用户名: 密码: 验证码:
基于电容法的棉花产量和播种量检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国棉花种植规模发展与机械化采收程度的提高,对棉花机械播施与收获过程的智能检测技术也提出了更高的要求。准确获取区域内的棉花产量分布信息一方面能够检验当年精准农业措施的实施效果,同时也是来年播种施肥精准变量作业处方决策的重要参考;棉花播种量检测则是实施高精度变量播种作业的关键,也是判断播种作业质量水平的基础。因此研究一种能在线检测棉田作业过程中棉花产量与播种量的方法和技术,对于减少棉花生产资料投入、增加棉花产量以及减少环境污染等都有极其重要的意义。
     论文提出了一种基于电容法的采棉机棉花产量和棉花精密播种机播种量的检测方法,并在深入研究基础上实现了工程应用。论文首先研究了籽棉的介电特性,并结合籽棉的气流输送特点,提出了基于双电容相关法来检测籽棉的流速,基于单电容法来检测籽棉的质量流量。双电容相关法是利用两个传感器信号的时间相关性,结合传感器间距,实现籽棉运动速度的检测;单电容法是基于采棉机作业过程中籽棉运动速度基本稳定的条件下,利用电容传感器信号来检测籽棉的质量流量。论文在利用ANSYS有限元分析并结合试验验证基础上,设计了差分型电容传感器,研制了检测电路和单片机信息采集和处理系统,实现了籽棉流速和质量流量的检测。
     论文以CASE CPX620采棉机为试验平台,构建了基于CAN总线的棉花产量监测系统。监测系统主要由人机交互终端、籽棉质量流量传感器、微波谐振式含水率传感器、GPS等构成,通过关键技术研究和系统集成,实现了基于经纬度坐标的棉花产量在线测量,以及采棉机作业工况参数等相关数据的实时获取。基于Labwindows/CVI测控软件开发平台,完成了上位机的数据采集与处理,为多信息融合处理奠定了基础。为检验棉花产量监测系统的稳定性和环境适应性,搭建了籽棉气流输送试验台,通过温度变化试验,验证了研制的差分型电容传感器对温度有比较好的适应性;通过改变籽棉品种试验,验证了研制的检测系统对多品种籽棉的适应性。文中还研究了棉花质量流量、含水率与电容信号响应的关系,建立了基于相对电容变化率与籽棉质量流量、含水率的回归模型。实验室静态试验表明,测产模型的预测平均误差不大于4.7%,动态试验表明,测产模型预测误差不大于9.07%。田间收获试验表明,测量装置的累积电容变化量与籽棉重量的拟合决定系数R2为0.94。
     另外,论文还研制了螺旋型电容籽粒传感器,准确检测棉花播种机播种管内棉籽的通过信息,实现了棉花精密播种机播种量的检测。研制的螺旋型电容籽粒传感器,可将棉籽通过播种管电容检测区域的信息转换成脉冲信号,以此来获取棉花精密播种机的播种量、漏播及重播信息。通过最小二乘移动平滑方法实现籽粒脉冲的平滑处理,得到最佳的信噪比,以一阶导数寻峰结合阈值判别条件快速识别棉籽脉冲,并获得峰位与脉冲边界信息,结合脉冲积分面积判断双籽粒同时下落,提高了播种量检测精度。同时构建了基于CAN总线的精密播种机播种监测系统,实现了播种质量水平的高可靠性监测。实验室试验表明,研制的系统能够实现漏播、阻塞报警,其对播种量监测精度为94.6%,漏播量监测精度为93.5%,重播量监测精度为88.1%。
With the development of mechanical planting and harvesting for cotton, the demand for precise and intelligent detection system for seed cotton yield and seeding rate are rising. The accurate cotton yield information can examine the implementation effect of precision agriculture in the current year and provide the important reference information for variable rate prescription map in the coming year. The monitoring of seeding rate is the key to successfully implement the variable seeding, but also the basis to determine seeding performance. Therefore, studying on the online detection method for seeding rate and cotton yield has very important significance to reduce cotton production inputs, increase cotton production and reduce environmental pollution.
     In this research, a new method based on capacitive sensing for detecting seed cotton yield and seeding rate was proposed. Some thorough research work on the method were done to assess it.Then, the project application was realized.The dielectric property of seed cotton was studied firstly. Meanwhile, according to the pneumatic conveying characteristics of seed cotton, the detection method for seed cotton conveying velocity based on dual capacitor cross correlation technique and method for seed cotton mass flow based on single capacitive sensor were proposed.The correlation method was to use the time correlation between the two capacitive sensor signals,combined with the sensor spacing,for detecting seed cotton conveying velocity.The other method was to use capacitive sensor signal to detect the mass flow based on the conveying velocity under conditions of stable in the harvest process.The differential shaped capacitive senson was densined. The finite element method was used to analyze the sensor by using ANSYS and the experiments were conduct to verify the simulation results.Based on the design of capacitive detection circuit and microcontroller information acquisition and processing system, the conveying velocity and mass flow of seed cotton was obtained.
     The cotton yield monitor system base on CAN bus was developed in CASE CPX620cotton harvester, which includes interactive computer terminal, seed cotton mass flow sensors, microwave moisture sensor, GPS receive.Through research of key technologies and system integration,the cotton yield based on latitude and longitude information,as well as cotton harvester working condition parameters were acquired online. With the help of the Labwindows/CVI software development platform, upper computer data acquisition and processing was completed and the foundation for the multi-information fusion was laid.To assess the cotton yield monitor system, the free-falling experimental device was build.According to the results of the temperature and variety change test,the sensor have a better adaptability to temperature and variety. One kind of seed cotton named "xinluzao43"is used as sample to study the influence of cotton moisture content on the output capacitance value of mass flow sensors, and the relationship of cotton mass flow and sensor output capacitance. The relationship among cotton moisture content, mass flow rate and capacitance value can be described by a bivariate regression model. The laboratory experiment results show that, the predictive error of static model is4.7%and error of dynamic model is9.07%. The field experiment results indict that the determination coefficients of the model for cotton mass and capacitance variation is0.94.
     In addition, the spiral shaped seed sensor was designed in the paper.The sensor could capture the dynamic information when seed went through it, then the seeding rate for drill was detected. Meanwhile, the dynamic information was converted into digital pulse signal in order to get the information of seeding rate and missing rate and multiples rate.The seed pulse was smoothed by Savitzky-Golay smoothing method to get the optimum signal noise ratio. Combined with the first derivative and threshold condition, the cotton seed pulse was identified rapidly.The pulse position and boundry information were also obtained.According to the pulse integral area, the double seed could be detected, which could help to improve the seeding rate monitor accuracy.At the same time, the monitoring system based on CAN bus was constructed to realize high reliability monitoring of sowing quality levels. The laboratory experiment results showed that the system can realiz the missing and blocking alarm, and the system accuracy for single seed detection is up to97.3%, and the system has an accuracy of94.6%in seeding quantity,93.5%in missing detection and88.1%in multiples rate.
引文
[1]曹冲,杨媛媛,苏洋.我国棉花生产能力及其影响因素分析[J].中国棉花.2013(11):9-14.
    [2]郑艳霞.山东棉花生产发展研究:[硕士学位论文].泰安:山东农业大学,2006
    [3]张淑荣,刘朝敏.我国棉花主产区区域竞争力及生产趋势分析[J].中国棉花.2011(11):2-6.
    [4]毛树春.我国棉花种植技术的应用和发展[J].中国棉花.2009(9):17-22.
    [5]国家统计局.2013年国民经济和社会发展统计公报http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html
    [6]杜珉.中国棉花市场发展判断及政策分析http://www.cottontec.cn/market/eye/060140.htm
    [7]赵凯林.机采棉配套技术的应用与推广:[硕士学位论文].乌鲁木齐:新疆农业大学,2013
    [8]韦皆顶,费树岷,汪木兰,等.采棉机器人的研究现状及关键技术[J].农机化研究.2007(07):14-18.
    [9]叶新.机械化采棉发展概况及技术要求[J].新疆农垦科技.2010(01):87-88.
    [10]赵春江,薛绪掌,王秀,等.精准农业技术体系的研究进展与展望[J].农业工程学报.2003(04):7-12.
    [11]张晓洁,李浩,王志伟.精量播种对棉花产量结构的影响[J].中国棉花.2012,39(7):33-35.
    [12]王大光,李禹.棉花精量播种与配套栽培技术[J].中国棉花.2013,40(5):40-41.
    [13]介战,刘红俊,侯凤云.中国精准农业联合收割机研究现状与前景展望[J].农业工程学报.2005(02):179-182.
    [14]王志海,王沛东,孟志军,等.谷物联合收割机测产技术发展现状与展望[J].农机化研究.2014(1):9-15.
    [15]张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J].农业机械学报.2002,33(6):125-128.
    [16]K H T, S D J, Vellidis G. Noise reduction in a load cell based peanut yield monitor using digital signal processing techniques [J]. Industry Applications Conference, Rome, October 8-12,2000, Conference Record of the 2000 IEEE:1008-1015.
    [17]Choungkeun L, M L, Kaho T, et al. Development of impact type yield sensor for head feeding combine[J]. Journal of the Japanese Society of Agricultural Machinery.2000,62(4):81-88.
    [18]Pelletier M G. Adaptive signal processing for removal of impulse noise from yield monitor signals[J]. The Journal of Cotton Science.2001(5):224-233.
    [19]Shoji K, Kawamura T, Horio H. Impact-based grain yield sensor with compensation for vibration and drift[J]. Journal of Japanese Society of Agricultural Machinery.2002,64(5):108-115.
    [20]Arslan S, Inanc F, Gray J N, et al. Grain flow measurements with X-ray techniques [J]. Computers and Electronics in Agriculture.2000,26(1):65-80.
    [21]Moore M. A review of commercially available Volumetric yield sensors[D]. England:Cranfield university,1997.
    [22]Price R R, Johnson R M, Viator R P, et al. Fiber optic yield monitor for a sugarcane harvester[J]. Transactions of the American Society of Agricultural Biological Engineers.2011,54(1):31-39.
    [23]Lee W S, Kim J Y. Crop flow measurement using photosensors to reduce disturbance errors in yield estimation[C]:ASABE Annual International Meeting. Tampa:2005.Paper No:051131
    [24]Vellidis G, Perry C D, Durrence J S, et al. The peanut yield monitoring system[J]. Transactions of the ASAE.2001,44(4):775-785.
    [25]Tumbo S D, Whitney J D, Miller W M, et al. Development and testing of a citrus yield monitor[J]. Applied Engineering in Agriculture.2002,18(4):399-404.
    [26]Won S L, Thomas F B. Silage Yield Monitoring System[C].ASAE Annual International Meeting. Chicago:2002.Paper No:021165.
    [27]Chang Y K, Zaman Q, Farooque A A, et al. An automated yield monitoring system Ⅱ for commercial wild blueberry double-head harvester[J]. Computers and Electronics in Agriculture.2012,81:97-103.
    [28]孙宇瑞,汪懋华,马道坤,等.冲量法谷物流量测量系统的试验研究[J].农业机械学报.2001,32(4):48-50.
    [29]王薄,李民赞,张成龙,等.冲击式谷物流量传感器设计与性能试验[J].农业机械学报.2009(S1):52-56.
    [30]田国政,汪懋华,黄季平.核子式谷物产量自动测量方法[J].中国农业大学学报.2000(04):35-38.
    [31]周俊,刘成良.平行梁冲量式谷物质量流量传感器信号处理方法[J].农业工程学报.2008(01):183-187.
    [32]周俊,周国祥,苗玉彬,等.悬臂梁冲量式谷物质量流量传感器阻尼设计[J].农业机械学报.2005,36(11):121-123.
    [33]周俊,苗玉彬,张凤传,等.平行梁冲量式谷物质量流量传感器田间实验[J].农业机械学报.2006,37(6):102-105.
    [34]周俊,刘成良.平行梁冲量式谷物质量流量传感器弹性元件设计[J].农业工程学报.2007(04):110-114.
    [35]胡均万,罗锡文,阮欢,等.双板差分冲量式谷物流量传感器设计[J].农业机械学报.2009(04):69-72.
    [36]陈树人,杨洪博,李耀明,等.双板差分冲量式谷物流量传感器性能试验[J].农业机械学报.2010(08):171-174.
    [37]王志全,杨方,欧阳斌林,等.联合收割机实时测产系统的抗振动干扰设计[J].东北农业大学学报.2011(02):38-42.
    [38]李新成,李民赞,王锡九,等.谷物联合收割机远程测产系统开发及降噪试验[J].农业工程学报.2014(02):1-8.
    [39]齐江涛.玉米果穗产量实时监测方法及其应用研究:[博士学位论文].长春:吉林大学,2011
    [40]张小超,胡小安,张爱国,等.基于称重法的联合收获机测产方法[J].农业工程学报.2010(03):125-129.
    [41]Wilkerson J B. Real-time cotton flow sensor[C]:ASAE Annual International Meeting. St.Joseph, 1994.Paper No:941054.
    [42]Wilkerson J B, Moody F H, Hart W E. Non-intrusive flow rate sensor for harvester and gin application[C]. In Proc.Belt wide Cotton Conf. Memphis:2000,410-415.
    [43]Wilkerson, Moody F H, Hart W E. Real time volumetric flow sensor[P]. US Patent:5920018,1999-7-6.
    [44]Wilkerson J B. Implementation and field evaluation of a cotton yield monitor[J]. Applied engineering in agriculture.2002,18(2):153-160.
    [45]Wilkerson J B, Moody F H, Hart W E. Development and evaluation of a flow measurement device for cotton yield mapping[C].ASAE Annual International Meeting.Sacramento,2001, Paper No:011172.
    [46]Wilkerson J B, Moody F H, Hart W E, et al. Design and evaluation of a cotton flow rate sensor[J]. Transactions of ASAE.2001,44(6):1415-1420.
    [47]Thomson S J, Thomasson J A, Whitelock D P. mass flow assessment of particulate in lint cleaner waste sensor evaluation and model adaption[J]. Transactions of ASAE.1999,42(2):513-521.
    [48]J A T, R X S. Advanced optical cotton yield monitor[C]:In Proc.Beltwide Cotton Conference. Memphis:2000,408-410.
    [49]Thomasson J A, Sui R, Brashears A D. Mississippi cotton yield monitor tested on stripper-type cotton harvesters[C]. ASAE Annual International Meeting.Chicago.July 28-31,2002.Paper No:021162.
    [50]Sui R, Thomasson J A, Mehrle R, et al. Mississippi cotton yield monitor:beta test for commercialization[J]. Computers and Electronics in Agriculture.2004,42(3):149-160.
    [51]Thomasson J A, Sui R X. mississsippi cotton yield monitor three years of field test results[J]. Applied engineering in agriculture.2003,19(6):631-636.
    [52]R X S, J A T, Yufeng G. Development of sensor systems for precision agriculture in cotton[J]. Int J Agric & Biol Eng.2012,5(4):1-14.
    [53]R X S, J A T, S D F. Cotton-harvester-flow simulator for testing cotton yield monitors[J]. Int J Agric & Biol Eng.2010,3(1):44-49.
    [54]J A T, R X S. Optical Peanut Yield Monitor:Development and Testing[C].ASAE Annual Internation Meeting. Ottawa,August 1-4,2004.Paper No:041095.
    [55]George V, Calvin P, Glen R, et al. Simultaneous Assessment of Cotton Yield Monitors[J].Applied Engineering in Agriculture.2003,19(3):259-272.
    [56]Funk P A, Gillum M N, Hughs S E, et al. mass flow measurement of seedcotton[J]. Transactions of the American Society of Agricultural Engineers.2000,43(6):1401-1407.
    [57]Mailander M, Moriasi D. test of pressure transducer for measuring cotton mass flow[J]. The Journal of Cotton Science.2011(15):137-143.
    [58]J J P, G D L. Microwave flow sensor for a harvester[P].US Patent:6606571.2003-8-12.
    [59]Luz C, Filip S D. Seed cotton ultrasound properties for yield measurement[C]. ASAE annual international meeting.Sacramento,July30-Augustl,2001.Paper No:011185.
    [60]Le S. Development of an Electronic Hopper Weight Scale[C]. Portland Oregon,July 9-12,2006,Paper No:061023.
    [61]Thomasson J A, Sui R. Test of temperature and stray-light effects on mass-flow sensor for cotton yield monitor[J]. Applied engineering in agriculture.2002,18(4):429-434.
    [62]Vellidis G, Perry C D, Rains G C, et al. Simultaneous assessment of cotton yield monitors[J]. Applied Engineering in Agriculture.2003,19(3):259-272.
    [63]Markinos A T, Gemtos T A, Pateras D, et al. The influence of cotton variety in the calibration factor of a cotton yield monitor[J]. Operational Research.2005,5(1):165-176.
    [64]张彦娥,张漫,张文革,等.采棉机测产系统数据采集与处理的试验研究[J].农业机械学报.2005,36(4):95-98.
    [65]苗中华,褚剑钢,刘成良,等.采棉机智能监控系统CAN应用层协议设计[J].农业机械学报.2012(01):180-184.
    [66]陈伟,马蓉,芦帅,等.机采棉在线测产技术及其关键装备[J].农机化研究.2011(10):216-219.
    [67]陈树人,张彦娥,李鹏.基于PF3000的棉花测产系统在线试验研究[C]:2005年中国农业工程学会学术年会论文集.中国广州:2005,4.
    [68]安光辉,马蓉,芦帅,等.棉纤维质量密度光学检测模型的优化[J].农业工程学报.2012(10):253-258.
    [69]林昌建.基于光电传感的棉花产量在线监测系统研究:[硕士学位论文].上海:上海交通大学,2013
    [70]Bell D M. Optical seed sensor for a seed planter monitor[P].US Patent:4163507,1979-8-7.
    [71]Steffen D E. High rate seed sensor[P]. US Patent:4555624A,1985-11-26.
    [72]Lan Y, Kocher M F, Smith J A. Opto-electronic Sensor System for Laboratory Measurement of Planter Seed Spacing with Small Seeds[J]. Journal of Agricultural Engineering Research.1999,72(2): 119-127.
    [73]周建锋,李昱,卢博友.精密播种机监控系统综述[J].农机化研究.2006(6):37-39.
    [74]冯全,栗震霄,吴建民,等.免耕播种机高抗尘排种监测器的设计与试验[J].农业机械学报.2006,37(9):68-70.
    [75]郑一平,花有清,林契,等.水稻直播机的排种数检测方法[J].浙江大学学报:农业与生命科学版.2005,31(4):471-474.
    [76]史智兴,高焕文.光电传感器抗尘性能量化技术与应用[J].农业机械学报.2003,34(3):86-88.
    [77]史智兴,高焕文.排种监测传感器的试验研究[J].农业机械学报.2002,33(2):41-43.
    [78]宋鹏,张俊雄,李伟,等.精密播种机工作性能实时监测系统[J].农业机械学报.2011,42(2):71-74.
    [79]Karayel D, Wiesehoff M, A O. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camara systems[J]. Computer and Electronics in Agriculture.2005,50(2): 89-96.
    [80]Alchanatis V, Y K, R B. A machine vision system for evaluation of planter seed spatial distribution[J].CIGR E-Journal,2002,4:1-10..
    [81]S S D, Steward B L, Birrell S J. Video processing for early stage maize plant detection [J]. Biosystems Engineering.2004,89(2):119-129.
    [82]Navid H, Ebrahimian S, Gassemzadeh H R, et al. Laboratory evaluation of seed metering device using image processing method[J]. Australian Journal of Agricultural Engineering.2011,2(1):1-4.
    [83]Riewerts P R. Seed meter monitoring system[P]. US Patent:7478603B2,2009-1-20.
    [84]李伟,林家春,谭豫之,等.基于图像处理技术的种子粒距检测方法研究[J].农业工程学报.2002,18(6):165-168.
    [85]蔡晓华,吴泽全,刘俊杰,等.基于计算机视觉的排种粒距实时检测系统[J].农业机械学报.2005,36(8):41-44.
    [86]胡少兴,查红彬,马成林.基于序列图像的排种器性能检测方法[J].农业机械学报.2004,35(1):52-55.
    [87]廖庆喜,邓在京,黄海东.高速摄影在精密排种器性能检测中的应用[J].华中农业大学学报.2004,23(5):570-573.
    [88]王玉顺,郭俊旺,赵晓霞,等.基于机器视觉的条播排种器性能检测及分析[J].农业机械学报.2005,36(11):50-54.
    [89]Meyer Zu Hoberge S, Hilleringmann U, Jochheim C, et al. Piezoelectric sensor array with evaluation electronic for counting grains in seed drills[C]. IEEE Africon 2011,Livingstone Zambia,September 13-15,2011.
    [90]黄东岩,贾洪雷,祁悦,等.基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J].农业工程学报.2013(23):15-22.
    [91]曹晓华,杨印保,殷志田.基于单片式电容传感器的动态测厚技术[J].河北理工学院学报.2007,29(1):69-71.
    [92]戴恒震,孙宝元,李万全.电容式大测深绝缘纸板微水份测量传感器[J].仪表技术与传感器.2003(10):1-2.
    [93]裘揆,陈乐生,赵春宇,等.种子含水率在线测量系统[J].农业机械学报.2006,37(9):119-122.
    [94]Silva, A T. Development of a Capacitive Sensor for Monitoring Soil Moisture[C]. ASAE Annual International Meeting. Tampa,Florida,July 17-20,2005,Paper No:052183.
    [95]魏琳,朱邦太,李勋.一种用于油量测量的变介电常数电容式传感器[J].河南科技大学学报:自然科学版.2006,27(2):26-28.
    [96]郑志敏,丁天怀.用于非金属目标非接触位置检测的单片式电容传感器[J].清华大学学报:自然科学版.2003,43(2):172-174.
    [97]Kumh A La F, Kv I Z Z, Kmoch J, et al. Dynamic laboratory measurement with dielectric sensor for forage mass flow determination[J]. Research in Agricultural Engineering.2007,53(4):149-154.
    [98]Kumhala F, Prosek V, Blahovec J. Capacitive throughput sensor for sugar beets and potatoes[J]. Biosystems Engineering.2009,102(1):36-43.
    [99]Kumhala F, Prosek V, Kroulik M. Capacitive sensor for chopped maize throughput measurement[J]. Computers and Electronics in Agriculture.2010,70(1):234-238.
    [100]Fuchs A, Fuchs A, Zangl H, et al. Mass flowmeter for screw conveyors based on capacitive sensing[C].IEEE Instrumentation and Measurement Technology Conference. Warswa,Poland.May 1-3,2007.
    [101]Williams R A, Luke S P, Ostrowski K L, et al. Measurement of bulk particulates on belt conveyor using dielectric tomography[J]. Chemical Engineering Journal.2000,77(1):57-63.
    [102]Du B, Warsito W, Fan L S. ECT studies of gas solid fluidized beds of different diameters [J]. Industrial & Engineering Chemistry Research.2005,44(14):5020-5030.
    [103]段泉圣,刘吉臻,韩晓娟.电容式煤粉浓度传感器的实验研究[J].动力工程.2007,27(2):204-206.
    [104]孙猛,刘石,李志宏,等.基于电容成像的料腿内气固两相流浓度测量[J].仪器仪表学报.2009(2):261-266.
    [105]景军锋,王波,李鹏飞.织物含水率在线检测研究[J].仪器仪表学报.2009,30(6-z1):671-675.
    [106]谷趁趁,坎杂,王丽红,等.脱绒棉种介电常数与含水率的关系[J].石河子大学学报:自然科学版.2010,28(5):625-627.
    [107]杨戬,史建新,巴彦亮,等.棉花种子介电特性的试验研究[J].农产品加工(学刊).2005(05):14-16.
    [108]S61yom K, Kraus S, Mato R B, et al. Dielectric properties of grape marc:Effect of temperature, moisture content and sample preparation method[J]. Journal of Food Engineering.2013,119(1):33-39.
    [109]Guo W, Wang S, Tiwari G, et al. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating[J]. LWT-Food Science and Technology.2010,43(2): 193-201.
    [110]杨戬,史建新,巴彦亮,等.棉花种子介电特性的试验研究[J].农产品加工:学刊(下).2005(5):14-16.
    [111]Nelson S O, Others. Dielectric properties of agricultural products and some applications[J]. Research in Agricultural Engineering.2008,54(2):104-112.
    [112]Nelson S O. Fundamentals of dielectric properties measurements and agricultural applications [J]. J Microw Power Electromagn Energy.2010,44(2):98-113.
    [113]陶红艳,余成波.传感器与现代检测技术[M].北京:清华大学出版社,2009.
    [114]张洪润.传感器技术大全[M].北京:北京航空航天大学出版社,2007.
    [115]金锋,陆增喜.电容式传感器在高炉喷吹煤粉质量流量测量中的应用[J].钢铁.1999,34(10):56-59.
    [116]郭云舟,郭晓镭,肖为国,等.固体质量流量计在密相气力输送中的应用[J].自动化仪表.2007,28(6):17-20.
    [117]许传龙,汤光华,杨道业,等.静电感应空间滤波法测量固体颗粒速度[J].中国电机工程学报.2007,27(26):84-89.
    [118]许传龙,汤光华,黄键,等.基于静电传感器空间滤波效应的颗粒速度测量[J].化工学报.2007,58(1):67-74.
    [119]Zheng Y, Liu Q. Review of techniques for the mass flow rate measurement of pneumatically conveyed solids[J]. Measurement.2011,44(4):589-604.
    [120]李海青.两相流参数检测与应用[M].浙江:浙江大学出版社,1991.
    [121]Beck M S, Others. An intelligent cross correlator for pipeline flow velocity measurement[J]. Flow Measurement and Instrumentation.1998,8(2):77-84.
    [122]王超,王玉琳,张文彪.基于静电传感的气固两相流测量及研究装置[J].电子测量与仪器学报.2011,25(1):1-9.
    [123]Yan Y, Byrnes B, Woodhead S. velocity measurement of pneumatically conveyed solids using electrodynamic sensors[J]. Measurement Science & Technology.1995,6(5):515-537.
    [124]Seraj H, Rahmat M F, Khaled M. Measurement of velocity of solid/air two phase fluid using electrostatic sensors and cross correlation technique[J]. Scientia Iranica.2013.
    [125]伏苓安.相关流量测量技术[M].天津:天津大学出版社,1988.
    [126]邱禹,李长友,徐凤英,等.基于平板结构的电容式粮食水分检测仪的设计[J].农机化研究.2013,35(1):78-82.
    [127]郭文川,刘驰,杨军,小麦秸秆含水率测量仪的设计与试验[J].农业工程学报.2013,29(1):33-40.
    [128]侯晓亚,张英堂,李志宁.应用平行极板式电容传感器检测润滑油品质的研究[J].现代电子技术.2011,34(20):164-166.
    [129]Tollefsen J, Hammer E A. Capacitance sensor design for reducing errors in phase concentration measurements[J]. Flow Measurement and Instrumentation.1998,9(1):25-32.
    [130]金锋,张宝芬,王师.电容式气-固两相流相浓度传感器的优化设计[J].清华大学学报(自然科学版).2002(03):380-382.
    [131]曹章,王化祥.气固两相流固相浓度电容式传感器优化设计[J].仪器仪表学报.2007(11):1956-1959.
    [132]Ye J, Peng L, Wang W, et al. Optimization of Helical Capacitance Sensor for Void Fraction Measurement of Gas-Liquid Two-Phase Flow in a Small Diameter Tube[J]. IEEE Sensors Journal.2011,11(10):2189-2196.
    [133]叶佳敏,彭黎辉.小管径管道气液两相流空隙率电容传感器设计[J].仪器仪表学报.2010(06):1207-1212.
    [134]孟振振,王保良,黄志尧,等.油气两相流空隙率测量系统[J].工程热物理学报.2008,29(2):256-258.
    [135]牛刚,贾志海,王经.基于ANSYS的多极板电容传感器仿真研究[J].仪器仪表学报.2006,27(3):280-284.
    [136]李晓钰,陈向东,姚尧,等.复杂电极结构的单片式电容传感器研究[J].仪器仪表学报.2010(07):1541-1546.
    [137]张雪辉,王化祥,问雪宁.电容层析成像系统三维电场分析及阵列电极优化[J].天津大学学报.2007(09):1041-1047.
    [138]Bord I, Tardy P, Menil F. Temperature influence on a differential capacitive rain sensor performances[J]. Sensors and Actuators B:Chemical.2007,125(1):262-267.
    [139]Bord I, Tardy P, Menil F. Influence of the electrodes configuration on a differential capacitive rain sensor performances[J]. Sensors and Actuators B:Chemical.2006,114(2):640-645.
    [140]Laflamme S, Kollosche M, Connor J J, et al. Large-scale capacitance sensor for health monitoring of
    civil structures[C]. Fifth world conference on structural control and monitoring. Japan:2010.
    [141]刘存,李涵,常璐.不受分布电容影响的ECT检测系统[J].沈阳工业大学学报.2006,28(4):434437.
    [142]赵雪英,郭雨梅.一种小电容检测方法——充放电法[J].沈阳工业大学学报.2003(01):55-57.
    [143]李阳.交流型微小电容测量电路的介绍[J].冶金自动化.2004(z1):1056-1058.
    [144]王雷,王保良,冀海峰,等.电容传感器新型微弱电容测量电路[J].传感技术学报.2002(4):273-277.
    [145]邓丽莉,桑胜波,张文栋,等.基于Pcap01芯片的高精度微电容检测系统设计[J].传感技术学报.2013,26(8):1045-1049.
    [146]张小勇,陈颖鸣,郭禹姬.基于电容检测芯片的电容检测系统设计[J].单片机与嵌入式系统应用.2010(6):35-37.
    [147]徐平,张勇,侯占强,等.基于MS3110的差分电容检测方法研究及其电磁兼容性设计[J].仪表技术与传感器.2008(5):60-61.
    [148]范作宪,董恩生,曹河,等.基于AD7746的同面电极电容检测系统设计[J].计测技术.2012,32(5):18-21.
    [149]Acam-Messelectronic. PICOOAP临时数据手册.2011.
    [150]Byler R K. Resistivity of cotton lint for moisture sensing[J]. Transactions of the American Society of Agricultural Engineers.1998,41(3):877-882.
    [151]Krajewski A S, Gordon S G. an inline noinvasive cotton moisture measurement device for gin ducts[J]. Transactions of ASABE.2010,53(4):1331-1339.
    [152]宋云亮.基于三波长的近红外农产品水分检测仪的研制:[硕士学位论文].镇江:江苏大学,2011.
    [153]董鹏辉.基于近红外线的纸张水分及定量测量技术研究:[硕士学位论文].西安:长安大学,2009.
    [154]景军锋,王波,李鹏飞.基于微波透射法测量织物含水率[J].计算机测量与控制.2010(11):2491-2493.
    [155]孙必成,陈美玉,孙润军.微波测量纤维含水率的方法[J].毛纺科技.2009(6):54-56.
    [156]林谦,高志宇,梁漫春,等.微波相移法测量煤炭水分的模型[J].清华大学学报:自然科学版.2010(11):1781-1784.
    [157]Zhang Y, Ogura Y. Density-independent high moisture content measurement using phase shifts at two microwave frequencies[J]. Journal of Microwave Power and Electromagnetic Energy.2010,44(3): 163-167.
    [158]姜宇,丁雪梅,于少鹏,等.密度无关的物料含水率微波测量方法[J].哈尔滨工业大学学报.2007(11):1829-1832.
    [159]Trabelsi S, Trabelsi S, Nelson S O, et al. Inexpensive microwave moisture sensor for granular materials[C]. Antenna and Propagation Society International Symposiym, IEEE 2007,297-300.
    [160]Trabelsi S, Trabelsi S, Nelson S O, et al. Microwave dielectric sensing of moisture content in shelled peanuts independent of bulk density and with temperature compensation[C]. IEEE Sensor Applications Symposium, Atlanta, Febrary 12-14,2008,51-53.
    [161]Trabelsi S, Trabelsi S, Nelson S O, et al. Microwave moisture sensor for rapid and nondestructive grading of peanuts[C]. IEEE SoutheastCon, Concord, March 18-21,2010,57-59.
    [162]杨国辉.基于微波谐振腔的物料水分传感器研制:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [163]韩凌.基于微波谐振腔技术的水分仪设计:[硕士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [164]廖承恩.微波技术基础[M].第一版.西安:西安电子科技大学,1994.
    [165]黄振军,张其龙,崔焰,等.微波水分检测仪在原烟烟包含水率快速检测中的应用[J].烟草科技.2014(01):45-48.
    [166]Kupfer K. Electromagnetic Aquametry:Electromagnetic wave interaction with water and moist substances[M]. Germany:Springer,2006.
    [167]刘学,曹卫彬,刘姣娣,等.RTK GPS系统在智能化农业机械装备中的应用[J].农机化研究.2007(09):182-183.
    [168]孟志军,王秀,赵春江,等.基于嵌入式组件技术的精准农业农田信息采集系统的设计与实现[J].农业工程学报.2005(04):91-96.
    [169]北京天同诚业科技有限公司.WG-8010 GPRS DTU使用手册.
    [170]张彦会.电控机械式自动变速器智能换挡控制系统研究:[博士学位论文].北京:中国农业大学,2008.
    [171]祝青园.基于最优脱粒功率消耗的联合收割机作业速度控制研究:[博士学位论文].北京:中国农业大学,2009.
    [172]刘婷婷.汽车转鼓实验台及测控系统:[博士学位论文].北京:中国农业大学,2009.
    [173]郭文川,王婧,刘驰.基于介电特性的薏米含水率检测方法[J].农业机械学报.2012(03):113-117.
    [174]李小昱,雷廷武,等.电容式传感器测量水流泥沙含量的研究[J].土壤学报.2002,39(3):429-435.
    [175]吴翠艳,闫惠兰.温度误差对电容式传感器结构尺寸的影响[J].煤矿自动化.1998(S1):155-156.
    [176]Lyons D W, Sealbolt J A, Graham J. The dielectric properties of various cotton varieties[J]. Textile Research Journal.1973,43(2):110-115.
    [177]刘敏智.误差与数据处理[M].北京:原子能出版社,1981.
    [178]中华人民共和国国家质量监督检验检疫总局.单粒(精密)播种机试验方法:GB/T 6973-2005[Z].中国国家标准化管理委员会.北京:中国标准出版社,2006.
    [179]谢明.便携式γ能谱仪探测模块和解谱的设计与实现:[硕士学位论文].武汉:华中科技大学,2012.
    [180]陈亮.核素识别算法及数字化能谱采集系统研究:[博士学位论文].北京:清华大学,2009.
    [181]赵立业,蹇兴东.排种性能检测传感器设计与试验[J].农业机械学报.2005,36(7):41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700