用户名: 密码: 验证码:
刚度时变系统非线性动力学研究及稳定性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铣削加工技术是先进制造技术中最重要的基础技术之一,已成为21世纪先进制造技术的重要组成部分,被广泛应用于航空航天、汽车、模具、能源、轨道交通等众多领域。铣削过程中的颤振是高速铣削实现高速、高效和高精度加工的关键限制因素之一,因此大型整体薄壁件高速铣削下的稳定性预测问题成为航空工业制造技术中迫切需要解决的技术难题。以大型整体薄壁件为研究对象,以提高切削效率、保障切削稳定性为主要研究目标,围绕高速铣削过程中随工件材料快速去除工件质量和刚度时变的特点,借助理论分析和试验研究等手段,对整个铣削过程的稳定性进行系统深入的研究。
     整个大型整体薄壁件高速铣削加工过程划分了刚性工件、柔性工件刚度时不变和柔性工件刚度时变三个加工阶段,分别建立时不变和时变系统的动力学模型;从工程应用角度出发,确定了工件临界刚度对应下的工件临界质量作为是否考虑工件柔性的临界判据,并确定了工件临界质量值;分析高速铣削过程中,动态铣削力和工件刚度随材料切除在不同剩余壁厚和刀具作用位置时系统动态特性(模态参数、频响函数)及其变化规律。
     基于所建立的大型整体薄壁件刚性工件、柔性工件刚度时不变和柔性工件刚度时变阶段动力学模型来进行稳定性预测分析,针对柔性工件刚度时变阶段的质量、刚度等参数时变的特性,利用灵敏度法分析了工件质量和刚度变化对高速铣削系统模态特性的贡献灵敏度,依据动态响应输出信号(output only)法确定质量、刚度等多参数时变系统的频响函数,利用matlab仿真技术绘制了整个铣削过程不同阶段的稳定性lobe图(SLD)。
     研究夹具数量、夹具装夹位置和工件剩余壁厚等因素对大型整体薄壁件高速铣削系统稳定性的影响规律,分别绘制了薄壁件铣削系统的稳定性极限图。分析装夹方案对稳定性的影响,所得结果表明夹具对称且均匀分布可增强系统稳定性。提出并建立了基于铣削稳定性的装夹方案流程图。
     高速铣削系统动态试验研究,设计并实施了钛合金整体薄壁件的模态试验、空转试验和铣削试验。为刚度时变系统的结构动力学特性分析,铣削稳定性分析提供试验数据验证。
High speed milling(HSM),which is one of the advanced manufacturing technologies,has been become the important part of modern manufacture technology in 21st century and used in many different field,e.g.aeronautics,automobile,die and mould,energy,and rail transit.While the material removal rate(MRR),reflecting the machining efficiency,is often limited by the occurrence of an instability phenomenon called chatter in HSM processes.Practices and studies have been proven that chatter plays an important role in high speed milling.So the vibration of the thin wall integral structure is an urgent problem in the aviation machining industry.In this paper,the time-varying quality and stiffness of the thin wall integral structure is studied,the stability is obtained by theoretical analysis and experimental validation.
     The dynamics model of high-speed milling system with time-varying parameters is established.For the characteristics of time-varying quality and stiffness with the change of the remaining wall thickness,the multi-degree freedom model of the tool and the time-varying nonlinear dynamics model of the flexible workpiece are built;Based on the dynamic response of the output signal(output only),it is determined that the quality, stiffness and other parameters of time-varying system frequency response function. From the view of engineering application,the critical stiffness of workpiece corresponding to the critical mass is identified as the critical criterion.The critical mass is obtained according to the different structures of machine tools,tools and workpiece;
     Stability forecast analysis is carried out based on the dynamic model which is built in the rigid,the no time varying stiffness of the flexible and time varying stiffness of the flexible.For the time-varying properties of the quality and stiffness in time varying stiffness of the flexible,modal sensitivity analysis is used to analyze the sensitivity which is made by the quality and stiffness of workpiece.FRF is defmited based on dynamic response output signal(output only) with the parameters of quality and stiffness.The stability lobe diagram(SLD) of the whole milling process is drawn with the matlab simulation;
     Studying the influential discipline of stability from the influential elements such as clamping number,clamping position and the remaining wall thickness,and then the stability lobe of the thin walled workpiece is separately drawn.Analysing the stability influence from clamping number.clamping position and the remaining wall thickness can strengthen the system stability.The flow chart of clamping based on stability is raised and built;
     Experimentations of modal analysis,idling of spindle and high-speed milling are designed and carried out to investigate and validate the dynamics models,theory and method proposed and the dynamic characteristics.The experimental methods suitable for performance examination and evaluation of HSM system with respect to stability are researched and established.
引文
[1]马月才.中美日制造业发展比较研究[J].中国工业经济,2003,(5):22-27
    [2]王道荫.迈向21世纪的航空制造技术[M].北京:航空工业出版社,1994:285
    [3]徐志磊,尚林盛.国内外制造业发展趋势[J].航空制造技术,2003,(10):17-21
    [4]路甫祥.团结奋斗开拓创新建设制造强国[J].机械工程学报,2003,19(1):1-9
    [5]梁福军,王治平.21世纪的制造技术[J].机械工程学报,2002,38(1):1-8
    [6]中国高技术制造业增加值是国内GDP的两倍[Z].http://www.pcbwork.net龙人PCB工作室
    [7]张辉,林高用,杨立斌.高性能铝合金超厚板制备技术及理论[J].材料导报,2002,16(3):4-6
    [8]于骏一,吴博达.机械加工振动的诊断、识别与控制[M].北京:清华大学出版社,1994:85
    [9]艾兴,刘战强,赵军,等.高速铣削刀具材料的进展和未来[J].制造技术与机床,2001,(8):21-25
    [10]艾兴,刘战强,黄传真,等.高速铣削综合技术[J].航空制作技术,2002,(3):20-23
    [11]林胜.铝合金高速铣削技术[J].航空制造技术,2004,(6):61-66
    [12]投资总额2100万美元[Z].http://www.mw35.com/中国金属加工网
    [13]赵威,何宁,武凯.航空薄壁件的刀具偏摆数控补偿加工技术[J].机械制造与自动化,2002,(5):18-20
    [14]王炎.飞机大型整体薄壁件数控加工技术应用中的问题与对策[J].航空制造工程,1998,(4):28-30
    [15]汤爱君,马海龙.铣削颤振的线性和非线性理论研究[J].工具技术,2007,41(6):48-51
    [16]吴雅.机床铣削系统的颤振及其控制[M].北京:科学出版社,1993:85
    [17]汤爱军,马海龙.机床再生颤振系统研究现状的综述[J].机床与液压,2007,35(8):223-225
    [18]Budak E,Ert(u|¨)rk A,Ozg(u|¨)ven H N.A Modeling Approach for Analys is and Improvement of Spindle-holder-tool Assembly Dynamics[J].Annals of the CIRP,2006,(55):369-372
    [19]Budak E.Analytical Models for High Performance Milling,part Ⅱ:Process Dynamic and Stability[J].International Journal of Machine Tools and Manufacture,2006,(46):1489-1499
    [20]Namazi M,Aitintas Y,Abe T,et al.Modeling and Identification of Tool Holder-spindle Interface Dynamics[J].International Journal of Machine Tools and Manufacture,2007,(47):1333-1341
    [21]Ahmadi K,Ahmadian H.Modeling Machine Tool Dynamics Using a Distributed Parameter Tool- holder Joint Interface[J].International Journal of Machine Tools and Manufacture,2007,(47):1916-1928
    [22]Long X H,Balachandran B,Mann B P.Dynamics of Milling Processes with Variable Time Delays[J].Nonlinear Dynamics,2007,(47):49-63
    [23]Long X H.Loss of Contact and Time Delay Dynamics of Milling Processes[D].University of Maryland Ph.D,2006:15
    [24]Insperger T,Mann B P,Surmann T,et al.On the Chatter Frequencies of Milling Processes with Run Out[J].Journal of Machine Tools and Manufacture,2008,(2):1432-1443
    [25]Faassen R P H,Wouw N,Nijmeijer H,et al.An Improved Tool Path Model Including Periodic Delay for Chatter Prediction in Milling[J].Journal of Computational and Nonlinear Dynamics,2007,(2):167-179
    [26]汪通悦,何宁,李亮.薄壁零件铣削加工的振动模型[J].机械工程学报,2007,43(8):22-25
    [27]李沪曾,王逸,张冲,等.薄壁大型整体薄壁件的高速铣削[J].同济大学学报(自然科学版),2007,35(4):522-525
    [28]Xiong G L,Yi J M,Zeng C,et al.Study of the Gyroscopic Effect of the Spindle on the Stability Characteristics of the Milling System[J].Journal of Materials Processing Technology,2003,(138):379-384
    [29]Movahhedy M R,Mosaddegh P.Prediction of Chatter in High Speed Milling Including Gyroscopic Effects[J].International Journal of Machine Tools and Manufacture,2006,(46):996
    [30]Tang W X_2 Ai X,Zhang S,et al.Dynamic Modeling for High-speed Milling System with Centrifugal Force & Gyroscopic Effect[J].Key Engineering Materials,2004,(259-260):848
    [31]Tang W X,Ai X,Zhang S,et al.An Algorithm for Dynamic Characteristics of High-speed Machining Tool System with Rotating Symmetry[J].Key Engineering Materials,2004,(259-260):137-140
    [32]Tang W X,Song Q H,Sun S S,et al.Stability and Its Influence Factors for High-speed Milling[J].Proc.of Int.Conference on Advanced Design and Manufacture(ICADM),2008(Accepted)
    [33]Tang W X,Song Q H,Yu S Q,et al.Prediction of Chatter Stability in High-speed Finishing End Milling Considering Multi-mode Dynamics Characteristics[J].Journal of Materials Processing Technoiogy,2008(Accepted).
    [34]Gagnol V,Bouzgarrou B C,Ray P,el al.Model-based Chatter Stability Prediction for Highspeed Spindles[J].International Journal of Machine Tools and Manufacture,2007,(47):1176
    [35]Gradisek J,Kalveram M,Insperger T,et al.On Stability Prediction for Milling[J].International Journal of Machine Tools & Manufacture,2005,(45):769-781
    [36]InspergerT,Mann B P,Ste'pa'n G,et al.Stability of Up-milling and Down-milling,part 1:Alternative Analytical Methods[J].International Journal of Machine Tools & Manufacture,2003,(43):25-34
    [37]S.A.托贝斯.机床振动学[M].北京:机械工业出版社,1977:159-167
    [38]Minis I,Yanushevsky R.A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling[C].J.of ASME,1993,15(1):125-134
    [39]唐委校,艾兴,姜华,等.高速铣削系统动态特性试验及其方法研究[J].振动、测试与诊断,2004,24(S):162-165
    [40]唐委校,艾兴,姜华,等.高速铣削稳定性数据库研究[J].制造技术与机床,2005,(6):75-78
    [41]Budak E.Analytical Models for High Performance Milling,part Ⅱ:Process Dynamic and Stability[J].International Journal of Machine Tools & Manufacture,2006,(46):1489-1499
    [42]Thevenot V,Arnaud L.Integration of Dynamic Behaviour Variations in the Stability Lobes Method:3D Lobes Construction and Application to Thin-walled Structure Milling[J].International Journal of Machine Tools & Manufacture,2006,(27):638-644
    [43]Schmitz T L,Burns T J,Ziegert J C.Tool Length-dependent Stability Surfaces.Machining Science and Technology,2004,(8):1-21
    [44]Altintas Y.Analytical Prediction of Three Dimensional Chatter Stability in MilIing[C].JSME International Journal,2001,(44):75-80
    [45]金秋,刘少岗.薄壁弧形件铣削加工装夹方案的优化[J].工具技术,2007,41(12):54-57
    [46]金闻瑞,李伟,蔡力钢.装夹特征的分类与定义[J].机械工艺师,2001,(2):17-18
    [47]唐东,李全胜,成晔,等.表面形状为自由曲面零件的装夹设计研究[J].计算机集成制造系统,1999,5(4):61-65
    [48]李双跃,刘建波.自动装夹设计中支承位置与工件变形的几何推理方法[J].组合机床与自动化加工技术,2003,(8):16-19
    [49]董辉跃,柯映林.铣削加工中薄壁件装夹方案优选的有限元模拟[J].浙江大学学报(工学版),2004,38(1):17-21
    [50]董辉跃,柯映林,吴群,等.基于残余应力分布的框类零件装夹方案优选的有限元模拟[J].航空学报,2003,24(4):382-384
    [51]欧志球.CE-CAFD系统设计和关键技术研究[D].南京航空航天大学硕士学位论文,2003:38
    [52]武凯.航空薄壁件加工变形分析与控制研究[D].南京航空航天大学博士学位论文,2002:49-56
    [53]余伟.基于残余应力的航空薄壁件加工变形分析[D].南京航空航天大学硕士学位论文,2004:29
    [54]Nee A Y C,Kumar A S,Tao Z J.An Intelligent Fixture with a Dynamic Clamping Scheme[J].Proc Instn Mech Engrs,2000,214(B):183-196
    [55]Behzadi M R,Arezoo B.Static and Dynamic Models for Predicting the Effects of Supports on Machining Flatness and Roughness[J].Proc Instn Mech Engrs,2000,216(B):735-742
    [56]Cecil J.A Clamping Design Approach for Automated Fixture Design[J].International Journal of Machine Tools & Manufacture,2001,(18):784-789
    [57]Kow T S,Kumar A S,Fuh J Y H.An Integrated Approach to Collision-free Computer-aided Modular Fixture Design[J].International Journal of Machine Tools & Manufacture,2000,(16):233-242
    [58]Li B,Melkote S N.Optimal Fixture Design Accounting for the Effect of Workpiece Dynamics [J].International Journal of Machine Tools & Manufacture,2001,(18):701-707
    [59]Tsai J S.Finite-element Modeling of Static Surface Errors in the Peripheral Milling of Thin-walled Workpieces[J].International Journal of Machine Tools & Manufacture,1999,(94):235-246
    [60]Shreyes B L,Melkote N.Improved Workpiece Location Accuracy through Fixture Layout Optimization[J].International Journal of Machine Tools&Manufature,1999,(39):871-883
    [61]Menassa R J,Devrieswr.Optimizationmet Applied to Selecting Support Position Sinfixtured [J].Transactions of the ASME,1991,(113):41
    [62]岩部洋育.Study on Maching Accurancy of Thin Wall Workpiece by End Mill[C].日本机械学会论文集(C编).1997,63(605):239-246
    [63]Li Z,Shun Y,Liang S Y.Three Dimensional Cutting Force Aanalysis in End Milling[J].International Journal of Mechanical Sciences.1996,38(3):259-269
    [64]倪丽君,陈蔚芳.多目标的装夹方案优化及变夹紧力优化[J].机械设计与制造,2007,(7): 7-9
    [65]姚荣庆.薄壁零件的加工方法[J].机床与液压,2007,35(8):250-253
    [66]秦国华,吴竹溪,张卫红.薄壁零件的装夹变形机理分析与控制技术[J].机械工程学报,2007,43(4):211-21
    [67]阎兵,张大卫,徐安平,等.球头刀铣削过程动力学模型[J].机械工程学报,2002,38(5)22-26
    [68]贾新杰,贾春德,张志军.一种弱刚度薄壁结构件装夹方案优化的有限元模拟[J].沈阳工业学院学报,2004,23(3):58-60
    [69]Mane I,Gagnol V,Bouzgarrou BC,et al.Stability-based Spindle Speed Control During Flexible Workpiece High-speed Milling[J].International Journal of Machine Tools &Manufacture,2008,(48):184-194
    [70]Mativenga P T,Hon K K RAn Experimental Study of Cutting Forces in High-speed End Milling and Implications for Dynamic Force Modeling[J].Journal of Manufacturing Science and Engineering,2005,127(2):251-261
    [71]Budak E.Analyticai Models for High Performance Milling part Ⅰ:Cutting Forces,Structural Deformations and Tolerance Integrity[J].International Journal of Machine Tools &Manufacture,2006,46(12-13):1478-1488
    [72]Altintas Y.Manufacturing Automation:Metal Cutting Mechanics,Machine Tool Vibrations and CNC Design[M].London:Cambridge University Press,2000:139-145
    [73]李贝贝.轻型载货汽车行驶平顺性建模仿真及试验研究[D].山东大学硕士学位论文,2005:35
    [74]唐委校.高速铣削稳定性及其动态优化研究[D].山东大学博士学位论文,2005:12-87
    [75]Giuliano Coppotelli.On the estimate of the FRFs from operational data[J].Mechanical Systems and Signal Processing,2009,(23):288-299
    [76]李亮,查文伟.薄壁零件高速铣削的振动问题分析[J].盐城工学院学报(自然科学版),2006,19(2):9-13
    [77]郭魂.航空多框大型整体薄壁件铣削变形机理与预测分析研究[D].南京航空航天大学博士学位论文,2005:45-56
    [78]Tao Z J,Senthil K A,Nee A Y C,et al.Modeling and Experimental Investigation of a Sensor-integrated Workpiece-fixture System[J].International Journal of Computer Applications in Technology,1997,10(3-4):236-250
    [79]路冬.航空大型整体薄壁件加工变形预测及装夹布局优化[D].山东大学博上学位论文,2007:48-75
    [80]傅志方.振动模态分析与参数识别[M].北京:机械工业出版社,1990:78-89
    [81]吴化勇.高速铣削系统动态特性研究[D].山东大学硕士学位论文,2005:59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700