用户名: 密码: 验证码:
纳米ZnO/金刚石复合结构的制备与性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石与氧化锌(ZnO)都是非常重要的宽带隙半导体材料,具有许多优异的化学和物理性质,两者组成的复合结构在半导体异质结、生物电极和太阳能电池等诸多领域具有非常重要的应用前景。本论文的研究内容如下:
     1.用水热法在金刚石衬底上制备出硼(B)掺杂ZnO纳米棒,和未掺杂相比,硼掺杂后ZnO纳米棒直径增大,通过X射线衍射和第一性原理的计算得出硼原子掺杂位于ZnO晶格的八面体间隙中,掺硼后导致ZnO晶格常数增大和禁带宽度减小。同时制备出B-ZnO/金刚石异质结并进行光催化实验,通过降解活性黄15得出硼掺杂提高了光催化反应速率,并对其能带结构进行分析。
     2.在制备ZnO纳米棒过程中,加入纳米金刚石并研究ZnO光致发光现象,纳米金刚石使ZnO纳米棒形成上端开口的现象,是由于纳米金刚石在ZnO纳米棒的生长过程中抑制其(001)方向生长,掺杂纳米金刚石的ZnO纳米棒光致发光紫外峰位于~380nm,同时有很强的可见发射峰中心在650nm,是由于纳米金刚石的加入增加ZnO纳米棒的氧缺陷,这种上端开口的ZnO纳米棒可应用在紫外传感器、场发射及其它光电装置。
     3.在硼掺杂金刚石膜上生长铕(Eu)掺杂ZnO纳米棒,并在ZnO纳米棒的顶部发现具有尖端效应。制作铕掺杂ZnO纳米棒/金刚石异质结结构,研究其电学性能。实验表明,铕掺杂ZnO纳米棒/p型金刚石异质结具有良好的整流特性。
Diamond and zinc oxide (ZnO) are important wide band semiconductor materials.Recently, the combined structures of ZnO and diamond have been paid more attentiondue to their distinguished chemical and physical properties making it suitable for theapplications such as semiconductor heterojunction, biosensor electrodes and solar celldevices. The main content and innovation of this thesis are listed as following:
     1.The boron (B)-doped zinc oxide nanorods (ZnO NRs) have been fabricated ondiamond substrate by hydrothermal technique. The mean diameter of the B-dopedZnO NRs is larger than that of the undoped NRs. The results of x-ray diffraction andfirst-principles calculations demonstrate that the boron atoms prefer to occupy theoctahedral interstice positions of ZnO, which lead to the lattice expansion and bandgap shrinkage. The rectifying B-doped ZnO NRs/p-diamond heterojunction structurehas been performed to degrade reactive yellow15solution, showing a highperformance photocatalysis. The photocatalysis mechanism based on the pnheterojunction is discussed.
     2. The influence of introducing diamond powder on the growth andphotoluminescence of ZnO nanorods are discussed. The majority of ZnO nanorodsshow open-ended feature due to the addition of diamond powder in the reactionsolution. It is speculated that the diamond fell on the top of the growing ZnOnanorods would suppress the (001) growth at the localized positions to form theopen-ended nanorods. The photoluminescence spectra of the ZnO/diamond productsshow the band-edge-related UV emission of ZnO nanorods at~380nm, in addition toa broad visible band centered at about650nm, which may originate from theemissions related to defects in the open-ended ZnO nanorods and/or in the diamond. The open-ended ZnO nanorods and combined ZnO/diamond nanostructures would befavorable for potential applications including UV sensors, electron field emitter, andvarious photoelectric nanodevices.
     3. The Eu doped zinc oxide nanorods (ZnO NRs) have been fabricated onB-diamond substrate. The tip electric field has been found on the top of ZnO. The Eudoped NRs/diamond heterojunctions are constructed and the electrical properties areexamined. The Eu doped ZnO NR/diamond heterojunctions show typical rectifyingcurrent-voltage behavior.
引文
[1] HUANG J, WANG L, XU R, et al. Effect of a buffer layer on the properties of UVphotodetectors based on a ZnO/diamond film structure [J]. Semiconductor Scienceand Technology,2008,23:125018.
    [2] LIU J M, XIA Y B, WANG L J, et al. Effect of grain size on the electricalproperties of ultraviolet photodetector with ZnO/diamond film structure [J].Journal of crystal growth,2007,300(2):353-7.
    [3] ZHAO J, WU D, ZHI J. A novel tyrosinase biosensor based on biofunctional ZnOnanorod microarrays on the nanocrystalline diamond electrode for detection ofphenolic compounds [J]. Bioelectrochemistry,2009,75(1):44-9.
    [4] BENYOUCEF B, ELMAZIRIA O, JJ F, et al. SAW devices based on ZnOinclined c-axis on diamond [J].2008,17:1420-3.
    [5] LUO J, ZENG F, PAN F, et al. Filtering performance improvement in V-dopedZnO/diamond surface acoustic wave filters [J]. Applied Surface Science,2010,256(10):3081-5.
    [6]王占国,半导体材料研究进展[M].北京,高等教育出版社2012
    [7]陈光华.金刚石薄膜的制备与应用[M].北京,化学工业出版社,2004.3,第一版.
    [8] BERMAN R. Physical properties of diamonds [M]. Clarendon Press, Oxford,1965.
    [9]赵铧,李韦,刘高斌, et al. ZnO纳米材料及掺杂ZnO材料的最新研究进展[J].材料导报,2007,21(F11):105-9.
    [10] LAMARA T, BELMAHI M, ELMAZRIA O, et al. Freestanding CVD diamondelaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices [J].Diamond and Related Materials,2004,13(4):581-4.
    [11] BENSMAINE S, LE BRIZOUAL L, ELMAZRIA O, et al. SAW devices basedon ZnO inclined c-axis on diamond [J]. Diamond and Related Materials,2008,17(7):1420-3.
    [12] ZHAO J, WU D, ZHI J. A novel tyrosinase biosensor based on biofunctionalZnO nanorod microarrays on the nanocrystalline diamond electrode for detectionof phenolic compounds [J]. Bioelectrochemistry,2009,75(1):44-9.
    [13] WANG C X, YANG G W, GAO C X, et al. Highly oriented growth of n-typeZnO films on p-type single crystalline diamond films and fabrication ofhigh-quality transparent ZnO/diamond heterojunction [J]. Carbon,2004,42(2):317-21.
    [14] WANG C X, YANG G W, LIU H W, et al. Experimental analysis and theoreticalmodel for anomalously high ideality factors in ZnO/diamond p-n junction diode[J]. Applied Physics Letters,2004,84(13):2427-9.
    [15] LI H D, LV H, SANG D D, LI D M, LI B, LV X Y, ZOU G T, Synthesizing ofZnO Micro/Nanostructures at Low Temperature with New Reducing Agents,hin.Phys.Lett.2008,25:3794.
    [16] SANG D D, LI H D, and CHENG S H, Growth and electron field emission ofZnO nanorods on diamond films, Applied Surface Science,2011,258:333.
    [17] YUAN J J, LI H D, GAO S Y, LIN Y H and LI H Y,A facile route to n-typeTiO2-nanotube/p-type boron-doped-diamond heterojunction for highly efficientphotocatalysts, Chemical Communication.2010,46:3119.
    [18] LV H, SANG D D and LI H D, Thermal Evaporation Synthesis and Properties ofZnO Nano/Microstructures Using Carbon Group Elements as the ReducingAgents, Nanoscale Research Letters,2010,5:620.
    [19] HERSHEY Y,The book of Diamonds[M].New York: Hearthside Press,1940.
    [20]顾长志,金曾孙.金刚石膜的性质、应用及国内外研究现状[J].功能材料,1997,28(3):232-236.
    [21]金曾孙.金刚石薄膜的研究进展与展望[J].薄膜科学与技术,1995,8(3):172-175.
    [22] OKUZUMI F, International Conference on New Diamond Science andTechnology [C].1990:80.
    [23] BERMAN R, Thermal properties of diamond in the properties of diamond [M].Edited by J. E. Field, New York, Academic Press,1979.
    [24] OKUSHI H. Diamond Semiconductor for Electronic Device Application [J].Carbon,1997,35(10):1682.
    [25]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用[M].北京;冶金工业出版社.2001.
    [26] YIN Z, AKKERMAn Z,YANG B X, SMITH F W. Optical properties andmicrostructure of CVD diamond films[J]. Diamond and Related Materials,1997,6(1):153-158.
    [27] BAKON A, SZYMANSKI A. Practical uses of Diamond [M]. PWN-polishscientific publishers,1993:29.
    [28] MAVRIN B N, DENISOV V N, POPOVA D M, SKRYLEVA E A, borondistribution in the subsurface region of heavily doped IIb type diamond, Phys.Lett. A.2008,372:3914.
    [29] TOMIKAWA T, NISHIBAYASHI Y, SHIKATA S, et al. pn Junction diode byb-doped diamond heteroepitaxially grown on Si-doped c-BN [J]. Diamond andRelated Materials,1994,3(11):1389-92.
    [30] WANG C X, YANG G W, ZHANG T, et al. Preparation of low-threshold andhigh current rectifying heterojunction using b-doped diamond grown onSi-treated c-BN crystals [J]. Diamond and Related Materials,2003,12(8):1422-5.
    [31] WANG C X, YANG G W, GAO C X, et al. Highly oriented growth of n-typeZnO films on p-type single crystalline diamond films and fabrication ofhigh-quality transparent ZnO/diamond heterojunction [J]. Carbon,2004,42(2):317-21.
    [32] HIRAMA K, TANIYASU Y, KASU M. Electroluminescence andcapacitance-voltage characteristics of single-crystal n-type AlN (0001)/p-typediamond (111) heterojunction diodes [J]. Applied Physics Letters,2011,98(1):011908-3.
    [33]于三,邹广田,金曾孙,硼掺杂p-型半导体金刚石薄膜的气相合成及其掺杂行为的研究.半导体学报.1994年09期.
    [34]王传新,汪建华,满卫东,等,硼浓度对沉积在刀具上的金刚石膜表面的影响.武汉化工学院学报.2004,26,51
    [35]李博. MPCVD法制备光学级多晶金刚石膜及同质外延金刚石单晶[D];吉林大学,2008.
    [36] WANG Z, LUO Q, LIU L, et al. The superconductivity in boron-dopedpolycrystalline diamond thick films [J]. Diamond and Related Materials,2006,15(4):659-63.
    [37]减建兵,黄浩,赵玉成.含搀杂的金刚石[J].金刚石与磨料磨具工程,2002,1(127):17.
    [38] CHEN C H, CHANG S J, CHANG S P, et al. Novel fabrication of UVphotodetector based on ZnO nanowire/p-GaN heterojunction [J]. ChemicalPhysics Letters,2009,476(1):69-72.
    [39] NOVODVORSKY O, GORBATENKO L, PANCHENKO V Y, et al. Optical andstructural characteristics of Ga-doped ZnO films [J]. Semiconductors,2009,43(4):419-24.
    [40] SWAIN G M. The susceptibility to surface corrosion in acidic fluoride media: acomparison of diamond, HOPG, and glassy carbon electrodes [J]. Journal of theElectrochemical Society,1994,141:3382.
    [41]孙见蕊.钛基掺硼金刚石薄膜电极的制备、性质及其在废水处理中的应用[D]吉林大学,2012。
    [42] WANG J, LI M, SHI Z, et al. Direct electrochemistry of cytochrome c at a glassycarbon electrode modified with single-wall carbon nanotubes [J]. AnalyticalChemistry,2002,74(9):1993-7.
    [43] SARADA B, RAO T N, TRYK D, et al. Electrochemical oxidation of histamineand serotonin at highly boron-doped diamond electrodes [J]. AnalyticalChemistry,2000,72(7):1632-8.
    [44] CAREY J J, CHRIST JR C S, LOWERY S N. Method of electrolysis employinga doped diamond anode to oxidize solutes in wastewater [M]. Google Patents.1995.
    [45]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究[J].功能材料与器件学报,2002,31(2):93-7.
    [46]郭常霖,吴毓琴,射频溅射ZnO压电薄膜择优取向度和离散因子的X射线测定法,1985年02期
    [47] ZHANG J, SUN L, PAN H, et al. ZnO nanowires fabricated by a convenientroute [J]. New Journal of Chemistry,2002,26(1):33-4.
    [48] YAN H, HE R, PHAM J, et al. Morphogenesis of One-dimensional ZnO Nanoand Microcrystals [J]. Advanced Materials,2003,15(5):402-5.
    [49] KAIDASHEV E, LORENZ M, VON WENCKSTERN H, et al. High electronmobility of epitaxial ZnO thin films on c-plane sapphire grown by multisteppulsed-laser deposition [J]. Applied Physics Letters,2003,82:3901.
    [50] YAN H, JOHNSON J, LAW M, et al. ZnO nanoribbon microcavity lasers [J].Advanced Materials,2003,15(22):1907-11.
    [51] ROY V, DJURISIC A B, CHAN W, et al. Luminescent and structural propertiesof ZnO nanorods prepared under different conditions [J]. Applied Physics Letters,2003,83:141.
    [52] LIN K F, CHENG H M, HSU H C, et al. Band gap variation of size-controlledZnO quantum dots synthesized by sol-gel method [J]. Chemical Physics Letters,2005,409(4):208-11.
    [53] CHENG H M, HSU H C, CHEN S L, et al. Efficient UV photoluminescencefrom monodispersed secondary ZnO colloidal spheres synthesized by sol-gelmethod [J]. Journal of Crystal Growth,2005,277(1):192-9.
    [54] LOOK D, REYNOLDS D, LITTON C, et al. Characterization of homoepitaxialp-type ZnO grown by molecular beam epitaxy [J]. Applied Physics Letters,2002,81:1830.
    [55] STUDENIKIN S, GOLEGO N, COCIVERA M. Optical and electrical propertiesof undoped ZnO films grown by spray pyrolysis of zinc nitrate solution [J].Journal of Applied Physics,1998,83:2104.
    [56] HUANG MH, Wu Y.F. et al, Catalytic growth of zinc oxide nanowires by vaportransport. Adv. Mater2011,13(2):113-16.
    [57] ZHU Z, CHEN T L, GU Y, et al. Zinc Oxide Nanowires Grown by Vapor-PhaseTransport using Selected Metal Catalysts: AComparative Study. Chem. Mater.2005,7(16):4227-34.
    [58] ZHOU RF,et.al. Morphology controlled synthesis,growth mechanism,opticaland microwave absorption properties of ZnO nanoeombs,J. Phys. D:Appl. Phys.2008,41(18):185405
    [59] HE F Q,ZHAO Y P,Growth of ZnO nanotetrapods with hexagona1crown. Appl.Phys. Lett.2006,88(19):193113.
    [60] YAN H, HE R, PHAM J, et al. Morphogenesis of One-Dimensional ZnONano-and Microcrystals.Adv. Mater.2003,15(5):402-5.
    [61] WANG Y W, ZHANG L D, WANG G Z, et, al. Catalytic growth ofsemiconducting zinc oxide nanowires and their photoluminescence properties. J.Cryst. Growth.2002,234(1):171-5.
    [62] HO S T, CHEN K-C, CHEN H A, et al. Catalyst-Free Surface-Roughness-Assisted Growth of Large-Scale Vertjeally Aligned Zinc Oxide Nanowires byThermal Evaporation. Chem. Mater.2007,19(16):4083-6.
    [63] YAO B D, CHAN Y F, WANG N, Formation of ZnO Nanostructures by a SimpleWay of Thermal Evaporation[J].Appl.Phys.Lett.,2002,81(4):757-9.
    [64] SHEN G Z, BANDO Y, LIU B D. et al.Characterization and Field-EmissionProperties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by aModified Thermal-Evaporation Process[J].Adv.Funct.
    [65] LAO J Y, HUANG J Y, et al.ZnO Nanobridges and Nanonails[J].Nano Lett.2002,3(2):235-238.
    [66] DING Y, GAO P X, WANG Z L. Catalyst-Nanostructure Interfacial LatticeMismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:ACase of Sn/ZnO[J].J.Am.Chem.Soc.,2004,126(7):2066-72.
    [67] ZHANG B, BINH N, WAKATSUKI K, et al. Pressure-dependent ZnOnanocrsytal growth in a chemical vapor deposition process [J]. The Journal ofPhysical Chemistry B,2004,108(30):10899-902.
    [68] YAN H, JOHNSON J, LAW M, et al. ZnO nanoribbon microcavity lasers [J].Advanced Materials,2003,15(22):1907-11.
    [69] XU W L, ZHENG M J, DING G Q. et al.Fabrication and Optical Properties ofHighly Ordered ZnO Nanodot Arrays. Chem. Phys. Lett.,2005,411(1):37-42.
    [70] JIE J, WANG G, WANG Q et al.Synthesis and Characterization of Aligned ZnONanorods on Porous Aluminum Oxide Template J. Phys. Chem. B,2004,108(32):11976-80.
    [71] CHIK H, LIANG J, CLOUTIER S G. et al.Periodic Array of Uniform ZnONanorods by Second-Order Self-Assembly. Appl. Phys. Lett.2004,84(17):3376-8.
    [72] LI Y, Xu D, ZHANG Q. et al.Preparation of Cadmium Sulfide Nanowire Arraysin Anodic Aluminum Oxide Templates. Chem. Mater.1999,11(12):3433-5.
    [73] FULLAM S, COTTELL D, RENSMO H. et al. Carbon Nanotube TemplatedSelf-Assembly and Thermal Processing of Gold Nanowires. Adv. Mater.2000,12(19):1430-2.
    [74] LIU Y, ZHANG Y C, XU X F. Hydrothermal Synthesis and PhotocatalyticActivity of CdO2Nanocrystals. J.Hazard.Mater.,2009,163(2-3):1310-4.
    [75] SUN W, PANG Y, LI J et al.Particle Coarsening II:Growth Kinetics ofHydrothermal baTiO3. Chem.Mater.,2007,19(7):1772-9.
    [76] XU S, Li Z H, WANG Q et al.A Novel One-Step Method to SynthesizeNano/Micron-Sized ZnO Sphere. J.Alloy.Compd.2008,465(1-2):56-60.
    [77] DEMIANETS LN, KOSTOMAROV DV, et.al. Mechanism of Growth of ZnOSingle Crystals from Hydrothermal Alkali Solutions. Crystallogr. Pep.2002,47:S86-98
    [78] SUSCAVAGE M, HARRIS M, et.al. High Quality Hydrothermal ZnO Crystals.MRS Intemet J. Nitride Semieond.Res.1999,451{40}:537-43.
    [79] SAKAGANU N, YAMASHITA M. Variation of Electrical Properties on GrowthSectors of ZnO Single Crystals. J.Cryst.Growth.2001,229:98-103
    [80] OHSHIMA E, OGINO H, NIIKURA I, e tal. Growth of the2-in-size bulk ZnOsingle crystals by the hydrothermal method. Joumal of Crystal Growth,2004,260(1):166-70
    [81] HAN J, JANG T H,KIM Y B, et al. Magnetism in Mn-doped ZnO bulk samplesprepared by solid state reaction. Appl. Phys. Lett.,2003,83:920-2
    [82] LI W J, SHI E W, ZHONG W Z, et al.Growth mechanism and growth habit ofoxide crystals.J.Cryst.Growth.1999,(203):186–96.
    [83] DEMIANETS L N, KOSTOMAROV D V, KUZMINA I P, et al.Mechanism ofgrowth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr.Rep.2002,(47):86–98.
    [84] DEMIANETS L N, KOSTOMAROV D V, Mechanism of zinc oxide singlecrystal growth under hydrothermal conditions[J]. Ann.Chim.Sci.Mat.,2001,(26):193–198.
    [85] DEMYANETS L N, KOSTOMAROV D V, Kuz-Mina I P,Chemistry and kineticsof ZnO growth fromalkaline hydrothermal solutions[J]. Inorg.Mater.,2002,(38):124–31.
    [86] TONG Y H, LIU Y H, DONG L, ZHAO D G, ZHANG J Y, LU Y M, Growthof ZnO Nanostructures with Different Morphologies by Using HydrothermalTechnique, J. Phys. Chem. B,2006,110:20263.
    [87] KONG X Y, WANG Z.L. Spontaneous Polarization-Induced Nanohelixes,Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett.,2003,3(12):1625-31.
    [88] KONG X Y, DING Y, YANG R, et al.Single-Crystal Nanorings Formed byEpitaxial Self-Coiling of Polar Nanobelts.Science,2004,303(5662):1348-51.
    [89] HUGHES W L, WANG Z, Controlled Synthesis and Manipulation of ZnONanorings and Nanobows[J].Appl. Phys.Lett.,2005,86(4):043106.
    [90] KIM H, GILMORE C M, HORWITZ J S, et al.Transparent ConductingAluminum-Doped Zinc Oxide Thin Films For Organic Light-Emitting Devices.Appl. Phys. Lett.,2000,76(3):259-61.
    [91] GAO P X, WANG Z L, Nanopropeller Arrays of Zinc Oxide. Appl. Phys. Lett.,2004,84(15):2883-5.
    [92] LI F, DING Y, Gao P et al.Single-Crystal Hexagonal Disks and Rings ofZnO:Low-Temperature,Large-Scale Synthesis and Growth Mechanism. Angew.Chem. Int. Edit.,2004,43(39):5238-42.
    [93] GAO P X, DING Y, MAI W et al.Conversion of Zinc Oxide Nanobelts intoSuperlattice-Structured Nanohelices. Science,2005,309(5741):1700-4.
    [94]张立德,牟季美.纳米材料和纳米结构[M].科学出版社.2001.
    [95] ZU P, TANG Z, WONG G K L, et al. Ultraviolet spontaneous and stimulatedemissions from ZnO microcrystallite thin films at room temperature [J]. SolidState Communications,1997,103(8):459-63.
    [96] BAGNALL D, CHEN Y, ZHU Z, et al. Optically pumped lasing of ZnO at roomtemperature [J]. Appl. Phys. Lett.,1997,70:2230.
    [97] HONG S, JOO T, PARK W I, et al. Time-resolved photoluminescence of thesize-controlled ZnO nanorods [J]. Appl. Phys. Lett.,2003,83:4157.
    [98] JUNG S, PARK W, CHEONG H, et al. Time-resolved and time-integratedphotoluminescence in ZnO epilayers grown on AlO (0001) by metalorganicvapor phase epitaxy [J]. Appl. Phys. Lett.,2002,80:1924.
    [99] CHOY J H, JANG E S, WON J H, et al. Soft Solution Route to DirectionallyGrown ZnO Nanorod Arrays on Si Wafer; Room-temperature Ultraviolet Laser[J]. Advanced materials,2003,15(22):1911-4.
    [100] JOHNSON J C, YAN H, YANG P, et al. Optical cavity effects in ZnO nanowirelasers and waveguides [J]. The Journal of Physical Chemistry B,2003,107(34):8816-28.
    [101] JOHNSON J C, YAN H, SCHALLER R D, et al. Near-field imaging ofnonlinear optical mixing in single zinc oxide nanowires [J]. Nano Letters,2002,2(4):279-83.
    [102] JOHNSON J C, KNUTSEN K P, YAN H, et al. Ultrafast carrier dynamics insingle ZnO nanowire and nanoribbon lasers [J]. Nano Letters,2004,4(2):197-204.
    [103] LIU C, YIU W, AU F, et al. Electrical properties of zinc oxide nanowires andintramolecular p-n junctions [J]. Appl. Phys. Lett.,2003,83(15):3168-70.
    [104] WAN Q, LI Q, CHEN Y, et al. Positive temperature coefficient resistance andhumidity sensing properties of Cd-doped ZnO nanowires [J]. Appl. Phys. Lett.,2004,84:3085.
    [105] LI Q, LIANG Y, WAN Q, et al. Oxygen sensing characteristics of individualZnO nanowire transistors [J]. Appl. Phys. Lett.,2004,85:6389.
    [106] WAN Q, LI Q, CHEN Y, et al. Fabrication and ethanol sensing characteristics ofZnO nanowire gas sensors [J]. Appl. Phys. Lette.,2004,84:3654.
    [107] JOHNSON J C, YAN H, SCHALLER R D, et al. Single nanowire lasers [J].The Journal of Physical Chemistry B,2001,105(46):11387-90.
    [108] WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxidenanowire arrays [J]. Science,2006,312(5771):242-6.
    [109] KONENKAMP R W, SEHLEGEL R C, Vertical nanowire light-ernjttingdiode. Appl. Phys. Lett.2004,85(24):6004-6.
    [110] BAO J, ZIMMLER, CAPASSO F, et al. Broadband ZnO Single-NanowireLight-Emitting Diode. Nano lett.,2006,6(8):1719-22.
    [111]杨晓天,刘博阳,马艳,赵佰军,张源涛,杨天鹏,杨洪军,李万程,杜国同. ZnO基紫外探测器的制作与研究[J].发光学报,2004,25(2):3.
    [112] LAW M, GREENE L E, JOHNSON J C, et al. Nanowire dye-sensitized solarcells.Nat Mater,2005,4(6):455-9.
    [113] BAXTER J B, AYDIL E S, Nanowire-based dye-sensitized solar cells. Appl.Phys. Lett.2005,4(5):053114.
    [114] LAMARA T, BELMAHI M, ELMAZRIA O, BRIZOUAL L L, BOUGDIRA J,Diam. Rel. Mater.2004,13:581.
    [115] YAO L C, LIN P, TSENG T Y, NanotiP fabrication of zinc oxide nanorods andtheir enhanced field emission properties. Nanotechnology.2009,20(12):125202.
    [116] CHENG C L, CHAO S H, CHEN Y F. Enhancement of field emission innanotip decorated ZnO nanobottles. J.Cryst.Growth,2009,311(19):4381-4.
    [117] ZHANG Z, MENG G, XU Q, et al. Aligned ZnO nanorods with tunable size andfield emission on native Si substrate achieved via simple electrodeposition [J].The Journal of Physical Chemistry C,2009,114(1):189-93.
    [118] XU C, SUN X. Field emission from zinc oxide nanopins [J]. Appl. Phys. Lett.,2003,83(18):3806-8.
    [119] CUI J, DAGHLIAN C, GIBSON U, et al. Low-temperature growth and fieldemission of ZnO nanowire arrays [J]. Journal of Applied Physics,2005,97:044315.
    [120] KISLOV N, LAHIRI J, VERMA H et al. Photocatalytic Degradation of MethylOrange over Single Crystalline ZnO:Orientation Dependence of Photoactivityand Photostability of ZnO[J]. Langmuir,2009,25(5):3310-5.
    [121] WANG H, LI G, JIA L et al. Controllable Preferential-Etching Synthesis andPhotocatalytic Activity of Porous ZnO Nanotubes. J. Phys. Chem. C,2008,112(31):11738-43.
    [122]杨洁,高春晓。金刚石/氧化锌透明的研制。硅酸盐学报,2004,32:231
    [123] SUN J, BAI Y Z, YANG T P, SUN J C, DU G T, JIANG X, WU H H,Preparationand characteristics of ZnO films on freestanding diamond substrates,Diam. Rel.Mater,2007,16:1597.
    [124] BENSMAINE S, BRIZOUAL L. ELMAZRIA L, O, BENYOUCEF B, SAWdevices based on ZnO inclined c-axis on diamond, Diam. Rel.Mater.2008,17:1420.
    [125] ZHAO J W, D. WU H, ZHI J F, Bioelectrochemistry2009,75,44.
    [126] LI H D, LV H, SANG D D, LI D M, LI B, LV X. Y, ZOU G TSynthesizing of ZnO Micro/Nanostructures at Low Temperature with NewReducing Agents, Chin.Phys.Lett.2008,25,3794.
    [127] SANG D, LI H D, CHENG S H, WANG Q L, YU Q et al. Electrical transportbehavior of n-ZnO nanorods/p-diamond heterojunction device at highertemperatures Journal of Appl. Phys.2012.(112)036101.
    [128]廖亁初,蓝芬兰.扫描电镜分析技术与应用[M].北京,机械工业出版社,1990,第一版.
    [129]程光煦.拉曼布里渊散射-原理及应用[M].北京:科学出版社,2001
    [130] LZAKI M, OMI T, J. Electrochem. Soc.144(1997)1949.
    [131] VANHEUSDEN K, WARREN W L, SEAGER C H, Mechanisms behind greenphotoluminescence in ZnO phosphor powders, J. Appl. Phys,1996,79:7983
    [132] AGER J W, WALUKIEWICZ W, McCluskey M, PLANO M A, Fanointerference of the Raman phonon in heavily boron-doped diamond films grownby chemical vapor deposition, Appl. Phys. Lett..1995,66:616.
    [133] WANG Y G, LAU S P, TAY B K, ZHANG X H, Resonant Raman scatteringstudies of Fano-type interference in boron doped diamond, J. Appl. Phys.,2002,92:7253.
    [134] RAJALAKSHMI M, ARORA A K, BENDRE B, et al. Optical phononconfinement in zinc oxide nanoparticles [J]. J. Appl. Phys.,2000,87(5):2445-8.
    [135] XU X G. et al., Appl. Phys. Lett.,2010,97:232502.
    [136] Gu X Q, ZHU L P, YE Z Z, HE H P, ZHANG Y Z, Room-temperaturephotoluminescence from ZnO/ZnMgO multiple quantum wells grown onSi(111) substrates, Appl. Phys.Lett.,2007,91:022103.
    [137] ZGüR ü, ALIVOV Y I, Liu C, TEKE A, A comprehensive review of ZnOmaterials and devices, J. Appl. Phys.,2005,98:041301.
    [138] CHEN Y, BAGNALL D M, Koh H J, PARK K T, HIRAGA K, ZHU Z, YAO.,Plasmaassisted molecular beam epitaxy of ZnO on c-plane sapphire: Growthand characterization, J. Appl. Phys.,1998,84:3912.
    [139]孙林林,刘宏玉,程文娟,马学鸣,石旺舟,在Si(100)上以AlN作过渡层低温外延生长ZnO薄膜,人工晶体学报2005,34,1132
    [140] E. A. David and N. F. Mott, Philos. Mag,1970.22:903,
    [141] SUH D I, LEE S Y, KIM T H, CHUN J M, SUH E K, YANG O B, Chem. Phys.Lett.442(2007)348
    [142] YU Q, Li, J. Li H D, et. Fabrication, structure, and photocatalytic activities ofboron-doped ZnO nanorods hydrothermally grown on CVD diamond filmChem.l Phys. Lett.2012,539:74-8.
    [143]冶银平,陈建敏,徐康,陆松岩,含纳米金刚石的复合镍刷镀层的摩擦学特性,1996年04期
    [144]张家玺,刘琨,胡献国,纳米金刚石颗粒对发动机润滑油摩擦学特性的影响,摩擦学学报,,2002,22卷第1期。
    [145] RAJALAKSHMI M, ARORA A K, BENDRE B, et al. Optical phononconfinement in zinc oxide nanoparticles [J]. J. Appl. Phys.,2000,87(5):2445-8.
    [146] NG H T, CHEN B, LI J, HAN J, Appl. Phys. Lett.,2003,82:2023.
    [147] LI D, LEUNG Y H, LIU Z T, XIE M H, SHI S L, XU S J, CHAN W K, Appl.Phys. Lett.,2004,85:1601.
    [148] GAO S Y, ZHANG H J, DENG R P. et. al. Engineering white light-emittingEu-doped ZnO urchins by biopolymer-assisted hydrothermal method.2006,89:123125
    [149] WANG M L, HUANG C G, HUANG Z et. al. Synthesis and photoluminescenceof Eu-doped ZnO microrods prepared by hydrothermal method.2009,31:1502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700