reparation,administration,stability and compatibility with other medications[J].Ann.Pharmacother,1994,28:S23-S26
    12.Weiss R,Donehower R C,Wiernik P H.Hypersensitivity reactions from Taxof[J].Clin.Oncol.1990,8:1263-1268
    13.Zuylen L V,Verweij J,Sparreboom A.Role of formulatin vehicles in taxane pharmacology[J].Invest.New Drugs,2001,19:125-141
    14.Kataoka K,Kwon G S,YokoyamaM.,et al.Block copolymermicelles as vehicles for drug delivery[J]. ControlIedRelease, 1993, 24: 119-132
    15. Allen C, Maysinger D, Eisenberg A. Nano - engineering block copolymer aggregates for drug delivery [J]. Colloids Surf. B: Biointerfaces, 1999,16: 3-27
    16. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery; design. characterization and biological significance [J]. Adv. Deliv. Rev, 2001,47: 113-131
    17. YokoyamaM, KANO T, Sakurai Y , et al. Selective delivery of adriamycin to a solid tumorusing a polymeric micelle carrier system [J]. Drug Target, 1999, 7: 171-186
    18. Maeda H, Wu J , Sawa T , et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics; a review[J]. Control. Release. 2000, 65: 271-284
    19. Feng SS, Zhao LY, Zhang ZP. Chemotherapeutic engineering:Vitamin E TPGS-emulsified nanoparticles of biodegradable polymers realized sustainable paclitaxel chemotherapy for 168 h in vivo [J]. Chemical Engineering Science 2007, 62: 6641-6648.
    20. Win KY, Feng SS. Studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for clinical administration of paclitaxel [J]. Biomaterials 2006, 27:2285-2291.
    21. Roy V, LaPlant BR, Gross GG, et al. Phase II trial of weekly nab (nanoparticle albumin-bound)-paclitaxel (nab-paclitaxel) (Abraxane) in combination with gemcitabine in patients with metastatic breast cancer (N0531) [J]. Ann Oncol 2009, 20:449-453.
    1 刘国声.细叶小檗的综合利用——小檗胺的药用价值及其在22种小檗属植物中的含量[J].植物学报,1987,9:36.
    2 张金红,耿朝晖,段江燕,等.小檗胺及其衍生物的结构对宫颈癌(CHeLa)细胞生长增殖的影响[J].南开大学学报(自然科学),1996,29(2):89.
    3 张金红,段江燕.耿朝晖,等.小檗胺及其衍生物对恶性黑色素瘤细胞增殖的影响[J].中草药,1997,28(8):483.
    4 张金红,毛启龙,许乃寒,等.小檗胺衍生物(EBB)体内抗肿瘤作用初探[J].中草药,1999,29(4):243.
    5 段江燕,张金红.小檗胺类化合物以黑色瘤细胞内钙调蛋白水平的影响[J].中草药,2002,33(1):59.
    6 方福德主编.医学分子生物学词典[M].北京:北京医科大学、中国协和医科大学联合出版,1996,52.
    7 段江燕,袁丽环,刘胡艳,等.[0-(4-乙氧基)-丁基]-小檗胺诱导肺痛细胞凋亡的初探[J].山西师范大学学报(自然科学版),2001,15(4):55.
    8 张金红,段江燕.许乃寒,等.钙调索拮抗剂0-丹磺酰基小檗胺对磷酸二酯酶及肺细胞增殖的影晌[J].南开大学学报(自然科学),2001,34(3):64.
    9 Ji ZN,Ye WC,Liu GQ,et al.Inhibition of telomerase activity and bcl—2 expression in berbamine induced apoptosis in HL260 cells[J].Planta Med,2002,68:596-600.
    10 徐磊,赵小英,徐荣臻,等.钙调素拮抗剂小檗胺诱导K562细胞凋亡的研究.中华血液学杂志[J].2003,24:261.
    11 吴东,林茂芳,赵小英.等.小檗胺诱导K562细胞凋亡及其与bcr/abl基因及P210表达的关系[J].中国病理生理杂志,2004,20(8):1396.
    12 孙建荣,张晓红,何智文,等.小檗胺对人慢性粒细胞白血病细胞发生凋亡的诱导机制研究[J].中华医学杂志,2006,86(32):2246.
    13 林茂芳,孟小莉,蔡真,等.抗凋亡基因survivin在急性白血病细胞表达及其临床意义[J].中华血液学杂志,2002,23:251-253.
    14 Kim R,Tanabe K,Uchida Y,et al.Current status of the molecular mechanisms of anticancer drug induced apoptosis[J].Cancer Chemother Pharmacol,2002,50:343.
    15 何智文,赵小英,徐荣臻,等.小檗胺诱导白血病细胞株NB4细胞凋亡及其机制的研究[J].浙江大学学报(医学版),2006,35(2):209.
    16 黄志煜,董庆华.小檗胺诱导人白血病Jurkat细胞凋亡的实验研究[J].中国肿瘤,2007,16(9):722.
    17 韩艳秋,石永进,袁家颖,等.小檗胺逆转MCF7/ADR细胞耐药性及其机制探讨[J].解剖学报,2004,35(2):161.
    18 韩艳秋,武淑兰,等.小檗胺下调MCF7及MCF7/ADR细胞Suivivin表达[J].Journal of Chinese Physician,2005,5:7-5.
    19 韩艳秋,袁家颖,石永进,等.小檗胺逆转K562/A02细胞耐药性及其机制[J].中国实验血液学杂志,2003,11(6):604.
    20 Endicott JA,Ling V.The biochemistry of P-glycoprotein-mediated multidrug Resistance[J].Ann Rev Biochem,1989,58:137-171.
    21 赵小英,张晓红,徐磊,等.钙调素拮抗剂小檗胺逆转K562/ADR细胞株多药耐药的研究[J].药物分析杂志,2003,23(6):402.
    22 林传荣,黄秀清.升白胺(小檗胺)治疗化疗性白细胞减少症的临床观察[J].中成药,1996,16(7):29.
    23 刘新,周正任.小檗胺对BALB/C小鼠的免疫调节作用[J].中国医科大学学报,1996,25(3):229.
    24 罗崇念,林新,主立为,等.小檗胺对小鼠脾细胞毒性T淋巴细胞活性的抑制作用[J].中国药理学与毒理学杂志,1995,9(2):159-160.
    25 葛明珠,刘昕,张勇.盐酸小檗胺对辐射小鼠的免疫防护作用的实验研究[J].免疫学杂志,1998,14(4):238.
    1 Maeda H.The enhanced permeability and retention(EPR) effect in tumor vasculature:the keyrole of tumor-selective macromolecular drug targeting[J].Adv Enzyme Regul 2001,41:189-207.
    2 Allen TM.Ligand-targeted therapeutics in anticancer therapy[J].Nat Rev Cancer 2002,2:75-63.
    3 Gref R,Minamitake Y,Peracchia MT,et al.Biodegradable longcirculating polymeric nanospheres[J].Science 1994,263:1600-1603.
    4 Markman M.Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary[J].Expert Opin Pharmacother 2006,7:1469-1474.
    5 Rivera E.Current status of liposomal anthracycline therapy in metastatic breast cancer[J].Clin Breast Cancer 2003,4:S76-83.
    6 Nakanishi T,Fukushima S,Okamoto K,et al.Development of the polymer micelle carrier system for doxorubicin[J].Control Release 2001,74:295-302.
    7 Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer [J]. Cancer Res 2005,65:5317-5324.
    8 Li X, Li R, Qian X, et al. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate [J]. Eur J Pharm Biopharm 2008, 70:726-734
    9 Liu B, Yang M, Li X, et al. Enhanced Efficiency of Thermally Targeted Taxanes Delivery in a Human Xenograft Model of Gastric Cancer [J]. Pharm Sci 2007, 97(8):3170-3181
    10 Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery [J]. Pharm Sci 2003,92:1343-1355.
    11 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases [J]. Nature 2000,407:249-257.
    12 Leamon CP, ReddyJA. Folate-targeted chemotherapy [J]. Adv Drug Deliv Rev 2004, 56:1127-1141.
    13 Wong HL, Bendayan R, Rauth AM, et al. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymerlipid hybrid nanoparticle system [J]. Pharmacol Exp Ther 2006, 317:1372-1381.
    14 VGreen, M.R, Manikhas, G.M, Orlov, S, et al. Abraxane(R), a novel Cremophor(R)-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer [J].Annals of Oncology .2006, 17:1263-1268.
    15 Steven A, Limentanil ,Anthony Asher, et al. A phase I trial of surgery, Gliadel wafer implantation, and immediate postoperative carboplatin in combination with radiation therapy for primary anaplastic [J]. Astrocytoma or glioblastoma multiforme. 2005, 72 :241-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700